弹性力学圆孔的孔口应力集中
- 格式:pdf
- 大小:1.57 MB
- 文档页数:55
采用极坐标求解弹性力学平面问题基本问题一、内容介绍在弹性力学问题的处理时,坐标系的选择从本质上讲并不影响问题的求解,但是坐标的选取直接影响边界条件的描述形式,从而关系到问题求解的难易程度。
对于圆形,楔形,扇形等工程构件,采用极坐标系统求解将比直角坐标系统要方便的多。
本章的任务就是推导极坐标表示的弹性力学平面问题基本方程,并且求解一些典型问题。
二、重点1、基本未知量和基本方程的极坐标形式;2、双调和方程的极坐标形式;3、轴对称应力与厚壁圆筒应力;4、曲梁纯弯曲、楔形体和圆孔等典型问题1 平面问题极坐标解的基本方程学习思路:选取极坐标系处理弹性力学平面问题,首先必须将弹性力学的基本方程以及边界条件通过极坐标形式描述和表达。
本节的主要工作是介绍基本物理量,包括位移、应力和应变的极坐标形式;并且将基本方程,包括平衡微分方程、几何方程和本构关系转化为极坐标形式。
由于仍然采用应力解法,因此应力函数的极坐标表达是必要的。
应该注意的是坐标系的选取与问题求解性质无关,因此弹性力学直角坐标解的基本概念仍然适用于极坐标。
学习要点:1、极坐标下的应力分量;2、极坐标平衡微分方程;3、极坐标下的应变分量;4、几何方程的极坐标表达;5、本构方程的极坐标表达;6、极坐标系的Laplace算符;7、应力函数。
1、极坐标下的应力分量为了表明极坐标系统中的应力分量,从考察的平面物体中分割出微分单元体ABCD,其由两个相距dρ的圆柱面和互成dϕ的两个径向面构成,如图所示在极坐标系中,用σρ 表示径向正应力,用σϕ 表示环向正应力,τϕρ 和τρϕ 分别表示圆柱面和径向面的切应力,根据切应力互等定理,τϕρ =τρϕ 。
首先推导平衡微分方程的极坐标形式。
考虑到应力分量是随位置的变化,如果假设AB面上的应力分量为σρ 和τϕρ,则CD面上的应力分量为如果AD面上的应力分量为σϕ 和τρϕ ,则BC面上的应力分量为。
同时,体力分量在极坐标径向ρ 和环向 ϕ方向的分量分别为F bρϕ 和F bϕ 。
4.8 半无限平面边界上受法向集中力作用的问题一弗拉芒一布辛涅斯克问题没有边界的无限大物体称为无限体。
将它用平面分成两半,每一半就称半无限体。
本节分析的是半无限的弹性平面体在边界上受一法向集中力作用的问题(图4-8)。
这一问题在实际工程问题中会经常遇到,如建筑物地基的应力和沉陷问题等。
最近发展起来的边界元数值计算法也利用这问题的解答。
假定在边界面上沿半无限平面厚度上分布有均匀压力P。
这样,半无限体就处于平面应变状态,单位厚度上分布的压力就可视为集中力P,其量纲为[力×长度-1]解题:如图4-8所示,估计应力呈扇形分布,因此采用极坐标。
为解题方便,取X轴方向向下,y轴方向向右,相应地极坐标r方向向外,θ方向由x轴逆时针旋转。
图4-8半无限平面边界受法间集中力(1)初定应力函数:根据应力的函数形式决定应力函数的形式,而应力的函数形式是根据估计的应力分布情况面定。
本题中估计σr的分布与P ,r ,θ都有关系,与P 成正比,与r 成反比。
故σr 的函数形式估计为)(θσF rPr =(a ) 式中σr 与P ,r 都是一次幂关系,这是因为只有这样,等式两边的量纲才能相等(皆为[力×长度-2])。
列出应力函数与应力分量的关系式,即(4.18)式的第一式22211θϕϕσ∂∂+∂∂=r r r r由此式可见,为使等式两边r 的幂次相等,应力函数中的r 的幂次应当比应力分量中r 的幂次高两次,所以初选应力函数的形式为)(θϕrf = (b )式中f (θ)可通过双调和方程得到。
将(b )式代入双调和方程(4.17)式得)(1)(1112222222=⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂+∂∂θθθθf r f r r r r r )(即0)]()(2)([122443=++θθθθθf d f d d f d r (c )删去因子31r,(c )式为常系数线性微分方程,其通解为)sin cos (sin cos )(θθθθθθD C B A f +++= (d )代入(b )得)]sin cos (sin cos [θθθθθϕD C B A r +++= (e )式中A ,B ,C ,D ——待定系数,由边界条件决定。
鑫霎Ⅵ渊剥黼圆形孔洞下应力集中的实验研究肖珊1王丽华2(1.江西医学院上饶分院江西上饶3340002.江西科技师范学院江西南昌330013)[摘要]运用材料力学、弹性力学的基本原理和电测法,通过测量有圆形孔洞板圆孔周围的应力,分析圆孔周围应力集中规律;通过单纯受拉或纯弯时的情况分析、讨论叠加原理在处理应力集中问题时的具体应用方法。
[关键词]应力集中应力分布中图分类号:031文献标识码:A文章编号:1671--7597(2008)1010002--02一、前言在整个力学结构中,圆孔、凹口、圆角等是整个系统的应力集中因素,在孔、圆孔、凹口、圆角等附近存在应力集中,应力集中是引起构件破坏的主要因素,系统在这些因素和材料疲劳的共同作用下,造成断裂和破坏的机会很大,在设计的过程中把这些因素考虑进去是十分必要的。
构件中产生应力集中的原因主要有:(1)截面的急剧变化。
如:构件中的油孔、键槽、缺口、台阶等:(2)受集中力作用。
如:齿轮轮齿之间的接触点,火车军轮与钢轨的接触点等;(3)材料本身的不连续性。
如材料中的夹杂、气孔等:(4)构件中由于装配、焊接、冷加工、磨削等而产生的裂纹;(5)构件在制造或装配过程中,由于强拉伸、冷D H I、热处理、焊接等而引起的残余应力。
这些残余应力叠加上工作应力后,有可能出现较大的应力集中;(6)构件在加工或运输中的意外碰伤和刮痕。
应力集中系数可以方便地描述构件的应力集中状态。
应力集中系数可采用数学方法或实验方法求得。
实验方法有:弹性法,精密应变仪测量法,扭转薄膜比拟法,扭转电比拟法。
当实验具有足够的精度时,所得结果与理论应力集中系数非常符合。
本实验研究采用电测法,主要研究有圆形孔洞板的应力集中分布趋势。
二、研究模型和理论分析(一)圆孔边缘附近的应力以有圆形孔洞拉伸和弯曲板为研究模型,根据弹性力学理论,可以求得圆孔近的应力分布情况,圆孔附近A点(图I)的应力为:盱i O-‘|广a2渤+[z等一s爿cos41盯,=罢l z+s詈;cos28-(z詈;一s罟]c。
不同板宽的孔边的应力集中问题1 选题目的:对于如图所示的平面圆孔的孔边问题,通过数值实验的方法研究不同板宽的孔边应力集中问题,与弹性力学的解析解进行比较。
给出应力集中系数与相对孔径尺度的关系。
图一 不同板宽的孔边的应力集中问题2 背景:就无限大板宽的孔边应力集中问题,有以下弹性力学的解析解:004020002020040020020200200390)2321(90y )31)(1(2sin 2)31(2cos 2)1(2)31)(1(2cos 2)1(2422242222q R r rR rR q rR rR q rR q rR q rR rR q rR q r r r ===++==+--==+-+=--+-=),()(分布:轴上有在孔边的θσθσσθττθσθσθθθθθθ3 数值分析我们定义板宽和孔径的相对尺度的特征参数: 0R B=ξ进行研究,具体取值如表:结果如图:图2 30=ξ时的应力分布R B =ξ30 24 20 10 6图3 24=ξ时的应力分布图4 20=ξ时的应力分布图5 10=ξ时的应力分布图6 6=ξ时的应力分布4 应力集中系数如表:5 在matlab 中划出曲线:0R B =ξ30 24 20 10 6 0maxq k σ=3.0143.0323.0783.2134.0806 结论 随着0R B =ξ增大,k 值减小。
圆孔孔边的应力集中分析及优化一、引言A. 研究背景B. 研究意义C. 研究目的二、圆孔孔边应力集中分析A. 圆孔孔边的问题描述B. 应力场分析C. 应力集中因子计算D. 应力分布图分析E. 结果讨论三、圆孔孔边应力集中优化方案A. 传统优化方法B. 拓扑优化方法C. 优化结果分析比较D. 结论四、拓扑优化求解流程A. 模型准备B. 拓扑优化流程C. 拓扑优化结果分析D. 求解流程总结五、应用案例分析A. 案例背景描述B. 拓扑优化方案设计C. 优化效果分析D. 案例结果总结六、结论A. 研究回顾B. 拓扑优化的优势C. 展望未来研究方向D. 实用意义第一章:引言A. 研究背景圆孔孔边的应力集中问题一直是工程界关注的热点问题之一。
在实际工程中,许多机械零件或结构都包含圆孔,它们的设计和材料选择对工程的可靠性和安全性产生了直接影响。
因此,深入研究圆孔孔边的应力集中分析是十分必要的。
B. 研究意义圆孔孔边的应力集中分析在理论和实际工程中都有重要的应用。
从理论上来看,它可以对结构的强度和稳定性进行分析和评价,为工程设计提供参考。
从实际工程上来看,解决圆孔孔边的应力集中问题可以提高结构的可靠性,避免因应力集中导致的零件断裂、材料疲劳等问题,从而提高工程的安全性和稳定性。
C. 研究目的本文旨在深入探究圆孔孔边的应力集中分析,分析孔边应力集中的原因和特点,提出圆孔孔边应力集中的优化方案,并且通过实际案例分析验证了提出的优化方案的有效性和实用性。
第二章:圆孔孔边应力集中分析A. 圆孔孔边的问题描述圆孔孔边应力集中的问题,在工程实践中是很常见的。
当受力于孔周时,应力将会集中于孔周附近,这会导致零件或结构的强度和稳定性受到影响。
因此,了解圆孔孔边应力集中的原因和特点,对于实际工程还是非常有意义的。
B. 应力场分析对于圆孔孔边应力集中,可以采用弹性力学理论来描述应力场的分布。
在已知外载荷情况和材料的力学参数的情况下,可以利用拉普拉斯方程和应力边界条件来求解圆孔孔边的应力场分布。