西北工业大学线性代数试题2011_11_
- 格式:pdf
- 大小:26.98 KB
- 文档页数:2
22
212
1213352626x x x x x x x ,则此二次型的秩为命题教师:1.出题用小四号、宋体输入打印, 纸张大小为8K.
考 生:1.不得用红色笔,铅笔答题,不得在试题纸外的其他纸张上答题,否则试卷无效。
2.参加同卷考试的学生必须在“备注”栏中填写“同卷”字样。
3.考试作弊者,给予留校察看处分;叫他人代考或代他人考试者,双方均给予开除学籍处理。
并取消授予学士学位资
命题教师:1.出题用小四号、宋体输入打印, 纸张大小为8K.
考 生:1.不得用红色笔,铅笔答题,不得在试题纸外的其他纸张上答题,否则试卷无效。
2.参加同卷考试的学生必须在“备注”栏中填写“同卷”字样。
3.考试作弊者,给予留校察看处分;叫他人代考或代他人考试者,双方均给予开除学籍处理。
并取消授予学士学位资
命题教师:1.出题用小四号、宋体输入打印, 纸张大小为8K.
考 生:1.不得用红色笔,铅笔答题,不得在试题纸外的其他纸张上答题,否则试卷无效。
2.参加同卷考试的学生必须在“备注”栏中填写“同卷”字样。
3.考试作弊者,给予留校察看处分;叫他人代考或代他人考试者,双方均给予开除学籍处理。
并取消授予学士学位资。
中南大学考试试卷答案2011——2012学年第二学期(2012.4) 时间:100分钟《线性代数》 课程 32 学时 2 学分 考试形式:闭卷专业年级:2011级 总分:100分一、填空题(本题15分,每题3分)1、0;2、8132(练习册P99); 3、3-; 4、⎪⎪⎪⎪⎭⎫ ⎝⎛=--12333212312113311n n A ;5、12+⎪⎪⎭⎫⎝⎛λA (练习册P113)。
二、选择题(本题15分,每题3分)1、D ;2、B (练习册P106);3、C ;(教材P55)4、D ;5、A (练习册P120)。
三、(本题10分) (练习册P102)解:解: D n ====+++c c c c c c n 131121000120012201222=2n –1, 设D n 展开式中正、负项总数分别为x 1, x 2, 则x 1+x 2=n !,x 1–x 2=2n –1,于是正项总数为x 1=1221(!)n n -+。
四、(本题10分)(典型题解P121)解:由X A E AX +=+2,得:E A X E A -=-2)(,)(,010********E A E A -∴≠-==- 可逆,故⎪⎪⎪⎭⎫⎝⎛=+=201030102E A X ;由于09≠=X ,()⎪⎪⎪⎭⎫⎝⎛===∴---*-201030102911)(1111X X X X X 。
五、(本题14分)解:将矩阵()4321,,,αααα化为最简形阶梯形矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000011003101032001000011001030101121306014211035271,(1)()3,,,4321=ααααR ;(2)321,,ααα为所求的一个最大线性无关组,且32143132αααα++=。
六、(本题14分)解:()0311********--=-⎪⎪⎪⎭⎫ ⎝⎛----==λλλααA E A T,(1)A 的特征值为0,0,3;由0=AX 得对应0的特征向量为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛101011l k ,l k ,为不全为零的任意常数,由0)3(=-X A E 得对应3的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-111c ,c 为任意非零常数。
西交《线性代数》在线作业-0001试卷总分:100 得分:100一、单选题 (共 35 道试题,共 70 分)1.设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=( )A.A^-1CB^-1B.CA^-1B^-1C.B^-1A^-1CD.CB^-1A^-1答案:A2.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )A.A=0B.A=EC.r(A)=nD.0<r(A)<(n)答案:A3.n阶矩阵A具有n个不同的特征值是A与对角矩阵相似的( )。
A.充分必要条件;B.必要而非充分条件;C.充分而非必要条件;D.既非充分也非必要条件答案:C4.设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是( )。
A.a1-a2,a2-a3,a3-a1B.a1,a2,a3+a1C.a1,a2,2a1-3a2D.a2,a3,2a2+a3答案:B5.设A为三阶方阵,且|A|=2,A*是其伴随矩阵,则|2A*|=是( ).A.31B.32C.33D.34答案:B6.设A,B均为n阶方阵,则等式(A+B)(A-B) = A2-B2成立的充分必要条件是( ).A.A=EB.B=OC.A=BD.AB=BA答案:D7.设A3*2,B2*3,C3*3,则下列( )运算有意义A.ACB.BCC.A+BD.AB-BC答案:B8.设二阶矩阵A与B相似,A的特征值为-1,2,则|B|=A.-1B.-2C.1D.2答案:B9.设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是( )A.a1-a2,a2-a3,a3-a1B.a1,a2,a3+a1C.a1,a2,2a1-3a2D.a2,a3,2a2+a3答案:B10.设A为三阶方阵,|A|=2,则 |2A-1| = ( )A.1B.2C.3D.4答案:D11.设某3阶行列式︱A︱的第二行元素分别为-1,2,3,对应的余子式分别为-3,-2,1,则此行列式︱A︱的值为( ).A.3B.15C.-10D.8答案:C12.设a1,a2,a3,a4,a5是四维向量,则( )A.a1,a2,a3,a4,a5一定线性无关B.a1,a2,a3,a4,a5一定线性相关C.a5一定可以由a1,a2,a3,a4线性表示D.a1一定可以由a2,a3,a4,a5线性表出答案:B13.设u1, u2是非齐次线性方程组Ax=b的两个解, 若c1u1-c2u2是其导出组Ax=o的解, 则有( ).A.c1+c2=1B.c1= c2C.c1+ c2 = 0D.c1= 2c2答案:B14.n阶对称矩阵A为正定矩阵的充分必要条件是( ).A.∣A∣>0B.存在n阶矩阵P,使得A=PTPC.负惯性指数为0D.各阶顺序主子式均为正数答案:D15.用一初等矩阵左乘一矩阵B,等于对B施行相应的( )变换A.行变换B.列变换C.既不是行变换也不是列变换答案:A16.若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则( )A.A与B相似B.A≠B,但|A-B|=0C.A=BD.A与B不一定相似,但|A|=|B|答案:A17.已知三阶行列式D中的第二列元素依次为1,2,3,它们的余子式分别为-1,1,2,D的值为( )A.-3B.-7C.3D.7答案:A18.设A为n阶方阵,r(A)<n,下列关于齐次线性方程组Ax=0的叙述正确的是( )A.Ax=0只有零解B.Ax=0的基础解系含r(A)个解向量C.Ax=0的基础解系含n-r(A)个解向量D.Ax=0没有解答案:C19.设u1, u2是非齐次线性方程组Ax = b的两个解,若c1u1+c2u2也是方程组Ax = b的解,则( ).A.c1+c2 =1B.c1= c2C.c1+ c2 = 0D.c1= 2c2答案:A20.设三阶矩阵A的特征值为1,1,2,则2A+E的特征值为( ).A.3,5B.1,2C.1,1,2D.3,3,5答案:D21.设A,B,C均为n阶非零方阵,下列选项正确的是( ).A.若AB=AC,则B=CB.(A-C)^2 = A^2-2AC+C^2C.ABC= BCAD.|ABC| = |A| |B| |C|答案:D22.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( )A.k≤3B.k<3C.k=3D.k>3答案:A23.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )A.A=0B.A=EC.r(A)=nD.0<r(A)<(n)答案:A24.设 A、B、C为同阶方阵,若由AB = AC必能推出 B = C,则A应满足( ).A.A≠OB.A=OC.|A|=0D.|A|≠0答案:D25.设A,B均为n阶非零方阵,下列选项正确的是( ).A.(A+B)(A-B) = A^2-B^2B.(AB)^-1 = B^-1A^-1C.若AB= O, 则A=O或B=OD.|AB| = |A| |B|答案:D26.设A,B均为n阶方阵,则( )A.若|A+AB|=0,则|A|=0或|E+B|=0B.(A+B)^2=A^2+2AB+B^2C.当AB=O时,有A=O或B=OD.(AB)^-1=B^-1A^-1答案:A27.设A为m*n矩阵,则有( )。
共6页第1页班级:学号:姓名:班级:学号:姓名:高等数学2009--2010第二学期期终考试试题答案及评分标准A卷一、1、-8,2、,3、,4、8π,5、,6、。
二、1, 2、,3、,4、,5、3,6、[]2121+-,,缺闭区间扣一分。
三、1、解:设切点…………………2分由已知条件得:,得到.………..4分切平面方程为即……………..6分2、解:……………..3分……………..6分3、解:………………4分………………6分四、1、解:g f fy xx u v∂∂∂=+∂∂∂,g f fx yy u v∂∂∂=-∂∂∂,…………….2分vfvfxvufxyufyx∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222g,vfvfyvufxyufxy∂∂-∂∂+∂∂∂-∂∂=∂∂2222222222g, ………………..5分222222g gx yx y∂∂+=+∂∂………………6分2.解:设dydppyp=''=',y,………………………2分得到舍去)(,0y==+ppdydp,解得ycp1=,100(,)dy f x y dx⎰83π12eπ+1415-{}00000(,,),,2,1P x y z n x y=-224000sind d drππθϕϕ⎰⎰143π0021221x y-==-2230x y z+--=2200002,1, 3.2xx y z y===+=2(2)2(1)(3)0x y z-+---=231131()12y yyydy e dxy y e dy e∂=-=-⎰⎰⎰8232008222336dz d drz dzπθππ==⎰⎰⎰2y1=-由初始条件yy 21,21c 1='=, ………………………4分 22c x y +=, 由初12=c ,其特解为1,12+=+=x y x y 或。
……………………..6分 3.、解:由xQy p ∂∂=∂∂,得x e x f x f x f =-'-'')()()(,………………2分 x x x e y e c e c Y 21,221-=+=*-,由初始条件61,3221-==c c , x x x e e e x f 216132)(2--=- ……….4分(1,1)(0,0)()2()()x f x f x e ydx f x dy ''⎡⎤+++⎣⎦⎰ =⎰-+=-+--101212216134216134e e e dy e e e ). ……………….6分五、解:1151lim lim (1)55n n n n n na n a n ++→∞→∞⋅==+⋅, ∴收敛半径为5R =…………………..2分 当5x =-时, 15n n∞=∑发散; 当5x =时,11(1)5n n n -∞=-⋅∑收敛 ∴收敛区间为(5,5]-…………………………………………………4分 设和函数1111111100110(1)()(1)55 [(1)][(1)()]5551 ln(1), (5,5]5515n n n n nn n n n xx n n n n n n x x S x x x n n t x t x dt dt n x x dt x x t -∞∞+-==∞∞---==-==-⋅⋅'=-=-⋅==+∈-+∑∑∑∑⎰⎰⎰………..…7分 …………………….8分六、解:设旋转曲面S 的方程为 12222=++z y x ,--------------------1分给定的方向 )0,21,21(0-=l方向导数函数)(2c o s c o s c o s y x zf y f x f l f -=∂∂+∂∂+∂∂=∂∂γβα --------2分 设)12()(2222-+++-=z y x y x L λ, ---------------3分令 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++==∂∂=+-=∂∂=+=∂∂1202022042222z y x z z Ly y L x x Lλλλ ------------------4分解之得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=02242z y x λλ 23±=λ ------------------6分23=λ,得S 上的点为)0,36,66(-,此时3-=∂∂l f 23-=λ,得S 上的点为)0,36,66(-,此时3=∂∂lf所以,所求的S 上的点为)0,36,66(- ------------------7分 七、解:……………………3分000()()(x)lim()(1)()lim lim x x x x x f x x f x f x f x e f x e x x∆→∆∆→∆→+∆-'=∆-∆=+∆∆(x)()(0),(),(0)0,0..xx x f f x f e y ax c e f c y axe ''=+=+=∴== 111100(x)(1)(1)(1)!!x x x x n n n n f axe aexe ae x e aee x x ae ae n n ---+∞∞=====-+--=+∑∑………………………6分………………………7分(2009)(1)2010ae f =n=100(1)(1)=ae (1)!!(1)(1),.!n nn nn x x ae n n n x ae x R n ∞∞=∞=--+-+-=∈∑∑∑。