弹塑性力学11塑性极限分析
- 格式:ppt
- 大小:1.58 MB
- 文档页数:4
第二章考虑材料塑性的极限分析知识要点1.塑性变形在常温下,与时间无关的不可恢复的永久变形称为塑性变形。
塑性变形是不可逆的永久变形,应力超过了材料的线弹性范围,胡克定律不再成立,其应力-应变关系一般呈非线性关系。
塑性变形与加载历程有关,其应力与应变间的对应关系呈多值性。
2.塑性极限分析(1)塑性极限分析的假设①荷载为单调增加的静荷载。
若有多个荷载同时作用,则各个荷载按比例同时由零增至终值。
②结构(或荷载)在达到极限状态前,保持几何不变体系③材料的应力-应变关系理想化为刚塑性模型或理想弹塑性模型,如图2-1(a)(b)所示0 t(2)屈服荷载,极限荷载结构(或构件)开始出现塑性变形的荷载,称为屈服荷载,记为F s ;结构(或构件)开始出现大的塑性变形成为几何可变机构,而处于极限状态时的荷载,称为极限荷载,记为F u。
(3)屈服扭转(或弯矩),极限扭矩(或弯矩)圆轴(或梁)横截面上的最大应力达到材料的屈服极限而开始出现塑性变形时,横截面内的扭矩(或弯矩)称为屈服扭矩(或弯矩)记为T s (或M s);圆轴(或梁)横截面上的应力全部达到材料的屈服极限,此时横截面各点均发生塑性变形,整个截面进入完全塑性状态达到极限状态时的扭矩(或弯矩)称为极限扭矩(或弯矩)记为T u (或M u)。
(4)塑性铰当梁的某截面达到极限状态时,该截面两侧的两段梁将绕其中性轴作相对转动,犹如在该截面处安另了一个铰链,故称其为塑性铰。
塑性铰并不等同于真实的铰链,而是由于截面达到完全塑性引起的,它能承受弯矩,即截面上的极限弯矩。
(5)残余应力当结构或构件达到极限状态后,卸除荷载至零,构件截面上的应力,称为残余应力。
由于卸载后外荷载为零,故残余应力必自相平衡。
残余应力最大值为材料的屈服极限。
习题详解2-1 一组合圆筒,承受荷载F,如题图(a)所示。
内筒材料为低碳钢,横截面面积为A i,弹性模量为E i,屈服极限为J ;外筒材料为铝合金,横截面面积为A2,弹性模量为E2,屈服极限为匚S2。
一般力学与力学基础的弹塑性分析方法弹塑性分析方法是一般力学和力学基础中重要的研究领域之一。
本文将介绍弹塑性分析方法的基本概念、应用领域以及常用的数学模型和计算方法。
一、弹塑性分析方法的基本概念弹塑性分析方法是一种综合运用弹性力学和塑性力学理论的方法,用于描述材料在外力作用下的弹性变形和塑性变形过程。
在弹塑性分析中,材料会先发生弹性变形,当应力达到一定临界值时,开始发生塑性变形。
弹塑性分析方法可以更准确地预测材料的变形和破坏行为。
二、弹塑性分析方法的应用领域弹塑性分析方法广泛应用于工程结构、土力学、岩石力学等领域。
例如,在工程结构的设计中,使用弹塑性分析方法可以预测结构在外载荷作用下的变形和破坏行为,从而确定结构的合理尺寸和材料强度要求。
在土力学和岩石力学中,弹塑性分析方法可以用于预测土体和岩石的变形和破坏特性,为工程施工和地质灾害的预测提供依据。
三、弹塑性分析的数学模型弹塑性分析方法使用了多种数学模型来描述材料的力学行为。
其中常用的模型包括线性弹性模型、单一参数塑性模型和本构模型等。
1. 线性弹性模型:线性弹性模型假设材料的应力与应变之间呈线性关系,常用于描述小应变范围内的材料行为。
2. 单一参数塑性模型:单一参数塑性模型假设材料的塑性行为由一个参数来描述,常用于描述中等应变范围内的材料行为。
3. 本构模型:本构模型是更为复杂的数学模型,可用于描述广泛的材料行为。
常见的本构模型包括弹塑性本构模型、弹塑性本构模型、弹粘塑性本构模型等。
四、弹塑性分析的计算方法弹塑性分析方法使用了多种计算方法来求解材料的变形和应力分布。
其中常用的计算方法包括有限元法、边界元法和等。
这些方法可以将实际结构离散成有限个子区域,通过求解子区域的变形和应力,得到整个结构的变形和应力分布。
这些计算方法具有高精度和较强的通用性,广泛应用于工程和科学研究领域。
综上所述,弹塑性分析方法是一般力学和力学基础中重要的研究领域,用于描述材料在外力作用下的弹性变形和塑性变形过程。
应力应变关系弹性模量 ||广义虎克定律1。
弹性模量对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括:a 弹性模量单向拉伸或压缩时正应力与线应变之比,即b 切变模量切应力与相应的切应变之比,即c 体积弹性模量三向平均应力与体积应变θ(=εx+εy+εz)之比,即d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即此外还有拉梅常数λ。
对于各向同性材料,这五个常数中只有两个是独立的。
常用弹性常数之间的关系见表3-1 弹性常数间的关系。
室温下弹性常数的典型值见表3—2 弹性常数的典型值。
2。
广义虎克定律线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。
它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质.A 各向同性材料的广义虎克定律表达式(见表3—3 广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、φ代替。
对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。
B 用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即体积弹性定律应力偏量与应变偏量关系式在直角坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。
弹性力学基本方程及其解法弹性力学基本方程|| 边界条件||按位移求解的弹性力学基本方法||按应力求解的弹性力学基本方程|| 平面问题的基本方程 || 基本方程的解法 || 二维和三维问题常用的应力、位移公式1.弹性力学基本方程在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。
这15个未知量可由15个线性方程确定,即(1)3个平衡方程[式(2-1—22)],或用脚标形式简写为(2)6个变形几何方程[式(2—1—29)],或简写为(3)6个物性方程[式(3-5)或式(3—6)],简写为或2.边界条件弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。