弹塑性力学第十一章
- 格式:ppt
- 大小:3.30 MB
- 文档页数:124
弹塑性力学简答题第一章 应力1、 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。
2、应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。
3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。
110220330S S S σσσσσσ=+=+=+.4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。
5、解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。
6、Pie 平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。
固体力学解答必须满足的三个条件是什么?可否忽略其中一个?第二章 应变1、从数学和物理的不同角度,阐述相容方程的意义。
从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值.从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入",即产生不连续.2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。
应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关.3、应力状态是否可以位于加载面外?为什么?不可以.保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续.4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。
弹塑性⼒学第⼗⼀章标准详解第⼗⼀章习题答案11.3使⽤静⼒法和机动法求出图⽰超静定梁的极限载荷。
解1:(1)静⼒法⾸先该超静定梁(a )化为静定结构(b )、(c )。
分别求出其弯矩图,然后叠加,得该超静定梁的弯矩图(f )在极限情况下,A sB s M M M M =-=设C 点⽀反⼒为C R ,则:12C s R l Pl M -=- 1(2)C s R l l M -=由上⼆式得()()11142p M l l P l l l *-=-当P 值达到上述数值时,结构形成破坏机构,故P 为该梁的完全解。
(2)机动法设破坏机构如图(g ),并设B 点挠度为δ,则:11,(2)A C l l l θδθδ==-()1122B A C l l l l δθθθ=+=-外⼒功e W P δ=内⼒功()11142i A A B B s l l W M M M l l l θθδ-=+=-由e i W W =,可得极限载荷上限为()11142s l l P M l l l *-=-先将该超静定梁化为静定梁(b )、(c ),分别作弯矩图,叠加得该超静定梁的弯矩图(f )设A 点为坐标原点,此时弯矩⽅程为:()()()212B M x R l x q l x =---在极限状态时,有()0,0s x M M ==- ()11,s x x M x M == 令()0dM x dx=得1()B q l x R -= (1)⽽212B s R l ql M -=- (2)()()21112B s R l x q l x M ---= (3)联⽴解(1)、(2)、(3)得2122s s M qM ql l ??=-解得21122s M q l=取较⼤的值,可得0211.66sM q l ≈在以上0q 值作⽤下,梁已形成破坏机构,故其解为完全解。
(2)机动法如图(g )设在A 、C 两点形成塑性铰,2A B C θθθθθ=== 内⼒功为()23i s s s W M M M θθθ=--+=g 外⼒功为e W q x dx q l θθ**==由虚功原理i W W =得:0221211.66s s M M q q l l*=>≈该解与完全解的误差为 03%q q q **-≈解3:(1)静⼒法设坐标原点在C 点,此时弯矩⽅程为:BC 段(02x l ≤≤)21()2c M x R x qx =-AB 段(2l x l ≤≤)11()24c M x R x ql x l ?? =--在x ξ=处,M 为极⼤值,设ξ在BC 段,由()0x dM x dx ξ==得0c R q ξ-= cR qξ=(1)在极限情况下()s M l M =- , ()s M M ξ=即:238c s R l ql M -=- (2)21221889s M q l=取正号219.2s Mq l=由于此时形成破坏机构,故q 值完全解。
第二章 习题解答2-1解:已知 0,0,===-==y x xy y xf f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂xy y yxx x y yx τστσ23()()⎩⎨⎧++s xy y s yx x l m m l σστστσ 有:lq t x -=代入(*4理、几何方程得:E x u x ==∂∂ε11E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。
综合1)~4),。
q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。
2)验证相容方程:0)(2=+∇y x σσ 亦满足。
3)验证应力边界条件: i) 主要边界:()0,2=±=h y yx yτσ满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。
2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y xυσσ12即:2222 2-4、x, y n l σσ2==2l 应力主向成∴l σn3-3、解: 1由x=0得: 2由 得: Fx Ex Cx Bx Ax y ++++=∴注:公式中已略去ϕ中与应力分量无关的一次项和常数项。
~弹塑性力学习题集[殷绥域李同林编!)~中国地质大学·力学教研室二○○三年九月》目录弹塑性力学习题 (1)第二章应力理论.应变理论 (1);第三章弹性变形.塑性变形.本构方程 (6)第四章弹塑性力学基础理论的建立及基本解法 (8)第五章平面问题的直角坐标解答 (9)第六章平面问题的极坐标解答 (11)第七章柱体的扭转 (13)]第八章弹性力学问题一般解.空间轴对称问题 (14)第九章* 加载曲面.材料稳定性假设.塑性势能理论 (15)第十章弹性力学变分法及近似解法 (16)第十一章* 塑性力学极限分析定理与塑性分析 (18)第十二章* 平面应变问题的滑移线场理论解 (19)`附录一张量概念及其基本运算.下标记号法.求和约定 (21)习题参考答案及解题提示 (22)>前言弹塑性力学是一门理论性较强的技术基础课程,它与许多工程技术问题都有着十分密切地联系。
应用这门课程的知识,能较真实地反映出物体受载时其内部的应力和应变的分布规律,能为工程结构和构件的设计提供可靠的理论依据,因而受到工程类各专业的重视。
·《弹塑性力学习题集》是专为《弹塑性力学》(中国地质大学李同林、殷绥域编,研究生教学用书。
)教材的教学使用而编写的配套教材。
本习题集紧扣教材内容,选编了170余道习题。
作者期望通过不同类型习题的训练能有助于读者理解和掌握弹塑性力学的基本概念、基础理论和基本技能,并培养和提高其分析问题和解决问题的能力。
鉴于弹塑性力学课程理论性强、内容抽象、解题困难等特点,本书对所编习题均给出了参考答案,并对难度较大的习题给出了解题提示或解答。
本习题集的编写基本取材于殷绥域老师编写的弹塑性力学习题集,由李同林老师重新修编,进一步充实而成。
书中大部分内容都经过了多届教学使用。
为保证教学基本内容的学习,习题中带“*”号的题目可酌情选做。
由于编者水平所限,错误和不妥之处仍在所难免,敬请读者指正。
<编者2003年9月@弹塑性力学习题"第二章 应力理论·应变理论2—1 试用材料力学公式计算:直径为1cm 的圆杆,在轴向拉力P = 10KN 的作用下杆横截面上的正应力σ及与横截面夹角︒=30α的斜截面上的总应力αP 、正应力ασ和剪应力ατ,并按弹塑性力学应力符号规则说明其不同点。