当前位置:文档之家› 茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】
茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】

第8章 方差分析与回归分析

一、方差分析

1.在一个单因子试验中,因子A有三个水平,每个水平下各重复4次,具体数据如下:

表8-1

试计算误差平方和s e、因子A的平方和S A与总平方和S T,并指出它们各自的自由度.解:此处因子水平数r=3,每个水平下的重复次数m=4,总试验次数为

n=mr=12.首先,算出每个水平下的数据和以及总数据和:

T1=8+5+7+4=24.

T2=6+10+12+9=37.

T3=0+1+5+2=8.

T=T l+T2+T3=24+37+8=69.

误差平方和S e由三个平方和组成:

于是

2.在一个单因子试验中,因子A有4个水平,每个水平下重复次数分别为

5,7,6,8.那么误差平方和、A的平方和及总平方和的自由度各是多少?

解:此处因子水平数r=4,总试验的次数n=5+7+6+8=26,因而有

误差平方和的自由度

因子A的平方和的自由度

总平方和的自由度

3.在单因子试验中,因子A有4个水平,每个水平下各重复3次试验,现已求得每个水平下试验结果的样本标准差分别为1.5,2.0,1.6,1.2,则其误差平方和为多少?误差的方差σ2的估计值是多少?

解:此处因子水平数r=4,每个水平下的试验次数m=3,误差平方和S e由四个平方组成,它们分别为

于是

其自由度为,误差方差σ2的估计值为

4.在单因子方差分析中,因子A有三个水平,每个水平各做4次重复试验.请完成下列方差分析表,并在显著性水平α=0.05下对因子A是否显著作出检验.

表8-2 方差分析表

解:补充的方差分析表如下所示:

表8-3 方差分析表

对于给定的显著性水平,查表知,故拒绝域为

,由于

,因而认为因子A是显著的.此处检验的p值为

5.用4种安眠药在兔子身上进行试验,特选24只健康的兔子,随机把它们均分为4组,每组各服一种安眠药,安眠时间如下所示.

表8-4 安眠药试验数据

在显著性水平下对其进行方差分析,可以得到什么结果?

解:这是一个单因子方差分析的问题,根据样本数据计算,列表如下:

8-5于是根据以上结果进行方差分析,并继续计算得到各均方以及F 比,列于下表:表

8-6

在显著性水平下,查表得

,拒绝域为,由于

故认为因子A (安眠药)是显著的,即四种安眠药对兔子的安眠作用

有明显的差别.此处检验的p 值为

6.为研究咖啡因对人体功能的影响,特选30名体质大致相同的健康男大学生进行手指叩击训练,此外咖啡因选三个水平:

每个水平下冲泡l0杯水,外观无差别,并加以编号,然后让30位大学生每人从中任选一杯服下,2h后,请每人做手指叩击,统计员记录其每分钟叩击次数,试验结果统计如下表:

表8-7

请对上述数据进行方差分析,从中可得到什么结论?

解:我们知道,对数据作线性变换不会影响方差分析的结果,这里将原始数据同时减去240,并作相应的计算,计算结果列入下表:

表8-8

于是可计算得到三个平方和

把上述诸平方和及其自由度填入方差分析表,并继续计算得到各均方以及F比:

表8-9

若取查表知,从而拒绝域为,由于

.故认为因子A(咖啡因剂量)是显著的,即三种不同剂量对人的作用有明显的差别.此处检验的p值为

7.某粮食加工厂试验三种储藏方法对粮食含水率有无显著影响.现取一批粮食分成若干份,分别用三种不同的方法储藏,过一段时间后测得的含水率如下表:

表8-10

(1)假定各种方法储藏的粮食的含水率服从正态分布,且方差相等,试在下检验这三种方法对含水率有无显著影响;

(2)对每种方法的平均含水率给出置信水平为0.95的置信区间.

解:(1)这是一个单因子方差分析的问题,由所给数据计算如下表:

表8-11

三个平方和分别为

单因素方差分析和多因素方差分析简单实例

单因素方差分析实例 [例6-8]在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。 问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?即要检验从“态度”上看,这三组居民的样本是取自同一总体还是取自不同的总体 在SPSS 中进行方差分析的步骤如下: (1)定义“居民对亚运会的总态度得分”变量为X(数值型),定义组类变量为G(数 值型),G=1、2、3 表示第一组、第二组、第三组。然后录入相应数据,如图6-66所示 图6-66 方差分析数据格式 (2)选择[Analyze]=>[Compare Means]=>[One-Way ANOVA...],打开[One-Way ANOVA]主对 话框(如图6-67所示)。从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G,单击按钮使之进入[Factor]框。单击[OK]按钮完成。

图6-67 方差分析对话框 (3)分析结果如下: 因此,收看电视时间不同的三个组其对亚运会的态度是属于三个不同的总体。 多因素方差分析 [例6-11]从由五名操作者操作的三台机器每小时产量中分别各抽取1 个不同时段的产 量,观测到的产量如表6-31所示。试进行产量是否依赖于机器类型和操作者的方差分析。

SPSS 的操作步骤为: (1)定义“操作者的产量”变量为X(数值型),定义机器因素变量为G1(数值型)、操作 者因素变量为G2(数值型),G1=1、2、3 分别表示第一、二、三台机器,G2=1、2、3、4、5 分别表示第1、2、3、4、5 位操作者。录入相应数据,如图6-68所示。 图6-68 双因素方差分析数据格式 (2)选择[Analyze]=>[General Linear Model]=>[Univariate...],打开[Univariate]主对话框(如图6-69所示)。从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G1 和G2,单击按钮使之进入[Fixed Factor(s)]框。单击[OK]按钮

SPSS方差分析案例实例

SPSS 第二次作业——方差分析 1、案例背景: 在一些大型考试中,为了保证结果的准确和一致性,通常针对一些主观题,都采取由多个老师共同评审的办法。在评分过程中,老师对学生的信息不可见,同时也无法看到其他评分,保证了结果的公正性。然而也有特殊情况的发生,导致了成绩的不稳定,这就使得对不同教师的评分标准考察变得十分必要。 2、案例所需资料及数据的获取方式和表述,变量的含义以及类型: 所需资料:抽样某地某次考试中不同教师对不同的题目的学生成绩的评分; 获取方式:让一组学生前后参加四次考试,由三位教师进行批改后收集数据; 变量含义、类型:一份试卷的每道主观题由三名教师进行评定,3个教师的评定结果可看成事从同一总体中抽出的3个区组,它们在四次评定的成绩是相关样本。 表1如下: 3、分析方法: 用方差分析的方法对四个总体的平均数差异进行综合性的F 检验。 4、数据的检验和预处理: a) 奇异点的剔除:经检验得无奇异点的剔除; b) 缺失值的补齐:无; c) 变量的转换(虚拟变量、变量变换):无; d) 对于所用方法的假设条件的检验:进行正态性和方差齐性的检验。 正态性,用QQ 图进行分析得下图: 教师 题目 1 2 3 a 27.3 28.5 29.1 b 29.0 29.2 28.3 c 26.5 28.2 29.3 d 29.7 25.7 27.2

得到近似满足正态性。 ?对方差齐性的检验: 用SPSS对方差齐性的分析得下表: Test of Homogeneity of Variances 分数 Levene Statistic df1 df2 Sig. .732 2 9 .508 易知P〉0.05,接受方差齐性的假设。 5、分析过程: a) 所用方法:单因素方差分析;方差分析中的多重比较。 b) 方法细节: ●单因素方差分析 第一步,提出假设: H0:μ1=μ2=μ3;(教师的评定基本合理,即均值相同) H1:μi(i=1,2,3)不全相等;(教师的评定不够合理,均值有差异)第二步,为检验H0是否成立,首先计算以下统计量:

方差分析选择题及答案

第10章方差分析与试验设计 三、选择题 1.方差分析的主要目的是判断()。 A. 各总体是否存在方差 B. 各样本数据之间是否有显著差异 C. 分类型自变量对数值型因变量的影响是否显著 D. 分类型因变量对数值型自变量的影响是否显著 2.在方差分析中,检验统计量F是()。 A. 组间平方和除以组内平方和B. 组间均方除以组内均方C. 组间平方除以总平方和D. 组间均方除以总均方 3.在方差分析中,某一水平下样本数据之间的误差称为()。A. 随机误差B. 非随机误差C. 系统误差D. 非系统误差 4.在方差分析中,衡量不同水平下样本数据之间的误差称为()。A. 组内误差B. 组间误差C. 组内平方D. 组间平方 5.组间误差是衡量不同水平下各样本数据之间的误差,它()。A. 只包括随机误差 B. 只包括系统误差 C. 既包括随机误差,也包括系统误差 D. 有时包括随机误差,有时包括系统误差 6.组内误差是衡量某一水平下样本数据之间的误差,它()。A. 只包括随机误差 B. 只包括系统误差 C. 既包括随机误差,也包括系统误差 D. 有时包括随机误差,有时包括系统误差 7.在下面的假定中,哪一个不属于方差分析中的假定()。 A. 每个总体都服从正态分布B. 各总体的方差相等

C. 观测值是独立的 D. 各总体的方差等于0 8.在方差分析中,所提出的原假设是210:μμ=H = ···=k μ,备择假设是( ) A. ≠≠H 211:μμ···k μ≠ B. >>H 211:μμ···k μ> C. <

方差分析练习题

1.(20分)一研究者为了研究市场环境对企业战略行为的影响对MBA学员做了一个模拟实验。60名学员每人管理一个企业,以利润最大化为目标模拟经营。模拟一段时间后,市场环境发生变化。学员随机分为3组,其中第一组为对照组,第二组市场环境转变为恶性竞争,第三组市场环境为合作竞争。在新环境下继续模拟。研究者收集了每个学员在市场环境变化前后的市场份额和利润率数据,形成两个分析指标: Y1: 环境变化后市场份额/环境变化前市场份额*100(Y1=100意味着环境变化前后市场份额无变化) Y2: 环境变化后利润率/环境变化前利润率*100(Y2=100意味着环境变化前后该企业利润无变化) 然后,对这两个指标做多响应变量方差分析,并做LSD多重均值比较。研究者还担心MBA学员工作经历不同可能影响分析结果,特别设计了一个反映工作经历的指标EXP,作为协变量。SPSS输出结果如下。请回答下列问题: (1)解释以下各输出图表的含义 (2)从输出结果中你能得出什么结论?

2.(20分)为了帮助人们找到更好的工作,某市政府制定了一个培训计划。为了检验该计划是否达到预期目的,研究者收集了参加培训和未参加培训人员(对照组)样本数据,做了一个单因素分析。响应变量为incomes after the program,因素为培训状态变量prog,prog=0-未参加培训,prog=1-参加培训。考虑到培训前工资可能对结果产生影响,引入协变量:incbef (培训前工资)。软件分析输出结果如下: Tests of Between-Subjects Effects(协变量调 整前) Dependent Variable: Income after the program Source Type III Sum of Squares df Corrected Model 5136.897(a) 1 Intercept 277571.145 1 prog 5136.897 1 Error 16656.454 998 Total 297121.000 1000 Corrected Total 21793.351 999 a R Squared = .236 (Adjusted R Squared = .235) Tests of Between-Subjects Effects(协变量调 整后) Dependent Variable: Income after the program Source Type III Sum of Squares df Corrected Model 12290.741(a) 2 Intercept 131.400 1 incbef 7153.844 1 prog 4735.662 1 Error 9502.610 997 Total 297121.000 1000 Corrected Total 21793.351 999 a R Squared = .564 (Adjusted R Squared = .563) (1)分别对协变量调整前和协变量调整后的方差分析结果做假设检验, (2)你认为在此分析中是否应该引入协变量?为什么? (3)下表是协变量调整后方差分析的参数估计表,从该表中你能得出什么结论? Parameter Estimates Dependent Variable: Income after the program Parameter B Std. Error t Sig. 95% Confidence Interval Partial Eta

概率论与数理统计:协方差和相关系数

协方差和相关系数 对二维随机变量),(Y X ,我们除了讨论X 与Y 的期望和方差之外,还 需讨论X 与Y 之间相互关系的数字特征,本节主要讨论这方面的数字特征。 § 协方差和相关系数 协方差的定义与性质 定义 设(,)X Y 是二维随机变量.若{[()][()]}E X E X Y E Y --存在,则称它为随 机变量 X 与Y 的协方差,记为Cov(,)X Y ,即 Cov(,){[()][()]}X Y E X E X Y E Y =--. 常用下面的式子计算协方差 Cov(,){[()][()]}X Y E X E X Y E Y =--()()()E XY E X E Y =-. 注:(1)X 与Y 的协方差),(Y X Cov 实质上是二维随机变量X 与Y 的函数 )]([()]([(Y E Y X E X -?-的期望,它是一个常数。 (2)当),(Y X 为二维离散型随机变量时,其分布律为 }{),2,1,,2,1(,, =====j i y Y x X P P j i ij ,则 ij i i j i P Y E y X E x Y X Cov )]()][([),(1 1 --= ∑∑∞=∞ =; (3)当),(Y X 为二维连续型随机变量时,),(y x f 为),(Y X 的联合概率密度函数,则dxdy y x f Y E y X E x Y X Cov ),())(())((),(--= ?? +∞∞-+∞ ∞ -。 (4)利用期望的性质可得到协方差有下列计算公式: )()()(),(Y E X E XY E Y X Cov -= 证明: ) ()()( )()()()()()()( )] ()()()([ )] ())(([(),(Y E X E XY E Y E X E Y E X E Y E X E XY E Y E X E Y XE Y X E XY E Y E Y X E X E Y X Cov -=+--=+--=--= 此公式是计算协方差的重要公式,特别地取Y X =时,有

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

方差分析几个案例

方差分析方法 方差分析是统计分析方法中,最重要、最常用的方法之一。本文应用多个实例来阐明方差分析的应用。在实际操作中,可采用相应的统计分析软件来进行计算。 1. 方差分析的意义、用途及适用条件 1.1 方差分析的意义 方差分析又称为变异数分析或F检验,其基本思想是把全部观察值之间的变异(总变异),按设计和需要分为二个或多个组成部分,再作分析。即把全部资料的总的离均差平方和(SS)分为二个或多个组成部分,其自由度也分为相应的部分,每部分表示一定的意义,其中至少有一个部分表示各组均数之间的变异情况,称为组间变异(MS组间);另一部分表示同一组内个体之间的变异,称为组内变异(MS组内),也叫误差。SS除以相应的自由度(υ),得均方(MS)。如MS组间>MS组内若干倍(此倍数即F值)以上,则表示各组的均数之间有显著性差异。 方差分析在环境科学研究中,常用于分析试验数据和监测数据。在环境科学研究中,各种因素的改变都可能对试验和监测结果产生不同程度的影响,因此,可以通过方差分析来弄清与研究对象有关的各个因素对该对象是否存在影响及影响的程度和性质。 1.2 方差分析的用途 1.2.1 两个或多个样本均数的比较。 1.2.2 分离各有关因素,分别估计其对变异的影响。 1.2.3 分析两因素或多因素的交叉作用。 1.2.4 方差齐性检验。 1.3 方差分析的适用条件 1.3.1 各组数据均应服从正态分布,即均为来自正态总体的随机样本(小样本)。 1.3.2 各抽样总体的方差齐。 1.3.3 影响数据的各个因素的效应是可以相加的。 1.3.4 对不符合上述条件的资料,可用秩和检验法、近似F值检验法,也可以经过变量变换,使之基本符合后再按其变换值进行方差分析。一般属Poisson分布的计数资料常用平方根变换法;属于二项分布的百分数可用反正弦函数变换法;当标准差与均数之间呈正比关系,用平方根变换法又不易校正时,也可用对数变换法。 2. 单因素方差分析(单因素多个样本均数的比较) 根据某一试验因素,将试验对象按完全随机设计分为若干个处理组(各组的样本含量可相等或不等),分别求出各组试验结果的均数,即为单因素多个样本均数。 用方差分析比较多个样本均数的目的是推断各种处理的效果有无显著性差异,如各组方差齐,则用F检验;如方差不齐,用近似F值检验,或经变量变换后达到方差齐,再用变换值作F检验。如经F检验或近似F值检验,结论为各总体均数不等,则只能认为各总体均数之间总的来说有差异,但不能认为任何两总体均数之间都有差异,或某两总体均数之间有差异。必要时应作均数之间的两两比较,以判断究竟是哪几对总体均数之间存在差异。 在环境科学研究中,常常要分析比较不同季节对江、河、湖水中某种污染物的含量

最新方差分析实例

让4名学生前后做3份测验卷,得到如下表的分数,运用方差分析法可以推断分析的问题是:3份测验卷测试的效果是否有显著性差异? 1、确定类型 由于4名学生前后做3份试卷,是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本。 2、用方差分析方法对三个总体平均数差异进行综合性地F检验 检验步骤如下: 第一步,提出假设: 第二步,计算F检验统计量的值: 因为是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本,所以可将区组间的个别差异从组内差异中分离出来,剩下的是实验误差,这样就可以选择公式(6.6)组间方差与误差方差的F比值来检验三个测验卷的总体平均数差异的显著性。 ①根据表6.4的数据计算各种平方和为: 总平方和: 组间平方和: 区组平方和: 误差平方和:

②计算自由度 总自由度: 组间自由度: 区组自由度: 误差自由度: ③计算方差 组间方差: 区组方差: 误差方差: ④计算F值 第三步,统计决断 根据,α=0.01,查F值表,得到,而实际计算的F检验统计量的值为,即P(F >10.9)<0.01, 样本统计量的值落在了拒绝域内,所以拒绝零假设,接受备择假设,即三个测验中至少有两个总体平均数不相等。 3、用q检验法对逐对总体平均数差异进行检验 检验步骤如下: 第一步,提出假设: 第二步,因为是多个相关样本,所以选择公式(6.8)计算q检验统计量的值:

在为真的条件下,将一次样本的有关数据及代入上式中,得到A和B两组的平均数之差的q值,即: 以此类推,就可得到每对样本平均数之间差异比较的q值,如下表所示: 第三步,统计决断 为了进行统计决断,在本例中,将A,B,C共3组学生英语单词测验成绩的等级排列为: A与C之间和B与C之间包含有1,2两个组,a=2;A与B之间包含有1,2,3三个组,a=3。 根据,得到当a=2时,q检验的临界值为 ; 当a=3时,q检验的临界值为;将表(6.5)中的q检验统计量的值与q临界值进行比较,得到表(6.6)中的3次测验成绩各对平均数之间的比较结果:表6.6 3次测试各对样本平均数之差q值的比较结果

方差分析案例

“地域”与“抑郁” 朱平辉改编自西南财大网(案例分析者刘玲同学) 一、案例简介 美国人作了一项调查,研究地理位置与患抑郁症之间的关系。他们选择了60个65岁以上的健康人组成一个样本,其中20个人居住在佛罗里达,20个人居住在纽约、20个人居住在北卡罗来纳。对中选的每个人给出了测量抑郁症的一个标准化检验,搜集到表1中的资料,较高的得分表示较高的抑郁症水平。 研究的第二部分考虑地理位置与患有慢性病的65岁以上的人患抑郁症之间的关系,这些慢性病诸如关节炎、高血压、心脏失调等。这种身体状况的人也选出60个组成样本,同样20个人居住在佛罗里达,20个人居住在纽约、20个人居住在北卡罗来纳。这个研究记录 央视主持人崔永元对外公开其患有抑郁症后,使人们对这种精神疾病有了更多的关注。通过对以上两个数据集统计分析,你能从中看出什么结论?你对该疾病有什么认识? 二、抑郁症的相关知识 抑郁症有两种含义,广义的抑郁症包括情感性精神病、抑郁性神经症、反应性抑郁症、更年期抑郁症等;狭义的则仅指情感性精神病抑郁症。抑郁症在国外是一种十分常见的精神

疾病,据报告,其患病率最高竟占人群的10%左右,而且社会经济情况较好的阶层,患病率越高。世界卫生组织预测,抑郁症将成为21世纪人类的主要杀手。全世界患有抑郁症的人数在不断增长,而抑郁症患者中有10—15%面临自杀的危险……引起抑郁症的原因有很多,为了了解地理位置对抑郁症是否有影响,我们做如下的案例分析: 三、地理位置与患抑郁症之间是否有关系 作为对65岁以上的人长期研究的一部分,在纽约洲北部地区的Wentworth医疗中心的社会学专家和内科医生进行了一项研究,以调查地理位置与患抑郁症之间的关系。选择了60个相当健康的人组成一个样本,其中20人居住在佛罗里达,20人居住在纽约,20人居住在北卡罗米纳。对中选的人给出了测量抑郁症的一个标准化实验,搜集到表1中的资料,较高的分表示较高的抑郁症水平。 研究的第二部分考虑地理位置与患有慢性病的65岁以上的人患抑郁症之间的关系,这些慢性病诸如关节炎、高血压、心脏失调等。这种状况的人也选出60个组成样本,同样20人居住在佛罗里达,20人居住在纽约,20人居住在北卡罗米纳。 要求根据所给的样本数据,做出以下管理报告: 描述统计学方法概括说明两部分研究的资料,关于抑郁症的得分,你的初步观测结果是什么? 对两个数据集使用方差分析方法,陈述每种情况下被检验的假设,你的结论是什么? 用推断法说明单个处理均值的合理性 讨论这个研究的推广和你认为有用的其他分析 四、有关统计方法 本案例是通过单因素的方差分析,对各个地区的抑郁症得分均值进行假设检验。分别检验地理位置对健康人群和慢性病患者是否有影响,以及影响程度,进而得出结论。 五、案例分析 首先:数据资料中的数据,并不能直接看出地区与患抑郁症之间有联系与否。我们可以根据所给的样本资料,得到以下信息: (一)健康的被调查者中:佛罗里达地区平均得分=5.55 纽约地区平均得分=8 北卡罗米纳地区平均得分=7.05 (二)患抑郁症的被调查者中:佛罗里达地区平均得分=13.6 纽约地区平均得分=15.25 北卡罗米纳地区平均得分=13.95 (三)我们给出不同地区所有被调查者的平均得分情况 佛罗里达地区平均得分=9.575 纽约地区平均得分=11.625 北卡罗米纳地区平均得分=10.5

相关系数与协方差的关系

探究协方差与相关系数 罗燕 摘要:协方差),(Y X Cov 是描述二维随机变量两个分量间相互关联程度的一个特征数,如果将协方差相应标准化变量就得到相关系数),(Y X Corr 。从而可以引进相关系数),(Y X Corr 去刻画二维随机变量两个分量间相互关联程度。且事实表明,相关系数明显被广泛应用。本文的目的在于从协方差与相关系数的关系的角度去探讨协方差与相关系数的优缺点,并具体介绍协方差和相关系数这两个描述二维随机变量间相关性的特征数。 关键字:协方差),(Y X Cov 相关系数),(Y X Corr 相互关联程度 1 协方差、相关系数的定义及性质 设(X ,Y )是一个二维随机变量,若E{ [ X-E(X) ] [ Y -E(Y) ] }存在,则称此数学期望为X 与Y 的协方差,并记为Cov(X,Y)=E{ [ X-E(X) ] [ Y -E(Y) ] },特别有Cov(X,X)=)(X Var 。 从协方差的定义可以看出,它是X 的偏差“X-E(X) ”与Y 的偏差“Y -E(Y)”的乘积的数学期望。由于偏差可正可负,故协方差也可正可负,也可为零,其具体表现如下: ·当Cov(X,Y)>0时,称X 与Y 正相关,这时两个偏差 [ X-E(X) ] 与[ Y -E(Y) ] 同时增加或同时减少,由于E(X)与E(Y)都是常数,故等价于X 与Y 同时增加或同时减少,这就是正相关的含义。 ·当Cov(X,Y)<0时,称X 与Y 负相关,这时X 增加而Y 减少,或Y 增加而X 减少,这就是负相关的含义。 ·当Cov(X,Y)=0时,称X 与Y 不相关。 也就是说,协方差就是用来描述二维随机变量X 与Y 相互关联程度的一个特征数。协方差Cov(X,Y)是有量纲的量,譬如X 表示人的身高,单位是米(m ),Y 表示人的体重,单位是公斤(k g ),则Cov(X,Y)带有量纲(m ·kg )。为了消除量纲的影响,对协方差除以相同量纲的量,就得到一个新的概念—相关系数,它的定义如下: 设(X ,Y )是一个二维随机变量,且)(X Var >0,)(Y Var >0.则称 ),(Y X C o r r =)()() ,(Y Var X Var Y X Cov =y x Y X Cov σσ),( 为X 与Y 的(线性)相关系数。 利用施瓦茨不等式我们不难得到-1≤),(Y X Corr ≤1.也就是说相关系数是介于-1到1之间的,并且可以对它作以下几点说明: ·若),(Y X Corr =0,则称X 与Y 不相关。不相关是指X 与Y 没有线性关系,但也有可能有其他关系,比如平方关系、立方关系等。 ·若),(Y X Corr =1,则称X 与Y 完全正相关;若),(Y X Corr =-1,则称X 与Y 完全,负相关。

方差分析与回归分析习题答案

第九章 方差分析与回归分析习题参考答案 1. 为研究不同品种对某种果树产量的影响,进行试验,得试验结果(产量)如下表,试分析果树品种对产量是否有显著影响. (0.05(2,9) 4.26F =,0.01(2,9) 8.02F =) 解 : r=3, 12 444n n 321=++=++=n n , T=120 ,120012 1202 2===n T C 计 算 统 计 值 722 8.53, 389 A A A e e SS f F SS f = =≈…… 方差分析表 方差来源 平方和 自由度 均方 F 值 临界值 显著性 品种A 72 2 36 8.53 误差 38 9 4.22 总 计 110 11 结论:由于0.018.53(2,9)8.02, A F F ≈>=故果树品种对产量有特别显著影响. 2. 解 : 22..4,3,12,180122700 l m n lm C x n ======= 计算 统 计 值 90310.52 51.43,3.56 3.56 A A B B A B e e e e S f S f F F S f S f = =≈==≈ 方差来源 平方和 自由度 F 值 临界值 显著性 品种 试验结果 行和??=i x T i 行均值.i x A 1 10 7 13 10 40 10 A 2 12 13 15 12 52 13 A 3 8 4 7 9 28 7 试验 结果 燃料B B 1 B 2 B 3 推进器 A A 1 14 13 12 39 13 A 2 18 16 14 48 16 A 3 13 12 11 36 12 A 4 20 18 19 57 19 65 59 56 180 16.25 14.75 14 15

协方差和相关系数

二维随机变量的期望与方差 对于二维随机变量,如果存在,则 称为二维随机变量的数学期望。 1 、当( X ,Y ) 为二维离散型随机变量时 2 、当( X ,Y ) 为二维连续型随机变量时 例题 2.39 设,求。与一维随机变量函数的期望一样,可求出二维随机变量函数的期望。 对二维离散型随机变量( X ,Y ) ,其函数的期望为 对二维连续型随机变量( X ,Y ) ,其函数的期望为

例题 2.40 设,求 2.41 设( X ,Y ) 服从区域A 上的均匀分布,其中A 为x 轴、y 轴及直线 围成的三角形区域,如图2-10 所示。求函数的数学期望。 随机变量的数学期望和方差的三个重要性质: 1 、 推广: 2 、设X 与Y 相互独立,则 推广:设相互独立,则 3 、设X 与Y 相互独立,则 推广:设相互独立,则 仅对性质 3 就连续型随机变量加以证明 证明3

由于X 与Y 相互独立,所以与相互独立,利用性质 2 、知道 从而有, 可以证明:相互独立的随机变量其各自的函数间,仍然相互独立。 例题 2.42 某学校流行某种传染病,患者约占,为此学校决定对全校1000 名师生进 行抽血化验。现有两个方案:①逐个化验;②按四个人一组分组,并把四个人抽到的血混合在一起化验,若发现有问题再对四个人逐个化验。问那种方案好? 2.10.2 协方差与相关系数 分析协方差与相关系数反映随机变量各分量间的关系;结合上面性质 3 的证明,可以得到以下结论: 若X 与Y 相互独立,则 可以用来刻划X 与Y 之间的某种关系。 定义设( X ,Y ) 为二维随机变量,若 存在,则称它为随机变量X 与Y 的协方差,记作或,即 特别地 故方差,是协方差的特例。计算协方差通常采用如下公式:

SPSS-单因素方差分析(ANOVA) 案例解析

SPSS-单因素方差分析(ANOVA) 案例解析 2011-08-30 11:10 这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA)分析,今天希望跟大家交流和分享一下: 继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察老鼠死亡和存活情况。 研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关? 样本数据如下所示:(a代表雄性老鼠 b代表雌性老鼠 0代表死亡 1 代表活着 tim 代表注射毒液后,经过多长时间,观察结果) 点击“分析”——比较均值———单因素AVOVA, 如下所示:

从上图可以看出,只有“两个变量”可选, 对于“组别(性别)”变量不可选,这里可能需要进行“转换”对数据重新进行编码, 点击“转换”—“重新编码为不同变量” 将a,b"分别用8,9进行替换,得到如下结果”

此时的8 代表a(雄性老鼠) 9代表b雌性老鼠,我们将“生存结局”变量移入“因变量列表”框内,将“性别”移入“因子”框内,点击“两两比较”按钮,如下所示:

“ 勾选“将定方差齐性”下面的 LSD 选项,和“未假定方差齐性”下面的Tamhane's T2选项点击继续 点击“选项”按钮,如下所示: 勾选“描述性”和“方差同质检验” 以及均值图等选项,得到如下结果:

结果分析:方差齐性检验结果,“显著性”为0,由于显著性0<0.05 所以,方差齐性不相等,在一般情况下,不能够进行方差分析 但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的, 由于此样本组少于三组,不能够进行多重样本对比 从结果来看“单因素ANOVA” 分析结果,显著性0.098,由于 0.098>0.05 所以可以得出结论: 生存结局受性别的影响不显著 很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下面我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal-Wallis "检验方法)

双因素方差分析习题

1. 某湖水在不同季节氯化物含量测定值如表6.16所示。问不同季节氯化物含量有无差别? 若有差别,进行32个水平的两两比较。 解: 2.有三种抗凝剂(123,,A A A )对一标本作红细胞沉降速度(一小时值)测定,每种抗凝剂 3.将18名原发性血小板减少症患者按年龄相近的原则配为6个单位组,每个单位组中的3名患者随机分配到A 、B 、C 三个治疗组中,治疗后的血小板升高情况见表6.17,问3中治疗方法的疗效有无差别? 表6.17 不同人用鹿茸后血小板的升高值/(4 3 10/mm ) 解: 4.某研究人员以0.3mL/kg 剂量纯苯给大鼠皮下注射染毒,每周3次,经45天后,实验动物白细胞综述下降至染毒前的50%左右,同时设置未染毒组。两组大鼠均按照是否给予升高白

细胞药物分为给药组和不给药组,试验结果见表6.18,试作统计分析。 解: 问:(1)这三类人的该项生理指标有差别吗?() α=) (2)如果有差别,请进行多重比较分析。(0.05 解: 6.将24家生产产品大致相同的企业,按资金分为三类,每个公司的每100元销售收入的生产成本(单位:元)如表6.20所示。这些数据能否说明三类公司的市场生产成本有差异(假 α=) 定生产成本服从正态分布,且方差相同)?(0.05 解: 7.为了解三种不同配比的饲料对仔猪影响的差异,对三种不同品种的猪各选三头进行试验,分别测得其三个月间体重增加量如表6.21所示。假定其体重增加量服从正态分布,且1方 α=) 差相同。试分析不同饲料与不同品种对猪生长有无显著差异?(0.05

8.比较3种化肥(A,B两种新型化肥和传统化肥)施撒在三种类型(酸性、中性和碱性)的土地上对作物的产量情况有无差别,将每块土地分成6块小区,施用A,B两种新型化肥和传统化肥,收割后,测量各组作物的产量,得到的数据如表6.22所示、化肥、土地类型 α=) 及其它们的交互作用对作物产量有影响吗?(0.05 -

方差分析实例分析

方差分析实例分析 摘要:为研究货架的高度和宽度两个因素的影响,本文基于shelf 数据,分别对高度和宽度进行方差分析。首先对数据进行高度和宽度进行分组,并进行描述性统计分析。其次,利用Bartlett 检验进行方差其次性检验,以检验数据在不同的水平下方差是否相同。最后,利用aov()函数进行单因素方差分析、交互作用的双因素方差分析。其结果表明:单因素方差分析结果表明:高度的bottom 、middle 、top 三个水平设置要求不相同,宽度的reg 、wide 两个水平设置要求相同。三个高度设置的需求和两个宽度设置的要求之间的关系是一样的。 关键词:方差其次性检验;方差分析;高度;宽度;货架 1 引言 方差分析是在20世纪20年代发展起来的一种统计方法,它是由英国统计学家费希尔在进行实验设计时为解释实验数据而首先引入的。从形式上看,方差分析是比较多个总体的均值是否相等;但是其本质上是研究变量之间的相互关系。方差分析主要用于研究一个数值因变量与一个或多个分类自变量的关系。方差分析(analysis of variance ,ANOV A )就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。 本文基于shelf 数据,分别对高度和宽度进行方差分析。首先对数据进行高度和宽度进行分组,并进行描述性统计分析。其次,利用Bartlett 检验进行方差其次性检验,以检验数据在不同的水平下方差是否相同。最后,利用aov()函数进行单因素方差分析和有交互作用的双因素方差分析,以说明三个层次高度的要求是否相同,两个层次的宽度要求是否相同,以 及宽度设置的需求和高度之间的关系。 2货架数据描述性统计分析 对shelf 数据进行三个层次高度进行分组,分别分为bottom 、middle 、top 三个层次。对宽度进行reg 、wide 两个层次进行分组。表1给出了shelf 数据的原始数据表,表2给出了高度 三个层次的描述性统计结果,表3给出了宽度两个层次的描述性统计结果。 从表2可看出,bottom 的平均值为55.8,方差为6.136;middle 的平均值为77.2,方差为9.628;top 的平均值为51.5,方差为2.716。其结果表明:三个水平的货架高度平均值存在差异,但是其方差也有差别。表3可看出,reg 的平均值为60.8,方差为129.4050;wide 的平均值为62.2,方差为165.2775。货架的宽度wide 的方差较大,其说明货架的宽度wide 的波动性较大。 height width Mean reg wide bottom 58.20 55.70 55.8 bottom 53.70 52.50 bottom 55.80 58.90 Mean 55.90 55.70 middle 73.00 76.20 77.2 middle 78.10 78.40 middle 75.40 82.10 Mean 75.50 78.90

协方差矩阵和相关矩阵

一、协方差矩阵 变量说明: 设为一组随机变量,这些随机变量构成随机向量,每个随机变量有m个样本,则有样本矩阵 (1) 其中对应着每个随机向量X的样本向量,对应着第i个随机单变量的所有样本值构成的向量。 单随机变量间的协方差: 随机变量之间的协方差可以表示为 (2) 根据已知的样本值可以得到协方差的估计值如下: (3) 可以进一步地简化为: (4) 协方差矩阵:

(5)其中,从而得到了协方差矩阵表达式。 如果所有样本的均值为一个零向量,则式(5)可以表达成: (6) 补充说明: 1、协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差,如元素C ij就是反映的随机变量X i, X j的协方差。

2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小,则所得的协方差矩阵几乎是一个对角矩阵。对于一些特殊的应用场合,为了使随机向量的长度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵,之后就可以舍弃一些能量较小的分量了(对角线上的元素反映的是方差,也就是交流能量)。特别是在模式识别领域,当模式向量的维数过高时会影响识别系统的泛化性能,经常需要做这样的处理。 3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,则所得的协方差矩阵越可靠。 4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分量之间的相关性究竟有多大,还会引入相关系数矩阵。 二、相关矩阵 相关系数: 著名统计学家卡尔·皮尔逊设计了统计指标——相关系数。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。 依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。 相关系数用r表示,它的基本公式(formula)为: 相关系数的值介于–1与+1之间,即–1≤r≤+1。其性质如下:

方差协方差和相关系数

§2 方差、协方差与相关系数 一、方差 二、协方差 三、相关系数 四、矩 一、方差 例1 例1 比较甲乙两人的射击技术,已知两人每次击中环数ξ分 布为 ξ: 789010601...?? ??? η:67 891001 02040201.....?? ???. 问哪一个技术较好? 首先看两人平均击中环数,此时8E E ξη==,从均值来看无法分辩孰优孰劣. 但从直观上看,甲基本上稳定在8环左右,而乙却一会儿击中10环,一会儿击中6环,较不稳定.因此从直观上可以讲甲的射击技术较好. 上例说明:对一随机变量,除考虑它的平均取值外,还要考虑它取值的离散程度. 称ξ-E ξ为随机变量ξ对于均值E ξ的离差(deviation),它是一随机变量. 为了给出一个描述离散程度的数值,考虑用()E E ξξ-,但由于 ()E E ξξ-=E E ξξ-=0对一切随机变量均成立,即ξ的离差正负相消,因此用 ()E E ξξ-是不恰当的. 我们改用()2 E E ξξ-描述取值ξ的离散程度,这就是方差. 定义1 若 () 2 E E ξξ-存在,为有限值,就称它是随机变量ξ的方差 (variance),记作Var ξ, Var ξ=()2 E E ξξ- (1) 但Var ξ的量纲与ξ ξ的标准差

(standard deviation). 方差是随机变量函数()2 E ξξ-的数学期望,由§1的(5)式,即可写出方差的 计算公式 Var ξ=2()d ()x E F x ξ ξ+∞-∞-?=22()(),, ()()d .i i i x E P x x E p x x ξξξξ+∞ -∞?-=???-?∑?离散型,连续型 (2) 进一步,注意到 ()2 E E ξξ-=()222E E E ξξξξ??-+??=()22E E ξξ- 即有 Var ξ=()2 2E E ξξ-. (3) 许多情况,用(3)式计算方差较方便些. 例1(续) 计算例1中的方差Var ξ与Var η. 解 利用(3)式 2 E ξ= ∑=i i i x P x ) (2 ξ=72×0.1+82×0.8+92 ×0.1=64.2, Var ξ=()2 2E E ξξ-=64.2--82=0.2. 同理, Var η=()2 2E E ηη-= 65.2-64 = 1.2 > Var ξ, 所以η取值较ξ分散. 这说 明甲的射击技术较好. 例2 试计算泊松分布P(λ)的方差. 解 2 2 01 ! (1)!k k k k E k e k e k k λ λ λλξ∞ ∞ --====-∑∑ 1 1(1) (1)!(1)!k k k k k e e k k λ λ λλ∞ ∞ --===-+--∑∑ 2 ! ! j j j j j e e j j λ λ λλλ λ∞ ∞ --===+∑∑ 2 λλ=+ 所以Var ξ=22 λλλλ+-=. 例3 设ξ服从[ a, b ]上的均匀分布U [a, b],求Var ξ.

相关主题
文本预览
相关文档 最新文档