2011线性代数试卷A标准答案和评分标准
- 格式:doc
- 大小:298.50 KB
- 文档页数:6
中南大学考试试卷答案2011——2012学年第二学期(2012.4) 时间:100分钟《线性代数》 课程 32 学时 2 学分 考试形式:闭卷专业年级:2011级 总分:100分一、填空题(本题15分,每题3分)1、0;2、8132(练习册P99); 3、3-; 4、⎪⎪⎪⎪⎭⎫ ⎝⎛=--12333212312113311n n A ;5、12+⎪⎪⎭⎫⎝⎛λA (练习册P113)。
二、选择题(本题15分,每题3分)1、D ;2、B (练习册P106);3、C ;(教材P55)4、D ;5、A (练习册P120)。
三、(本题10分) (练习册P102)解:解: D n ====+++c c c c c c n 131121000120012201222=2n –1, 设D n 展开式中正、负项总数分别为x 1, x 2, 则x 1+x 2=n !,x 1–x 2=2n –1,于是正项总数为x 1=1221(!)n n -+。
四、(本题10分)(典型题解P121)解:由X A E AX +=+2,得:E A X E A -=-2)(,)(,010********E A E A -∴≠-==- 可逆,故⎪⎪⎪⎭⎫⎝⎛=+=201030102E A X ;由于09≠=X ,()⎪⎪⎪⎭⎫⎝⎛===∴---*-201030102911)(1111X X X X X 。
五、(本题14分)解:将矩阵()4321,,,αααα化为最简形阶梯形矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000011003101032001000011001030101121306014211035271,(1)()3,,,4321=ααααR ;(2)321,,ααα为所求的一个最大线性无关组,且32143132αααα++=。
六、(本题14分)解:()0311********--=-⎪⎪⎪⎭⎫ ⎝⎛----==λλλααA E A T,(1)A 的特征值为0,0,3;由0=AX 得对应0的特征向量为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛101011l k ,l k ,为不全为零的任意常数,由0)3(=-X A E 得对应3的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-111c ,c 为任意非零常数。
线性代数(A 卷)一、选择题(每小题3分,共15分)1 .设A 、B 是任意n 阶方阵,那么下列等式必成立的是() (A) AB BA (B) (AB)2 A 2B 2 (C) (A B)2 A 2AB B 2 (D) A B B A2 .如果n 元齐次线性方程组 AX 0有基础解系并且基础解系含有 s(s n)个解向量,那1 0 0210, A *是A 的伴随矩阵,则(A*)4 .设向量 (1, 1,1)T 与向量 (2,5, t)T 正交,则t5 .设A 为正交矩阵,则A1 11 6 .设a,b,c 是互不相同的三个数,则行列式ab c2,22a b c7 .要使向量组 1 (1, ,1)T , 2 (1,2,3)T, 3 (1,0,1)T 线性相关,则8 .三阶可逆矩阵A 的特征值分别为1, 2, 3,那么A 1的特征值分别为么矩阵A 的秩为((A) n (B) )s (C)n s (D)以上答案都不正确 3 .如果三阶方阵A (a j )3 3的特征值为1,2,5 ,那么ana 22a 33 及A 分别等于()(A) 10, 8(B)8, 10(C)10,8(D)10,4 .设实二次型f(x 1,x 2)2 (X ,X 2)4X 1 X 2的矩阵为A, 那么()2 3(A) A3 1 ⑻(C)1 1(D)5.若方阵A 的行列式A0, 则((A) A 的行向量组和列向量组均线性相关 (C) A 的行向量组和列向量组均线性无关 二、填空题(每小题3分,共30分)(B)A (D)A 的行向量组线性相关,列向量组线性无关 的列向量组线性相关,行向量组线性无关1如果行列式D 有两列的元对应成比例,那么该行列式等于2.设A3.设,是非齐次线性方程组AX b 的解若也是它的解,那么关组和秩. 四、(10分)设有齐次线性方程组X 1 ( 1)X 2 X 3 0, (1)X 1 X 2 X 3 0, X 1 X 2 ( 1)X 3 0.问当 取何值时,上述方程组(1)有唯一的零解;(2)有无穷多个解,并求出这些解. 五、(12分)求一个正交变换X PY ,把下列二次型化成标准形:、222f (X 1,X 2, X 3) X 1 X 2 X 3 4X 1X 2 4X 1X 3 4X 2X 3.六、(6分)已知平■面上三条不同直线的方程分别为11 : ax 2by 3c 0, 12 : bx 2cy 3a 0, 13 : cx 2ay 3b 0.试证:这三条直线交于一点的充分必要条件为a b c 0.线性代数(A 卷)答案1. D2. C3. B4. A5. A■-4*11.02. (A ) A3. 14. 35. 16. (c a)(c b)(b a)7. 08. 1,9.411 t 0 10. A I 5 42、1.解由AX(A I ) 1B . (2分)9 .若二次型 f(X i ,X 2,X 3)X 21 x 22 5x 23 2tX i X 2-2X 1X 3 4X 2X 3 是正定的,则 t 的取值范围10 .设A 为n 阶方阵,且满足A 2 2A 4I 0,这里I 为n 阶单位矩阵,那么A 1三、计算题(每小题9分,共27分)1 .已知A 1 00 1 ,求矩阵X 使之满足AX 0 0X B.2 .求行列式的值.3求向量组 (1,0,1,0), 2 ( 2,1,3, 7), 3 (3, 1,0,3,), 4 (4, 3,1, 3,)的一个最大无或-1由于1 23 4 1 2 3 41 2 3 4 0 1 1 3 r r 0 1 1 3 「3 5r 2 0 1 1 3 1 3 01 UUuLu 0 5 3 3 LuiuiUj2 0 0 2 12 0 73 3 0 733424四、解 方程组的系数行列式卜面求 (A I ) 由于(4分)(A I)所以 (A I) (7分)2.解 10 10 10 1010(9 分)10(4 分)(8160 (9 分)3.解 故向量组的秩是UjuniUr31 2 03 12 0(6分)3是它的一个最大无关组。
华南农业大学期末考试试卷(A 卷)2010-2011学年第2学期 考试科目:线性代数 试类型:(闭卷)考试 考试时间:120分钟学号 姓名 年级专业一、选择题(本大题共5小题,每小题3分,共15分)在每小题的选项中,只有一项符合要求,把所选项前的字母填在题中括号内1. 设矩阵A , B , C 能进行乘法运算,那么(B )成立(A) AB = AC ,A ≠ 0,则B = C (B) AB = AC ,A 可逆,则B = C (C) A 可逆,则AB = BA (D) AB = 0,则有A = 0,或B = 02. 设A 为n (n ≥2)阶矩阵,且A 2= I ,其中I 为单位阵(下同),则必有(C )(A) A 的行列式等于1 (B) A 的逆矩阵等于I (C) A 的秩等于n (D) A 的特征值均为13.设向量组4321,,,αααα线性相关,则向量组中(A )(A) 必有一个向量可以表为其余向量的线性组合 (B) 必有两个向量可以表为其余向量的线性组合 (C) 必有三个向量可以表为其余向量的线性组合 (D) 每一个向量都可以表为其余向量的线性组合4.设n 元齐次线性方程组x 0A =的系数矩阵A 的秩为r ,则x 0A =有非零解的充分必要条件是(B )5. 设A 为n 阶方阵,0≠A ,*A 是A 的伴随矩阵。
则:*A 等于 (C )(A) n r =(B) n r <(C) n r >(D) n r ≥(A) A(B)A1 (C) 1-n A(D) nA二、填空题(本大题共5小题,每小题4分,满分20分)6. 已知行列式011103212=-a ,则数a =3.7. 设向量组1(,1,1)T k α=,2(1,2,1)T α=-, 3(1,1,2)T α=-线性相关,则数k =2-. 8. 设(1,1,5,3)T α=--, (9,2,3,5)T β=---,则α与β的距离为9,内积为37. 9. 设n 阶实对称矩阵A 的特征值分别为1, 2, …, n ,则使tI A -为正定矩阵的数t 取值范围是t n >.10. 设矩阵A 和B 相似,其中A = 20022311x -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,B = 10002000y -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦则x =0,y =2-.三、计算题11.(满分8分) 设矩阵 ⎥⎦⎤⎢⎣⎡-=021201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200010212B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=242216C ,计算C BA +T .解答:C BA +T =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-042006⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200210 T A 计算正确2分,T 4BA 正确分, C BA +T 2分12.(满分8分)计算行列式 D = ⎪⎪⎪⎪⎪⎪⎪⎪x 1 2 … n 1 x 2 … n 1 2 x … n … … … …1 2 3 … x 的值。
线性代数复习参考2011A1、 设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111111111,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--154211321,求3AB-2A 及A T B 。
解:111123111323111124211111105111110A B A B ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=----- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭=≠ ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .B 中的1-1应该是-1吧 如果是1-1=0 则答案如下;1111231113231110242111111051111A B A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭1581111132231562111117201901111292⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=---=- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,111123158111024156111051190TA B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=- ⎪ ⎪⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭2、设A=⎥⎦⎤⎢⎣⎡3121,B=⎥⎦⎤⎢⎣⎡2101,问: (1) AB=BA 吗? (2)(A+B )2=A 2+2AB+B 2吗? (3)(A+B )(A-B)=A 2-B 2吗? (1)AB =BA 吗?解 AB ≠BA 因为⎪⎭⎫⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2. 因为⎪⎭⎫⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2. 因为⎪⎭⎫⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2. 3、设A=⎥⎦⎤⎢⎣⎡101x,求A 2,A 3,……,A k 。
全校各专业《线性代数》课程试卷及答案A 卷试卷 A 考试方式 闭卷 考试时间(120分钟)一、选择题(本题共4小题,每小题4分,满分16分。
每小题给出的四个选项中,只有一项符合题目要求) 1、设A ,B 为n 阶方阵,满足等式0=AB,则必有( ) (A)0=A 或0=B ; (B)0=+B A ; (C )0=A 或0=B ; (D)0=+B A 。
2、A 和B 均为n 阶矩阵,且222()2A B A AB B +=++,则必有( ) (A) A E =; (B)B E =; (C ) A B =. (D) AB BA =。
3、设A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是( )(A) A 的列向量线性无关; (B) A 的列向量线性相关; (C ) A 的行向量线性无关; (D) A 的行向量线性相关. 4、 n 阶矩阵A 为奇异矩阵的充要条件是( ) (A) A 的秩小于n ; (B) 0A ≠;(C) A 的特征值都等于零; (D) A 的特征值都不等于零; 二、填空题(本题共4小题,每题4分,满分16分)5、若4阶矩阵A 的行列式5A =-,A *是A 的伴随矩阵,则*A = 。
6、A 为n n ⨯阶矩阵,且220A A E --=,则1(2)A E -+= 。
7、已知方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+43121232121321x x x a a 无解,则a = 。
8、二次型2221231231213(,,)2322f x x x x x tx x x x x =++++是正定的,则t 的取值范围是 。
三、计算题(本题共2小题,每题8分,满分16分)9、计算行列式1111111111111111x x D y y+-=+-10、计算n 阶行列式121212333n n n n x x x x x x D x x x ++=+四、证明题(本题共2小题,每小题8分,满分16分。
完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
4.0000000004321a a a a =( )(A) 4321a a a a (B ) -4321a a a a (C) 24321a a a a (D)-24321a a a a 6.设A 为n 阶行列式,则kA =( ) (A)A k (B)Ak⋅ (C ) A kn(D) A kn⋅7.设A ,B 均为n (n>2) 阶行列式,则( )(A)B A B A +=+ (B) B A B A -=-(C ) B A AB ⋅= (D)B A OBA O ⋅=9.已知333231232221131211a a a a a a a a a =3,则232333132222321221123111352352352a a a a a a a a a a a a ---=( ) (A) 18 (B ) -18 (C) -9 (D)2710.41332211000000a b a b b a b a =( )(A) 4321a a a a -4321b b b b (B) 4321a a a a +4321b b b b (C) (21a a -21b b )(43a a -43b b ) (D ) (41a a -41b b )(32a a -32b b )11.记行列式347534453542333322212223212---------------x x x xx x x x x x x x x x x x 为f(x),则方程f(x)=0根的个数为(A) 1 (B ) 2 (C) 3 (D)4 12.设A 为n 阶方阵,则A =0的必要条件是 (A) A 的两行元素对应成比例(B ) A 中必有一行为其余行的线性组合 (C) A 中有一行元素全为零(D) A 中任一行为其余行的线性组合13.是A 三阶矩阵,A =2,A 的伴随矩阵为*A ,则*A 2=( )(A) 4 (B) 8 (C) 16 (D ) 3215.如果D=333231232221131211a a a a a a a a a =M ≠0, 2322213332311312111222222222a a a a a a a a a D =,那么1D =( ) (A) 2M (B)-2M (C) 8M (D ) -8M16. 如果D=333231232221131211a a a a a a a a a =1,1D = 333231312322212113121111324324324a a a a a a a a a a a a ---,那么1D =( ) (A) 8 (B )-12 (C) 24 (D) -2417.已知11111321--x 是关于x 的一次多项式,该式中x 的系数为( ) (A) -1 (B) 2 (C) 3 (D ) 119.已知a ,b 为整数,且满足081100000=-a bb a,则( ) (A) a=1,b=0 (B )a=0,b=0 (C)a=0,b=1 (D) a=1,b=1 20.设A 为三阶矩阵,A =a, 则其伴随矩阵*A 的行列式*A=( )(A) a (B ) 2a (C) 3a (D) 4a 21.设A ,B ,C 为n 阶方阵,且ABC=I ,则( )(A) ACB=I (B)CBA=I (C) BAC=I (D ) BCA=I 22.设A 为n 阶可逆矩阵,*A 是A 的伴随矩阵,则( ) (A )A A =* (B )1-*=n AA (C )nA A=*(D )1-*=AA23.设A ,B 均为n ×n 阶矩阵,则必有( )(A )B A B A +=+ (B )AB=BA(C )BA AB = (D )111)(---+=+B A B A24.设A ,B 为n 阶方阵,且AB= O ,则必有( )(A )若r(A)=n, 则B=O (B )若A ≠O, 则B=O(C )或者A= O , 或者B=O (D )O B A =+25.设A 是n ×m 阶矩阵,C 是n 阶可逆矩阵,r(A)=r ,B=AC ,r(B)= 1r ,则( ) (A ) r >1r (B ) r<1r(C ) r =1r (D )1r 和r 的关系依而定 26.若A 为n 阶可逆矩阵,则下列各式正确的是( ) (A )112)2(--=A A (B )O AA ≠*(C )AAA 11)(--*=(D )T T T A A ])[(])[(111---=27.设A ,B 均为n 阶非零矩阵,且AB =O,则A 和B 的秩( ) (A) 必有一个等于零 (B)一个等于n ,一个小于n (C) 都等于n (D ) 都小于n28.设n 阶方阵A 经初等变化后所得方阵记为B ,则( ) (A) B A = (B) B A ≠(C) B A ⋅>0 (D ) ,若0=A 则0=B 29.A ,B 均为n 阶矩阵,下列各式中成立的为( ) (A) 2222)(B AB A B A ++=+ (B) T T T B A AB =)((C) O B O A O AB ===或则, (D ) ,若0=+AB A 则00=+=B I A ,或30.设A ,B ,B A +,11--+B A 均为n 阶可逆矩阵,则111)(---+BA等于(A )11--+B A (B )B A + (C )B B A A 1)(-+ (D )1)(-+B A31.设n 元齐次线性方程组AX=0的系数矩阵A 的秩为r ,则AX=0有非零解的充分必要条件是( )(A) r=n (B ) r<n (C) r ≥n (D) r>n 32.设A 是n 阶可逆矩阵,*A 是A 伴随矩阵,则( )(A ) 1-*=n AA (B) A A =* (C) nA A =* (D) 1-*=A A33.设n 阶矩阵A 非奇异(n ≥2),*A 是A 伴随矩阵,则( ) (A ) ()A A A n 2-**= (B) ()A A A n 1+**= (C) ()A AAn 1-**= (D) ()A AAn 2+**=34.设n 维向量⎪⎭⎫⎝⎛=21,0,0,21 α, 矩阵A=I -αα',B=I+2αα',其中I 为n 阶单位矩阵,则(A )0 (B )-I (C )I (D )I+αα'35.设A ,B 为同阶可逆矩阵,则 (A) AB=BA(B) 存在可逆矩阵P 使得B AP P =-1 (C) 存在可逆矩阵C 使得B AC C =' (D) 存在可逆矩阵P 和Q 使得B PAQ = 36.下列命题中不正确的是( ) (A) 初等矩阵的逆也是初等矩阵 (B ) 初等矩阵的和也是初等矩阵 (C) 初等矩阵都是可逆的 (D) 初等矩阵的转置仍初等矩阵38.设A 是任一阶方阵,*A 是A 伴随矩阵,又k 为常数,且k ≠0,±1,则必有()*kA =(A) *A k (B ) *-A kn 1(C) *A k n (D) *-A k139.设A ,B ,C 为n 阶方阵,若AB=BA ,AC=CA ,则ABC 等于(A ) BAC (B )CBA (C )BCA (D )CAB40.622211211=a a a a 若,则12020221221112--a a a a 的值为( ) (A) -12 (B )12 (C) 18 (D) 0 41.设A ,B 都是n 阶矩阵,且AB =O,则下列一定成立的为( ) (A )A= O , 或者B=O (B )A ,B 都不可逆 (C )A ,B 中至少有一个不可逆 (D )A+B=O42.设A ,B 均为n 阶矩阵,且满足等式AB =O,则必有( ) (A ),0=A 或0=B (B )A= O , 或B=O(C )A+B=O (D )O B A =+ 44.设A ,B 均为n 阶可逆矩阵,则AB 的伴随矩阵*)(AB = (A) **B A (B) 11--B A AB(C) 11--A B (D ) **A B46.设A ,B 均为n 阶矩阵,且22))((B A B A B A -=-+,则必有( ) (A )A= B (B )A=I (C )AB=BA (D )B=I 47.设A 为n 阶矩阵,且0≠=a A ,*A 是A 的伴随矩阵,则*A=( )(A )1-n a (B )1+n a (C )n a (D )a48.已知向量组⎪⎪⎪⎭⎫ ⎝⎛-=2111α,⎪⎪⎪⎭⎫ ⎝⎛=1302α,⎪⎪⎪⎭⎫ ⎝⎛=7033α与向量⎪⎪⎪⎭⎫ ⎝⎛-=2211β,⎪⎪⎪⎭⎫ ⎝⎛=5122β,⎪⎪⎪⎭⎫ ⎝⎛=333x β等秩,则x=( )(A) -1 (B) -2 (C) 3 (D ) 1 49.设有向量组()4,2,1,11-=α,()2,1,3,02=α,()14,7,0,33=α,()0,2,2,14-=α,()10,5,1,25=α,则该向量组的极大线性无关组是( )(A) ;321,,ααα (B ) ;421,,ααα (C) ;521,,ααα (D) ;5421,,,αααα 50.已知向量组4321,,,αααα线性无关,则向量组4312ααα++,42αα-,43αα+,2αα+,3212ααα++的秩是(A )1 (B )2 (C )3 (D )4 51.设A ,B 为n 阶方阵,A ≠0,AB=0则( )(A) B=0 (B ) 00==A B 或 (C) BA=0 (D) ()222B A B A +=-52.A ,B 为n 阶方阵,则( ) (A) A 或B 可逆,必有AB 可逆 (B ) A 或B 不可逆,必有AB 不可逆 (C) A 且B 可逆,必有A+B 可逆(D) A 且B 不可逆,必有A+B 不可逆53.A 为n 阶方阵,则下列矩阵中是对称矩阵的有( ) (A)A A '- (B)()阶矩阵为任意n C C CA ' (C )A A ' (D)A A '+254.设A 为三阶方阵,且2=A ,则*-+A A 14=( )(A) 214(B) 12 (C)6 (D ) 10855.设A ,B 为n 阶方阵,且()E AB =2,则下列各式中可能不成立的是( ) (A )1-=B A (B)1-=B ABA (C)1-=A BAB (D)E BA =2)( 56.若由AB=AC 必能推出B=C (A ,B ,C 均为n 阶矩阵)则A 必须满足( ) (A)A ≠O (B)A=O (C )0≠A (D) 0≠AB 57.A 为n 阶方阵,若存在n 阶方阵B ,使AB=BA=A ,则( ) (A) B 为单位矩阵 (B) B 为零方阵 (C) A B =-1 (D ) 不一定 58.设A 为n ×n 阶矩阵,如果r(A)<n , 则(A) A 的任意一个行(列)向量都是其余行(列)向量的线性组合(B) A 的各行向量中至少有一个为零向量(C )A 的行(列)向量组中必有一个行(列)向量是其余各行(列)向量的线性组合 (D)A 的行(列)向量组中必有两个行(列)向量对应元素成比例 59.设向量组s ααα,,2,1 线性无关的充分必要条件是(A) s ααα,,2,1 均不为零向量(B) s ααα,,2,1 任意两个向量的对应分量不成比例 (C) s ααα,,2,1 中有一个部分向量组线性无关(D ) s ααα,,2,1 中任意一个向量都不能由其余S-1个向量线性表示60.向量组的秩就是向量组的 (A) 极大无关组中的向量 (B) 线性无关组中的向量 (C ) 极大无关组中的向量的个数 (D) 线性无关组中的向量的个数 61.下列说法不正确的是( ) (A ) 如果r 个向量r ααα,,2,1 线性无关,则加入k 个向量k βββ,,2,1 后,仍然线性无关 (B) 如果r 个向量r ααα,,2,1 线性无关,则在每个向量中增加k 个分量后所得向量组仍然线性无关 (C)如果r 个向量r ααα,,2,1 线性相关,则加入k 个向量后,仍然线性相关 (D)如果r 个向量r ααα,,2,1 线性相关,则在每个向量中去掉k 个分量后所得向量组仍然线性相关62.设n 阶方阵A 的秩r<n ,则在A 的n 个行向量中 (A ) 必有r 个行向量线性无关(B) 任意r 个行向量均可构成极大无关组 (C) 任意r 个行向量均线性无关(D) 任一行向量均可由其他r 个行向量线性表示 63.设方阵A 的行列式0=A ,则A 中 (A) 必有一行(列)元素为零 (B) 必有两行(列)成比例(C ) 必有一行向量是其余行(列)向量的线性组合 (D) 任一行向量是其余行(列)向量的线性组合 64.设矩阵A=),,,,(54321ααααα经过初等行变换后变为⎪⎪⎪⎭⎫⎝⎛-=311012110231111A ,则A 的秩为3,i α为A 的第i 列向量, 且( )成立 (A ) s αααα++=214 (B) s αααα++=21423 (C) s αααα++-=2142 (D)列向量组线性无关 65.设n 元齐次线性方程组的一个基础解系为η1 ,η2 ,η3 ,η4则()也是该齐次线性方程组的基础解系 (A )1443,3221,,ηηηηηηηη----(B )1443,3221,,ηηηηηηηη++++(C )4321321,211,,ηηηηηηηηηη++++++(D )1443,3221,,ηηηηηηηη--++66.设A 是m ×n 矩阵,齐次线性方程组AX=0仅有零解的充分必要条件是( ) (A )A 的列向量线性无关 (B)A 的列向量线性相关 (C)A 的行向量线性无关 (D)A 的行向量线性相关67.n 元线性方程组AX=b ,r (A ,b )<n ,那么方程AX=b(A)无穷多组解 (B)有唯一解 (C)无解 (D )不确定 68.设向量组321,,ααα线性无关,则下列向量组中,线性无关的是(A) 133221,,αααααα-++(B) 3213221,,ααααααα++++(C ) 1332213,32,2αααααα+++(D) 321321321553,222,ααααααααα-++-++69.向量组s ααα,,,21 线性无关的充分条件是 (A)s ααα,,,21 均不为零向量(B)s ααα,,,21 中任意两个向量的分量均不成比例(C )s ααα,,,21 中任意一向量均不能由其余s-1个向量线性表示 (D)s ααα,,,21 中有一部分向量线性无关70.设m ααα,,,21 均为n 维向量, 那么下列结论正确的是( ) (A) 若02211=+++m m k k k ααα , 则m ααα,,,21 线性相关(B )若对任一组不全为零的数m k k k ,,,21 都有02211≠+++m m k k k ααα ,则m ααα,,,21 线性无关(C)若m ααα,,,21 线性相关则对任一组不全为零的数m k k k ,,,21 都有02211=+++m m k k k ααα(D) 若000021=+++m ααα , 则m ααα,,,21 线性无关 71.已知向量组4321,,,αααα线性无关则向量组 (A) 14433221,,,αααααααα++++线性无关 (B) 14433221,,,αααααααα----线性无关 (C) 14433221,,,αααααααα-+++线性无关 (D) 14433221,,,αααααααα--++线性无关72.当向量组m ααα,,,21 线性相关时, 使等式02211=+++m m k k k ααα 成立的常数m k k k ,,,21 为( )(A)任意一组常数(B)任意一组不全为零的常数(C )某些特定的不全为零的常数(D)唯一一组不全为零的常数 73.下列命题正确的是( )(A) 若向量组线性相关, 则其任意一部分向量也线性相关 (B) 线性相关的向量组中必有零向量(C) 向量组中部分向量线性无关, 则整个向量组必线性无关 (D ) 向量组中部分向量线性相关, 则整个向量组必线性相关74.如果向量b 可由向量组s ααα,,,21 线性表示, 则下列结论中哪个正确 (A )存在一组数s k k k ,,,21 , 使等式s s k k k b ααα+++= 2211成立(B)存在一组不全为零的数使s k k k ,,,21 , 使等式s s k k k b ααα+++= 2211成立 (C)存在一组全为零的数s k k k ,,,21 , 使等式s s k k k b ααα+++= 2211成立 (D)对b 的线性表达式唯一75.设向量组s ααα,,,21 的秩为r ,则 (A) 必定r<s(B) 向量组中任意小于r 个向量部分组无关 (C) 向量组中任意r 个向量线性无关 (D ) 向量组任意r+1个向量线性相关 76.设向量组Ⅰ: ⎪⎪⎪⎭⎫⎝⎛=3121111a a a α,⎪⎪⎪⎭⎫ ⎝⎛=3222122a a a α,⎪⎪⎪⎭⎫⎝⎛=3323133a a a α 向量组Ⅱ: ⎪⎪⎪⎪⎪⎭⎫⎝⎛=413121111a a a a β,⎪⎪⎪⎪⎪⎭⎫⎝⎛=423222122a a a a β,⎪⎪⎪⎪⎪⎭⎫⎝⎛=433323133a aa a β, 则( ) (A) 向量组Ⅰ相关⇒Ⅱ相关 (B )Ⅰ无关⇒Ⅱ无关 (C)Ⅱ无关⇒Ⅰ无关 (D)Ⅰ相关⇒Ⅱ相关77.设向量组Ⅰ: ()1111,,c b a =α,()2222,,c b a =α,()3333,,c b a =α向量组Ⅱ:()11111,,,d c b a =β,()22222,,,d c b a =β,()33333,,,d c b a =β, 则( )(A) 向量组Ⅰ相关⇒Ⅱ相关 (B )Ⅰ无关⇒Ⅱ无关 (C)Ⅱ无关⇒Ⅰ无关 (D)Ⅰ相关⇒Ⅱ相关 78.若s ααα,,,21 为n 维向量组,且秩(s ααα,,,21 )=r, 则 (A) 任意r 个向量线性无关 (B ) 任意r+1个向量线性相关(C) 该向量组存在唯一极大无关组(D) 该向量组在s>r 时, 由若干个极大无关组79.设t ααα,,,21 和s βββ,,,21 为两个n 维向量组, 且秩(t ααα,,,21 )=秩(s βββ,,,21 )=r, 则 (A)两向量组等价, 也即可相互线性表出 (B)秩(t ααα,,,21 ,s βββ,,,21 )=r(C )当t ααα,,,21 被s βββ,,,21 线性表出时,两向量组等价 (D)当s=t 时,两向量组等价80.设向量s αααα+++= 21(s>1), 而s s ααβααβααβ-=-=-=,,,221 则( )(A )秩(s ααα,,,21 )=秩(s βββ,,,21 ) (B)秩(s ααα,,,21 )>秩(s βββ,,,21 ) (C)秩(s ααα,,,21 )<秩(s βββ,,,21 )(D)不能确定秩(s ααα,,,21 )与秩(s βββ,,,21 )间的关系 81.向量组s ααα,,,21 线性无关的充分条件是 (A) s ααα,,,21 均为非零向量(B) s ααα,,,21 中任意两个向量的分量不成比例(C ) s ααα,,,21 中任意一个向量不能被其余向量线性表示 (D) s ααα,,,21 中有一个部分组线性无关 82.设A 为n 阶方阵, 且r(A)=r<n, 则中 (A )必有r 个行向量线性无关 (B)任意r 个行向量线性无关 (C)任意r 个行向量构成极大无关组(D)任意一个行向量都能被其他r 个行向量线性表示 83.A 是m ×n 矩阵, r(A)=r 则A 中必( )(A)没有等于零的r-1阶子式至少有一个r 阶子式不为零 (B )有不等于零的r 阶子式所有r+1阶子式全为零 (C)有等于零的r 阶子式没有不等于零的r+1阶子式 (D)任何r 阶子式都不等于零任何r+1阶子式都等于零 84.设s ααα,,,21 和t βββ,,,21 均为nR 中向量,且秩(s ααα,,,21 )=秩(t βββ,,,21 )=r ,则( ) (A)两个向量组相等价(B)秩(s ααα,,,21 ,t βββ,,,21 )=r(C )当s ααα,,,21 能被t βββ,,,21 线性表示时两向量组等价 (D)当s=t 时两向量组等价 85.能表成向量()1,0,0,01=α,()1,1,1,02=α,()1,1,1,13=α的线性组合的向量是( ) (A) ()1,1,0,0 (B )()0,1,1,2 (C)()1,0,1,3,2- (D)()0,0,0,0,86.已知()3,2,11=α, ()2,1,32-=α,()x ,3,23=α 则x=( )时321,,ααα线性相关。
西南财经大学200 - 200 学年第 学期专业 科 级( 年级 学期)学 号 评定成绩 (分) 学生姓名 担任教师《线性代数》期末闭卷考试题(下述 一 — 四 题全作计100分, 两小时完卷)考试日期:试 题 全 文:一、 填空题(共5小题,每题2分)1、211121112---= 2、设A 是m n ⨯矩阵,B 是p m ⨯矩阵,则T T A B 是______矩阵。
3、设αβ、线性无关,则k αββ+、线性无关的充要条件是_______。
4、设αβ、为n 维非零列向量,则T R ()αβ=_________。
5、设3阶矩阵-1A 的特征值为-1、2、1,则A =_____。
二、选择题(共10小题,每题2分)1、设A 、B 为n 阶矩阵,则下列说法正确的是( )(A )、=B+AA B + (B )AB =BA(C )、T(AB )=TTA B (D )若AB A =,则B E =2、若某个线性方程组相应的齐次线性方程组仅有零解,则该线性方程组( ) (A)、有无穷解 (B)、有唯一解 (C)、无解 (D )、以上都不对3、一个向量组的极大线性无关组( )(A)、个数唯一 (B)、个数不唯一(C)、所含向量个数唯一 (D)、所含向量个数不唯一 4、若3阶方阵A 与B 相似,且A 的特征值为2、3、5,则B-E =( )。
(A)、 30 (B)、 8 (C)、11 (D)、75、若m n ⨯矩阵A 的秩为m,则方程组A X B =( )。
(A)、有唯一解 (B )、有无穷解 (C)、有解 (D)、 可能无解6、设A 为3阶方阵,且1A 2=,则1*2A A -+=( )。
(A)、 8 (B)、16 (C)、10 (D)、127、已知行列式D 的第一行元素都是4,且D=-12,则D 中第一行元素代数余子式之和为( )。
(A)、0 (B)、-3 (C)、-12 (D)、4 8、设A 、B 都是正定矩阵,则( ) (A)、AB,A+B 一定都是正定矩阵(B)、AB 是正定矩阵,A+B 不是正定矩阵(C)、AB 不一定是正定矩阵,A+B 是正定矩阵 (D)、AB 、A+B 都不是正定矩阵9、设A 是n 阶方阵,且k A O =(k 是正整数),则( )(A )、A O = (B )、A 有一个不为零的特征值 (C)、 A 的特征值全为零 (D )、A 有n 个线性无关的特征向量 10、已知2阶实对称矩阵A 满足232A A E O -+=,则A ( ) (A)、正定 (B)、半正定 (C )、负定 (D)、不定三、计算题(共8小题,每题8分)1、计算四阶行列式01001100100k k k k2、设100110111A⎛⎫⎪=⎪⎪⎝⎭,且*22A BA BA E=-,求B3、设111111kA kk⎛⎫⎪=⎪⎪⎝⎭,求R(A)4、考虑向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1412,2615,1012,31407,023154321ααααα (1) 求向量组的秩;(2) 求此向量组的一个极大线性无关组,并把其余向量分别用该极大线性无关组表示.5、设T α)0,2,1(1=, Tααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.6、设12314315A a-⎛⎫⎪=-- ⎪ ⎪⎝⎭有一个2重特征值,求a 的值并讨论A 是否可对角化。
线性代数试题A答案[大全5篇]第一篇:线性代数试题A答案2006-2007学年第二学期线性代数试题A卷参考答案及评分标准一.填空题(本题满分12分,每小题3分)⎛1-20 0 -25 -111、1;2、-3;3、A=00 3 1 00-3⎝0⎫⎪0⎪2⎪;4、2 ⎪3⎪1⎪⎪3⎭二、选择题(本题满分12分,每小题3分,.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.C;2.C;3.A;4、B 三.计算行列式(本题满分6分)解 1 10Dn=001-110010Λ00-111000-11=100010100200Λ03ΛΛ1Λ00Λ0100Λ00n3-1ΛΛ011ΛΛΛΛΛΛΛΛΛΛΛΛ分Λn-1=n3分解2 10Dn=001-110010Λ00-111000=Dn-1+13分-1ΛΛ011ΛΛΛΛΛΛΛΛ-11=n3分四.(本题满分12分)解:⑴ 由等式A+B=AB,得A+B-AB+E=E,即(A-E)(B-E)=E3分因此矩阵A-E可逆,而且(A-E)=B-E.2分-1⑵ 由⑴知,A-E=(B-E),即A=(B-E)+E-1-1A=(B-E)+E或A=B(B-E)-12分-1⎛0-10-30100⎛⎫⎛⎫⎪⎪1=200⎪+010⎪=-3 001⎪001⎪0⎝⎭⎝⎭⎝⎛1 1=-3 0 ⎝1210⎫0⎪⎪0⎪ 2分⎪2⎪⎪⎭1200⎫0⎪100⎫⎪⎛⎪0⎪+010⎪3分⎪⎪1⎪⎝001⎭⎪⎭五.(本题满分14分)解:110⎤⎡1⎡11⎢01⎥⎢0221⎥→⎢A=⎢⎢0-1a-3-2b⎥⎢0⎢⎥⎢321a-1⎣⎦⎣01110⎤1221⎥⎥4分0a-10b+1⎥⎥00a-10⎦所以,⑴ 当a≠1时,rA=r(A)=4,此时线性方程组有唯一解.2分⑵ 当a=1,b≠-1时,r(A)=2,rA=3,此时线性方程组无解.2分⑶ 当a=1,b=-1时,rA=r(A)=2,此时线性方程组有无穷多组解.2分此时,原线性方程组化为()()()⎧x1+x2+x3+x4=0 ⎨⎩x2+2x3+2x4=1因此,原线性方程组的通解为⎧x1=x3+x4-1⎪x=-2x-2x+1⎪234 ⎨x=x3⎪3⎪x4⎩x4=或者写为⎡x1⎤⎡1⎤⎡1⎤⎡-1⎤⎢x⎥⎢-2⎥⎢-2⎥⎢1⎥2⎢⎥=k⎢⎥+k⎢⎥+⎢⎥4分⎢x3⎥1⎢1⎥2⎢0⎥⎢0⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣0⎦⎣1⎦⎣0⎦⎣x3⎦六.(本题满分12分)3-λ解 A-λE=-101202-λ1=(2-λ)(3-λ),2分03-λ所以得特征值λ1=2,λ2=λ3=32分⎛101⎫⎪对λ1=2,解方程组(A-2E)x=0,由A-2E=-101⎪,得特征向量001⎪⎝⎭⎛0⎫⎪ξ1=1⎪0⎪⎝⎭⎛0⎫⎪所以对应λ1=2的全部特征向量为c1 1⎪,c1≠03分0⎪⎝⎭⎛0 1对λ2=λ3=3,解方程组(A-3E)x=0,由A-3E=-0⎝01⎫1⎛10⎪r 1-1⎪−−→0 0100⎪0 ⎭⎝00⎫⎪⎪,⎪⎭⎛1⎫⎛1⎫⎪⎪得特征向量ξ2=-1⎪,全部特征向量为c2 -1⎪,c2≠03分0⎪0⎪⎝⎭⎝⎭A没有三个线性无关的特征向量,所以不能对角化.2分七.(本题满分12分)⎛1λ解:f的矩阵为A=λ4 -12⎝-1⎫⎪2⎪.…………2分 4⎪⎭因此,二次型f为正定二次型.⇔矩阵A为正定矩阵.⇔矩阵A的各阶顺序主子式全大于零.…………2分而矩阵A的各阶顺序主子式分别为D1=1>0,D2=1λ=4-λ2,…………2分λ41D3=A=λλ-12=-4(λ-1)(λ+2).…………2分 44-12所以,二次型f 为正定二次型.⇔D2=4-λ2>0,且D3=-4(λ-1)(λ+2)>0由 D2=4-λ2>0,得-2<λ<2 .由 D3=-4(λ-1)(λ+2)>0,得-2<λ<1 .因此,得-2<λ<1 .即,二次型f为正定二次型.⇔-2<λ<1…………4分八.(本题满分8分)已知三维向量空间的一组基为α1=(1,1,0),α2=(1,0,1),α3=(0,1,1)求向量β=(2,0,0)在上述基下的坐标.解:设向量β在基(α1,α2,α3)下的坐标为(x1,x2,x3),则有x1α1+x2α2+x3α3=β,2分写成线性方程组的形式,有⎛1⎫⎛1⎫⎛0⎫⎛2⎫⎪⎪⎪⎪x1 1⎪+x2 0⎪+x3 1⎪=0⎪2分 0⎪1⎪1⎪0⎪⎝⎭⎝⎭⎝⎭⎝⎭即⎧x1+x2=2⎪⎨x1+x3=0,⎪x+x=03⎩2得唯一解x1=1,x2=1,x3=-1,3分,1,-1).1分因此所求坐标为(1九.(本题满分12分)证法1:记A=(α1,α2,Λ,αm),B=(α1,α2,Λ,αm,β),显然r(A)≤r(B).1°因为α1,α2,Λ,αm线性无关,知r(A)=m1分2°因为α1,α2,Λ,αm,β线性相关,知r(B)<m+1 1分因此r(B)=m,1分Ax=(α1,α2,Λ,αm)x=b有解且唯一。
华南农业大学期末考试试卷(A 卷)2010-2011学年第2学期 考试科目:线性代数 试类型:(闭卷)考试 考试时间:120分钟学号 姓名 年级专业一、选择题(本大题共5小题,每小题3分,共15分)在每小题的选项中,只有一项符合要求,把所选项前的字母填在题中括号内1. 设矩阵A , B , C 能进行乘法运算,那么(B )成立(A) AB = AC ,A ≠ 0,则B = C (B) AB = AC ,A 可逆,则B = C (C) A 可逆,则AB = BA (D) AB = 0,则有A = 0,或B = 02. 设A 为n (n ≥2)阶矩阵,且A 2= I ,其中I 为单位阵(下同),则必有(C )(A) A 的行列式等于1 (B) A 的逆矩阵等于I (C) A 的秩等于n (D) A 的特征值均为13.设向量组4321,,,αααα线性相关,则向量组中(A )(A) 必有一个向量可以表为其余向量的线性组合 (B) 必有两个向量可以表为其余向量的线性组合 (C) 必有三个向量可以表为其余向量的线性组合 (D) 每一个向量都可以表为其余向量的线性组合4.设n 元齐次线性方程组x 0A =的系数矩阵A 的秩为r ,则x 0A =有非零解的充分必要条件是(B )5. 设A 为n 阶方阵,0≠A ,*A 是A 的伴随矩阵。
则:*A 等于 (C )(A) n r =(B) n r <(C) n r >(D) n r ≥(A) A(B)A1 (C) 1-n A(D) nA2二、填空题(本大题共5小题,每小题4分,满分20分)6. 已知行列式011103212=-a ,则数a =3.7. 设向量组1(,1,1)T k α=,2(1,2,1)T α=-, 3(1,1,2)T α=-线性相关,则数k =2-. 8. 设(1,1,5,3)T α=--, (9,2,3,5)T β=---,则α与β的距离为9,内积为37. 9. 设n 阶实对称矩阵A 的特征值分别为1, 2, …, n ,则使tI A -为正定矩阵的数t 取值范围是t n >.10. 设矩阵A 和B 相似,其中A = 20022311x -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,B = 10002000y -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦则x =0,y =2-.三、计算题11.(满分8分) 设矩阵 ⎥⎦⎤⎢⎣⎡-=021201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200010212B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=242216C ,计算C BA +T .解答:C BA +T =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-042006⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200210 T A 计算正确2分,T 4BA 正确分, C BA +T 2分12.(满分8分)计算行列式 D = ⎪⎪⎪⎪⎪⎪⎪⎪x 1 2 … n 1 x 2 … n 1 2 x … n … … … …1 2 3 … x 的值。
解:将D 的各列全部加到第一列,得3D = (x+1+2+…+n) ⎪⎪⎪⎪⎪⎪⎪⎪1 1 2 … n1 x2 … n 1 2 x … n … … … …1 23 … x (3分) = (x+n(n+1)2) ⎪⎪⎪⎪⎪⎪⎪⎪1 0 0 … 01 x-1 0 … 01 1 x-2 … 0… … … … …1 1 1 … x -n ( 2分) = (x+n(n+1)2)(x-1)(x-2)…(x -n) ( 3分)13.(满分7分) 设 143153164A --⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦, 求 1A -.[解]:(A I)= ⎣⎢⎡⎦⎥⎤1 -4 -3 1 0 0 1 -5 -3 0 1 0-1 6 4 0 0 1 ( 2分)→⎣⎢⎡⎦⎥⎤1 -4 -3 1 0 00 -1 0 -1 1 002 1 1 0 1 →⎣⎢⎡⎦⎥⎤1 0 -3 5 -4 00 1 0 1 -1 00 0 1 -12 1 →⎣⎢⎡⎦⎥⎤1 0 02 2 30 1 0 1 -1 00 0 1 -1 2 1 , ( 4分)所以 A -1= ⎣⎢⎡⎦⎥⎤2 2 31 -1 0-1 2 1 . ( 1分)用公式法酌情给步骤分四、解答题14.(满分10分) 已知方程组1123211232123x x ax x x x x ax x a ⎧++=-⎪⎪-+=-⎨⎪⎪-++=⎩有无穷多解,求a 以及方程组的通解。
解法一:由方程组有无穷多解,得()(|)3R A R A b =<,因此其系数行列式411||112011aA a=-=-。
即1-=a 或4=a 。
(3分)当1-=a 时,该方程组的增广矩阵1111(|)11211111A b --⎛⎫ ⎪ ⎪=--→ ⎪ ⎪--⎝⎭11012301020000⎛⎫- ⎪ ⎪⎪- ⎪⎪⎪ ⎪⎪⎝⎭于是()(|)23R A R A b ==<,方程组有无穷多解。
分别求出其导出组的一个基础解系13122T-⎛⎫⎪⎝⎭,原方程组的一个特解()100T -,故1-=a 时,方程组有无穷多解,其通解为()13100122TTk -⎛⎫-+ ⎪⎝⎭, (4分)当4=a 时增广矩阵1141(|)112114116A b -⎛⎫ ⎪ ⎪=--→ ⎪ ⎪-⎝⎭1141022000015-⎛⎫ ⎪⎪-- ⎪ ⎪⎝⎭,()2(|)3R A R A b =<=,此时方程组无解。
(3分)解法二:首先利用初等行变换将其增广矩阵化为阶梯形。
222111111111(|)112102200220110111100(1)(4)12a a a A b a a a a a a a a a a ⎛⎫⎪---⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=--→--→-- ⎪ ⎪ ⎪ ⎪⎪ ⎪-++- ⎪⎝⎭⎝⎭+-- ⎪⎝⎭5由于该方程组有无穷多解,得()(|)3R A R A b =<。
因此21(1)(4)102a a a +-=-=,即1a =-。
求通解的方法与解法一相同。
15.(满分10分)求向量组()10,4,10,1T α=,()24,8,18,7T α=,()310,18,40,17T α=,()41,7,17,3Tα=的一个最大无关组,且将不属于最大无关组的向量用最大无关组线性表示出来.1()123404101171734818704101,,,10184017020505171730521301315171731017173171732410104101041010104404101000000000410100000000αααα⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪--- ⎪ ⎪---⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭5112400000000⎛⎫ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭所以12,αα为向量组1234,,,αααα的一个最大无关组. (6分)3121522ααα=-+ (2分)4125144ααα=+ (2分)16.(满分6分) A ,B 为4阶方阵,AB+2B =0,矩阵B 的秩为2且|I+A |=|2I -A |=0。
(1)求矩阵A 的特征值;(2)A 是否可相似对角化?说明原因。
(3)求|A+3I |。
解:(1)由20I A I A +=-=知-1,2为A 的特征值。
02=+B AB ⇒(2)A I B +=,故-2为A 的特征值,又B 的秩为2,即特征值-2有两个线性无关的特征向量,故A 的特征值为-1,2,-2,-2。
(2分)(建议只求出-1,2也给2分)6(2)能相似对角化。
因为对应于特征值-1,2各有一个特征向量,对应于特征值-2有两个线性无关的特征向量,所以A 有四个线性无关的特征向量,故A 可相似对角化。
(2分)(3)3A I +的特征值为2,5,1,1。
故3A I +=10。
(2分)17.(满分10分)求一个正交变换,化二次型32312123222184444x x x x x x x x x f -+-++= 为标准型。
解:设:⎪⎪⎭⎫⎝⎛--=4221A ,则:Tf x Ax = , 1分 首先求 A 的特征根和特征向量令:()054221=-=----=-λλλλλE A ,得:01=λ , 5=λ 。
2分01=λ时:()E A 0-= ⎪⎪⎭⎫ ⎝⎛--=4221A ~ ⎪⎪⎭⎫⎝⎛-0021 即:0221=-x x , 1分取12=x ,得基础解系 121ξ⎛⎫= ⎪⎝⎭, 。
单位化:,111251p ξξ⎫==⎪⎝⎭, 2分 52=λ时:()⎪⎪⎭⎫ ⎝⎛----=-5422515E A ~⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----0012~1224 即:0221=+x x , 1分取:22=x ,得基础解系 ⎪⎪⎭⎫⎝⎛-=212ξ ,单位化: ⎪⎪⎭⎫⎝⎛-==21552ξp 2分 则:⎪⎪⎭⎫ ⎝⎛-=211255P 。
在正交变换 P =下,标准型为 225y f = 。
1分五、证明题18.(满分6分) 设A 为正交矩阵,且1-=A ,试证0=+I A . 证明:()()0T T T T TA I A AA A I A A A I A I A I A I +=+=+=+=-+=-+∴+=(6分)。