小学五年级下册数学奥数题
- 格式:doc
- 大小:21.50 KB
- 文档页数:3
五年级下册奥数题一、填空题(只写答案即可,每题3分)1 一个数, 减去它的20%, 再加上5, 还比原来小3。
那么, 这个数是______________。
2. 甲数比乙数小16%, 乙数比丙数大20%, 甲、乙、丙三数中, 最小的数是_________数。
3. 时钟上六点十分时, 分针和时针组成的钝角是______________度。
4. 一个真分数, 如乘以3, 分子比分母小16, 如除以, 分母比分子小2, 这真分数是________。
5. 11 只李子的重量等于2只苹果和1只桃子的重量, 2只李子和1只苹果的重量等于1只桃子的重量, 那么, 一只桃子的重量等于__________只李子的重量。
6. A、B两数的和是, A数的倍与B数的两倍的和是16, A数是______________。
7. "六一"画展所参展的画中, 14幅不是六年级的, 17幅不是五年级的, 而五、六年级共展画21幅, 那么, 其它年级参展的画是___________幅。
8. 100克15%浓度的盐水中, 放进了盐8克, 为使溶液的浓度为20%, 那么, 还得再加进水_________克。
9. 甲、乙两厂生产的产品数量相等, 甲厂产品中正品的数量是乙厂次品数的3倍, 乙厂正品的数量是甲厂次品数量的4倍, 那么, 甲、乙两厂生产的正品的数量之比是__________。
10.1000只鸽子飞进50个巢,无论怎么飞,我们都能找到含鸽子最多的巢,它里面至少有__________只鸽子。
11.试卷上有4道题,每题有3个可供选择的答案,结果对于其中任何3人都有一道题目答案互不相同。
这个班有__________人。
12.悉尼与北京时差是3小时,例如:悉尼是12:00,北京就是9:00。
某日当悉尼是9:15时,小明和小红分别乘机从悉尼和北京同时出发去对方的所在地,小明于北京时间19:33到达北京。
小明和小红所用时间之比为7:6,那么当小红到达悉尼时,当地时间是__________。
五年级下册数学奥数题及答案一、选择题1.下列数中,哪一个不能整除30? A. 5 B. 6 C. 10 D. 15答案:A2.小明买了3双袜子,每双袜子花费5元,他还剩下多少元? A. 10 B.12 C. 15 D. 18答案:C3.一个长方形的长是8cm,宽是4cm,它的面积是多少平方厘米? A.16 B. 20 C. 30 D. 32答案:D4.下列数字中,哪一个是奇数? A. 10 B. 15 C. 20 D. 24答案:B5.如果一个三角形的三条边长度分别是3cm、4cm和5cm,那么它是什么三角形? A. 等边三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形答案:B二、填空题1. 5 × 6 = ____ 答案:302.下列数字中,最小的是____ 答案:03.7 ÷ 2 = ____ 答案:3.54. 2 + 4 × 3 = ____ 答案:145.12 ÷ 3 = ____ 答案:4三、解答题1. 计算题小明在商场购买了两本数学书,每本书的价格分别是35元和20元。
他付给售货员一张50元的钞票,请问他应该找给小明多少零钱?解答:两本书的总价格:35元+ 20元= 55元小明给了售货员50元的钞票,所以需要找给小明的零钱是:50元- 55元= -5元小明应该还需要给售货员5元。
2. 推理题一辆汽车前进了200公里,然后返回原点,再往前走100公里,最后又返回原点。
请问汽车最终所在的位置与原点的位置相比,是在原点的左边还是右边?解答:汽车前进了200公里,然后返回原点,所以汽车回到了原点。
再往前走100公里,又返回原点,所以汽车依然在原点。
因此,汽车最终所在的位置与原点的位置重合,即汽车最终位置与原点相同。
四、总结本文列出了五年级下册数学奥数题及答案。
选择题包括了求除数、数字判断、图形面积、奇偶数、三角形分类等题型。
填空题涵盖了乘法、最小数、除法以及复杂的运算顺序。
五年级奥数题练习(55题)1、(1+2+8)÷(1+2+8)=2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。
如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。
3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。
那么,这列数中的第10个数是。
4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。
5、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。
参加E组的人数最少,只有4人,那么,参加B组的有人。
6、菜地里的西红柿获得丰收,摘了全部的2/5时,装满了3筐还多16千克。
摘完其余部分后,又装满6筐,则共收得西红柿千克。
7、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。
因而提前3天完成任务。
这条路全长千米。
8、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是平方厘米。
9、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。
如6=3+3,12=5+7,等。
那么自然数100可以写成种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)10、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。
那么2008号运动员比赛了场。
11、0.15÷2.1×56=12、15+115+1115+ (1111111115)13、一个自然数除以3,得余数2,用所得的商除以4.得余数3。
若用这个自然数除以6,得余数。
小学五年级下册奥数题精选1.小学五年级下册奥数题精选篇一1、一位少年短跑选手,顺风跑90米用了10秒钟。
在同样的风速下,逆风跑70米,也用了10秒钟。
问:在无风的时候,他跑100米要用多少秒?答案与解析:顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=12。
5(秒)2、李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。
事先规定。
兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解答:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。
对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹。
王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。
所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。
2.小学五年级下册奥数题精选篇二1、一个长方形的周长是24厘米,长与宽的比是2:1,这个长方形的面积是多少平方厘米?2、一个长方体棱长总和为96厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?3、小明看一本故事书,第一天看了全书的'1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是4∶3,男生有多少人?5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?参考答案:1、S=(2/3×24/2)×(1/3×24/2)=32平方厘米2、V=(3/6×96/4)×(2/6×96/4)×(1/6×96/4)=384立方厘米3、24÷(1/5-1/9)=45×6=270页4、男=4/7×42=24(人)5、32+32×3/4÷80%=62(千克)3.小学五年级下册奥数题精选篇三1、有一批苹果,如果每天吃掉其中的三分之一,需要几天才能吃完?2、一辆车以每小时60公里的速度行驶,行驶了5个小时后,还剩下240公里的路程,这辆车一共要行驶多少公里?3、小明有10元钱,他要买5个苹果和3个橙子,苹果每个1元,橙子每个2元,他还需要多少钱?4、一种药品的说明书上写着,每次服用2粒,每天服用3次,一盒药共有30粒,这盒药可以服用几天?5、甲、乙两人同时从A地出发,分别向B地和C地行驶,甲的速度是每小时40公里,乙的速度是每小时60公里,B、C两地的距离是120公里,甲、乙两人同时到达B、C两地,求他们出发的时间。
五年级奥数题及答案5篇1.五年级奥数题及答案篇一1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?答案与解析:船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求。
顺水速度:560÷20=28(千米/小时)逆水速度:24-(28-24)=20(千米/小时)返回甲码头时间:560÷20=28(小时)2、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。
现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70-45=25(分钟)即可走完一圈。
而甲行走45分钟,乙行走45分钟也能走完一圈。
所以甲行走25分钟的路程相当于乙行走45分钟的路程。
甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。
即乙走一圈的时间是126分钟。
2.五年级奥数题及答案篇二1、一副纸牌共54张,最上面的一张是红桃K。
如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。
又因为每次移动12张牌,所以至少移动108÷12=9(次)。
2、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。
提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。
(60岁)3、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。
五年级小学生奥数题3篇【篇一】五年级小学生奥数题1、有两条各长30厘米的纸条, 粘贴在一起长56厘米, 粘贴在一起的部分长()厘米。
2、一条直线能将平面分为两部分, 两条直线最多能将平面分为4部分, 那么5条直线最多能将平面划分成()部分。
3、小华参加数学竞赛, 共有10道赛题。
规定答对一题给十分, 答错一题扣五分。
小华十题全部答完, 得了85分。
小华答对了几题?4、图书室有连环画28本, 文艺书36本, 买来的故事书比连环画和文艺书的总和少50本。
图书室有故事书多少本?5、用数字0, 1, 2, 3, 4中的任意三个数相加可以得到多少个不同的和。
6、钟鼓楼的钟打点报时, 5点钟打5下需要4秒钟。
问中午12点是打12下需要多少秒钟?7、二(2)班有44个同学划船, 大船每条可以坐6人, 租金10元, 小船每条可以坐4人, 租金8元, 如果你是领队, 要使租金最少, 租多少条大船, 多少条小船, 租金多少元。
8、小青比小李大5岁, 小李比小风大2岁, 小风比小云小4岁, 他们4人(), ()最小。
的比最小的大()岁。
9、有一个卖茶叶蛋的老太太, 第一次卖去锅内茶叶蛋的一半多2个, 第二次又卖去余下的一半多2个, 锅内还有1个茶叶蛋, 这个老太太原来一共有多少个茶叶蛋?10、3个空汽水瓶可以换1瓶汽水, 小花买18瓶汽水, 可以喝到多少瓶汽水?【篇二】五年级小学生奥数题1、两组学生进行跳绳比赛, 平均每人跳152下, 甲, 组有6人, 平均每人跳140下, 乙组平均每人跳160下, 乙组有多少人?2、甲、乙、丙三人的平均年龄为22岁, 如果甲、乙的平均年龄是18岁, 乙、丙的平均年龄是25岁, 那么乙的年龄是多少岁?3、五个数排一排, 平均数是9, 如果前四个数的平均数是7, 后四个数的平均数是10, 那么, 第一个数和第五个数是多少?4、甲、乙两个码头相距144千米, 汽船从乙码头逆水行驶8小时到达甲码头, 已知汽船在静不中每小时行驶21千米。
小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。
问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。
如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。
根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。
因此所求的答案为5人。
2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。
但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。
问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。
3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。
x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。
如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。
直到两数相同为止。
问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。
行程问题(2)例1 甲列车每秒行20米,乙列车每秒行14米,若两列车齐头并进,则甲车行40秒超过乙车,若两列车齐尾并进,则甲车行30秒超过乙,求甲列车和乙,列车各长多少米?例2 在平行的轨道上两列火车齐头并进。
快车长240米,每秒行28米,慢长320米,每秒行16米。
从起头并道到快车完全超过慢车要多少时间?例3 客、货两车同时从甲、乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原速前进。
到达对方站后立即返回,两车再次相遇时客车比货车多行21,6千米。
甲、乙两站间的路程是多少千米?例4 A、B两车分别从东西两城同时相向而行,A车的速度是90千米/时,B车的速度为80千米/时,两车相遇后继续前进,分别到达东西两城后立即返回,两车又距中点60千米处再相遇。
东西两城相距多少千米?例5 甲、乙两人分别在圆周直径两端的A、B两点同时出发。
甲顺时针,乙逆时针,途中两人的速度不变。
第一次相遇地点C距B60米,第二次相遇地点D距B100米。
求这个圆一圈的长度。
[课堂练习]1. 铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。
这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。
求火车的全长。
2.两列在平行轨道上的火车齐尾并进。
快车长280米,每秒行28米,慢车长350米,每秒行21米。
从齐尾并进到快车完全超过慢车要多少时间?3.甲、乙两地相距216千米,客货两车同时从甲、乙两地相向而行。
已知客车每小时行58千米,货车每小时行50千米,到达对方出发点后立即返回两车第二次相遇时,客车比货车多行多少千米?4.海模比赛中,甲乙两船同时从池塘的东西两岸相对开出。
第一次在距东岸15米处相遇。
相遇后维续前进,到达对岸后立即返回,第二次相遇在离西岸8米处。
如果两路在行驶中速度不变,求池塘东西两岸的距离。
1.快车每秒行18米,慢车每秒行10米。
五年级下册数学最难的奥数题1、一个筐子放进4篮苹果后,连筐共重28千克,当倒出3篮苹果后再称,连筐共重10千克,一个筐子重(4)千克2、一块正方形菜地,边长是12米。
如果要把它的面积扩大到原来的2倍,其中一条边增加4米,另一条边增长多少米?(写出过程)3、学校卖3把椅子和4张桌子共用元,未知卖2张桌子的钱可以卖5把椅子,一把椅子多少元?一张桌子多少元?(写下过程)4.一条路长米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?5、12棵柳树排列成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?6、一根厘米长的木条,要锯成10厘米长的小段,需要锯几次?7、.蚂蚁爬到树枝,每上时一节须要10秒钟,从第一节爬到至第13节须要多少分钟?8.在花圃的周围方式菊花,每隔1米放1盆花。
花圃周围共20米长。
需放多少盆菊花?9、从发电厂至闹市区一共存有根电线杆,每相连两根电线杆之间就是30米。
从发电厂至闹市区存有多离?10、.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。
他这个月收入多少元?11.一个人沿着小骗走了全长的一半后,又跑了剩的一半,还剩1千米,问:小加全长多少千米?12.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。
问:这批零件有多少个?13.一条毛毛虫由幼虫短至成虫,每天短一倍,16天能长至16厘米。
反问它几天可以短至4厘米?14.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出千克,桶中还剩下80千克。
桶里原来有水多少千克?15、甲、乙两书架共计图书本,甲书架的图书数比乙书架的3倍太少16本。
甲、乙两书架上各存有图书多少本?16、甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?17.小明、小华捉住完鱼。
五年级下册奥数题:
1.小明和小华在一个400米的环形跑道上练习跑步,两人同时从同一点出发,
同向而行,小明每秒跑3.5米,小华每秒跑5.5米。
经过多少秒,两人第三次相遇?
2.一辆公共汽车由起点站到终点站(这两站在内)共途经8个车站,已知前6
个车站共上车100人,除终点站外前面各站共下车80人,则从前六站上车而在终点站下车的乘客共有多少人。
3.在1997后面补上三个数字,组成一个七位数1997□□□,如果这七位数能
被4、5、6整除,那么补上的三个数字的和的最小可能值是多少?
4.已知两个数的最大公约数是4,最小公倍数是252,其中一个数是28,另一
个数是多少?
5.定义新运算a△b=ab-(a+b),则(4△3)+(3△4)=多少。
五年级下册数奥试题
姓名班级得分
用简便方法计算下面各题。
20.36-7.98-5.02-4.36 117.8÷2.3-4.88÷023
9.56×4.18-7.34×4.18-0.26×4.18
1、有123名小朋友,把他们分成12人一组或7人一组,恰好分完,而无剩余。
又知总的组数在15组左右。
那么,12人的多少组?7人的有多少组?
2、张妮5次考试的平均成绩是88.5分,每次考试的满分是100分,为了使平均成绩尽快达到92分以上,那么张妮要再考多少次满分?
3、父亲与三个儿子年龄和是108岁,若再过6年,父亲的年龄正好等于三个儿子年龄的和。
问父亲现年多少岁?
4、加工一批零件,原计划每天加工80个,正好按期完成任务。
由于改进了生产技术,实际每天加工了100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。
他们实际加工零件多少个?
5、一个水池能装8吨水,水池里装有一个进水管和一个出水管,两管齐开,20分钟能把一池水放完。
已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?
6、将一根电线截成15段。
一部分每段长8米,另一部分每段长5米。
长8米的总长度比长5米的总长度多3米。
这根铁丝全长多少米?
7、把一条大鱼分成鱼头、鱼身、鱼尾三部分,鱼尾重4千克,鱼头的重量等于鱼尾
的重量加鱼身一半的重量,而鱼身的重量等于鱼头的重量加上鱼尾的重量。
这条大鱼重多少千克?
8、体育室买回5个足球和4个篮球需要付287元,买2个足球和3个篮球需要付154元。
那么买一个足球、一个篮球各付多少元?
9、有5元的和10元的人民币共14张,共100元。
问5元币和10元币各多少张?
10、某人从A村翻过山顶到B村,共行30.5千米,用了7小时,他上山每小时行4千米,下山每小时行5千米。
如果上下山速度不变,从B村沿原路返回A村,要用多少时间?
11、甲、乙两人同时从A、B两地相向而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。
甲离出发点62.4千米处与乙相遇。
AB两地相距多少千米?
12、乌龟与兔子赛跑,兔子每分钟跑35千米,乌龟每分钟爬10米,途中兔子睡了一觉,醒来时发现乌龟已经在自己前50米。
问兔子还需要多少长时间才能追上乌龟?
13、在一个600米长的环形跑道上,兄妹两人同时在同一起点都按顺时针方向跑步,每隔12分钟相遇一次。
若两人速度不变,还是在原出发点同时出发,哥哥改为按逆时针方向跑,则每隔4分钟相遇一次。
两人跑一圈各要几分钟?
14、静水中,甲乙两船的速度分别是每小时20千米和16千米,两船先后自某港顺水开出,乙比甲早出发2小时,若水速是每小时行4千米,甲开出后几小时追上乙?
15、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的遂道需要30秒,这列火车的速度和本身长各是多少?
16、一个书架分上、下两层,上层的书的本数是下层的4倍。
从下层拿5本放入上层后,上层的本数正好是下层的5倍。
原来下层有几本书?
17、有1800千克的货物,分装在甲、乙、丙三辆车上。
已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200千克。
甲、乙、丙三辆车各装货物多少千克?
本文由作者精心整理,校对难免有瑕疵之处,欢迎批评指正,如有需要,请关注下载。