苏科版初二数学上册一对一辅导第九周
- 格式:doc
- 大小:146.77 KB
- 文档页数:4
苏科版八年级上册数学同步练习答案
合理安排时间做八年级数学同步练习,就等于节约时间。
以下是店铺为大家整理的苏科版八年级上册数学同步练习答案,希望你们喜欢。
苏科版八年级上册数学同步练习答案(一)
全等图形
1、能完全重合
2、
(1)(2)(3)
××√
3、②与⑨、③与⑩、⑥与⑧是全等图形
4、略
5、D
6、A
7、①与⑩、②与⑩、③与⑥、④与⑦、⑤与⑧、⑨与⑥是全等图形
8、略
苏科版八年级上册数学同步练习答案(二)
全等三角形
1、相等,相等
2、DE,DF,∠EFD,∠ABC
3、74°,68°
4、C
5、C
6、∠CDE=55°
7、∠F=35°,DH=6
8、70°,3
9、2,1.5,48,25
10、C
11、B
12、BD=CE,∠ADB=∠AEC,∠BAD=∠CAE
13、(1) EF⊥AB.可以先说明∠ECF=∠ACB= 90°,设EF的延长线交AB于点D,
再说明∠B与∠E互余,所以∠EDB=90°.
(2)沿AO所在直线翻折,可以使△ABC与△ADE重合
苏科版八年级上册数学同步练习答案(三)
轴对称与轴对称图形
1、答案不唯一,口、吕、品等
2、D、E、H等
3、B
4、B
5、略
6、略
8、C
9、C
10、A
11、①③④是轴对称图形,画图略
12、36,126。
初中数学试卷马鸣风萧萧八年级数学周周练9 2016.10.27一、选择题1、下列图形中,不是轴对称图形的是( )2、 如图所示,AB =AC ,要说明△ADC ≌△AEB ,需添加的条件不能是( ) A .∠B =∠C B .AD =AE C .DC =BE D .∠ADC =∠AEB3、下列式子中无意义的是( ) A.3-- B. 3-- C. 2(3)-- D. 2(3)---4、下列说法中正确的是( )A . 9的立方根是3B .算术平方根等于它本身的数一定是1C .-2是4的平方根D .16的算术平方根是4 5、在3125,0,52.3,3,311,414.1,2,25 π- 中,无理数有……………( ) A .1个 B .2个 C .3个 D .4个 6、到三角形三边的距离都相等的点是这个三角形的 ( ) A .三条角平分线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条中线的交点7、如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连接BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( ) A .4个 B .3个 C .2个 D .1个 8、下列说法中,正确的是 ( )A .近似数3.20和近似数3.2的精确度一样B .近似数31020.3⨯和近似数3102.3⨯的精确度一样C .近似数2千万和近似数2000万的精确度一样D .近似数32.0和近似数3.2的精确度一样9、如图,△ABC 的三边AB ,BC ,CA 的长分别为20,30,40,O 是△ABC 三条角平分线的交点,则S △ABO ∶S △BCO ∶S △CAO 等于( )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶5(第2题) (第7题) (第9题) (第10题)10、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD =BE ;②PQ ∥AE ;③AP =BQ ;④DE =DP ; ⑤∠AOB =60°.其中正确的结论的个数是( ) A .2个 B .3个 C .4个 D .5个 二、填空题11、25的算术平方根为________ ;(-2)3的立方根是____________。
姓名1、下列各式从左到右的变形不正确的是( ) A.y y 3232-=- B xy x y 66=-- C.y x y x 4343-=- D.y x y x 3535-=-- 2、下列各式中,正确的是:A .22b b a a =B .22a b a b a b+=++ C .22y y x y x y =++ D .11x y x y =--+- 3、当a 为任何实数时,下列分式中一定有意义的一个是( ) A.21a a + B.11+a C.112++a a D.112++a a 4、(2012贵州省毕节市)分式方程1412112-=+--x x x 的解是( ) A.0=x B.1-=x C.1±=x D.无解5、若分式方程231x x -=1m x -有增根,则m 的值为( ) A .1 B .-1 C .3 D .-36、、已知621153222-+-=-++x x x x B x A ,则A 、B 的值分别是( ) A. A=5,B=﹣11 B. A=3,B=﹣1 C. A=﹣1,B=3 D. A=﹣5,B=117、(2012四川内江)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依题意列方程正确的是( )A .30x =4015x - B .3015x -=40x C .30x =4015x + D .3015x +=40x 8、为了绿化荒山,某村计划在荒山上种植1200棵树,原计划每天种x 棵,由于邻村的支援,每天比原计划多种了40棵,结果提前5天完成任务,则可以列出方程为( )A .401200+x -x 1200=5B .x 1200- 401200+x =5C .401200-x -x 1200 =5D .x 1200-401200-x =5 9已知关于x 的不等式组⎩⎨⎧≥01,25>---a x x 无解,则a 的取值范围是________. 10、若 a 2=b 3 ,则b b a +的值为 ; 若234z y x ==,则=+-xz y x 3_ ; 11、已知:m-m 1=3,则m 2+21m= , m+m 1= 。
1、如果分式232yx中,x,y 的值都变为原来的一半,则分式的值( ) A 、不变 B 、扩大2倍 C 、缩小2倍 D 、以上都不对2、 一件工作,甲独做x 小时完成,乙独做y 小时完成,那么甲、乙合做全部工作需( )A 、y x +1 B 、y x 11+ C 、y x +1 D 、yx xy+ 3、若方程0414=----xxx m 有增根,则m 的值是( )A 、-2B 、2C 、3D 、-3 4、已知反比例函数的图象经过点(21)P -,,则这个函数的图象位于( ) A .第一、三象限 B .第二、三象限 C .第二、四象限 D .第三、四象限 5、(2012江苏无锡)若双曲线ky=x与直线y=2x+1的一个交点的横坐标为﹣1,则k 的值为( ) A . ﹣1 B . 1 C . ﹣2 D . 2 62,则它的长y (cm)与宽(cm )之间的函数关系用图象表示为( )7、已知()111,P x y 、()222,P x y 、()333,P x y 是反比例函数y x=的图象上的三点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是( )(A )321y y y << (B )123y y y << (C )213y y y << (D )231y y y << 8、下列四个函数:5y x =、3y x=-(x>0)、y =-x +4、1y x =(x<0)中, y 随x 的增大而减小的函数有( ) (A )1个 (B )2个 (C )3个 (D )4个 9、(2012江苏南通)已知点A(-1,y 1)、B(2,y 2)都在双曲线y = 3+2mx上,且y 1>y 2,则m 的取值范围是( )A .m <0B .m >0C .m >- 3 2D .m <- 3210、(2012荆门)如图,点A 是反比例函数y =2x (x >0)的图象上任意一点,AB ∥x 轴交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D 在x 轴上,则S □ABCD 为( ) A .2 B .3 C .4 D .511、反比例函数y =xk(k ≠0)的图象经过点(2,5),若点(1,n )在图象上,则n= . 12、已知y 与x 成反比例,当5=x 时1-=y ,那么当3=y 时=x13、直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为 .14、表1给出了正比例函数y 1=kx 的图象上部分点的坐标,表2给出了反比例函数y 2=mx的图象上部分点的坐标.则当y 1=y 2时,x 的值为 .15、函数1(0)y x x =≥ , xy 92=(0)x >的图象如图所示,则结论: ① 两函数图象的交点A 的坐标为(3 ,3 ) ② 当3x >时,21y y > ③ 当 1x =时, BC = 8 ④当 x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是 .第13题 第16题 16、如图,直线y =k 1x +b 与双曲线2k y=x交于A 、B 两点,其横坐标分别为1和5,则不等式 k 1x <2k x-b 的解集是 . 17、已知x =2013,y =2012,求x yx y 4x 5y x xy4x 5y xy 2x 2222-+-+÷-++的值.18、先化简,再计算:⎪⎭⎫⎝⎛--+÷--25223x x x x ,其中x =-4;19、我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修,维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点,已知抢修车的速度是摩托车速度的1.5倍,求两车的速度.20、绿化率是指建设用地面积内的绿地面积与建设用地面积之比.某小区原计划建设用地面积为10 000平x 0.5 1 2 4y 2 -4 -2 -1 -0.5 x 0 1 2 3y 1 0 -2 -4 -6O x yl 1l 2-13(第12题图)y y 1=x y 2=9xx第15题图 第10题图 A D C By x O 2y x = 3y x =-方米,绿化率为15%,不符合“新建小区绿化率不得低于20%”的规定.为达到绿化率为20%的目标,现决定增加建设用地面积,并且增加的建设用地全部用于建设绿地.问增加的建设用地面积是多少?21、设矩形的面积是12 cm 2,相邻两边的长分别为x cm ,y cm. (1) 写出y 与x 的函数关系式; (2) 根据函数关系式填写下表;(3) 在所给的直角坐标系中,画出这个函数的图象.并根据函数图象,当x >2时,求y 的取值范围.x (cm )1 2 3 4 y (cm )22、(2012湖北襄阳)如图,直线y =k 1x +b 与双曲线y =2kx相交于A (1,2),B (m ,-1)两点.(1)求直线和双曲线的解析式; (2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式;(3)观察图象,请直接写出不等式k 1x +b >2kx的解集.23、时代超市规定:凡一次购买大米180kg 以上可以按原价打折出售,购买180kg (包括180kg )以下只能按原价出售。
(暑假预习)江苏省盐城市盐都县八年级数学上册第9讲角平分线的重要性质课后练习(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((暑假预习)江苏省盐城市盐都县八年级数学上册第9讲角平分线的重要性质课后练习(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(暑假预习)江苏省盐城市盐都县八年级数学上册第9讲角平分线的重要性质课后练习(新版)苏科版的全部内容。
第9讲 角平分线的重要性质题一: 如图,已知点D 是∠ABC 的平分线上一点,点P 在BD 上,PA ⊥AB ,PC ⊥BC ,垂足分别为A ,C .下列结论错误的是( )A .AD =CPB .△ABP ≌△CBPC .△ABD ≌△CBD D .∠ADB =∠CDB题二: 如图所示,△ABC 中,AB =AC ,AD 是∠A 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,下面给出四个结论,其中正确的结论有( )①AD 平分∠EDF ; ②AE =AF ; ③AD 上的点到B 、C 两点的距离相等④到AE 、AF 距离相等的点,到DE 、DF 的距离也相等A 、1个B 、2个C 、3个D 、4个题三: 已知:AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,BD =CD ,求证:∠B =∠C .D BCE F ABC D P A F E题四:已知:如图CD⊥AB于D,BE⊥AC于E,且CD、BE相交于O点.求证:当∠∠1=∠∠2时,OB=OC;题五:已知:如图∠∠1=∠∠2,BC⊥AC于C,BD⊥AD于D,连结CD交AB于E.求证:AB垂直平分CD.题六:如图(1),已知:在四边形ABCD中,AD=CD,BD平分∠ABC.求证:∠BAD+∠BCD=180°.题七:在四边形ABCD中,对角线AC平分∠DAB,∠DAB=120°,∠B=∠D=90°,求证:AB+AD=AC.题八:已知如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且AE=12(AB+AD),求证:∠B与∠D互补.第9讲角平分线的重要性质题一:A.解析:通过角平分线上的性质的运用推得△ABP≌△CBP,△ABD≌△CBD,∠ADB=∠CDB三项成立,A项不成立,能推出AD=DC,也能推得AP=PC.题二:D.解析:①②③④都正确.题三:因为AD是△ABC的角平分线,DE⊥AB,DF⊥AC,所以DE=DF,在Rt△DEB与Rt△DFC 中,BD=CD,DE=DF,所以Rt△DEB≌Rt△DFC(HL),所以∠B=∠C.解析:根据角平分线性质可得:DE=DF.再说明Rt△DEB≌Rt△DFC可得∠B=∠C.题四:(1)∵∠∠1=∠∠2,OE⊥AC,OD⊥AB∴OE=OD(角平分线上的点到角两边距离相等)在△OEC与△ODB中∴△OEC≌△ODB(ASA)∴OB=OC解析:要证OB=OC,只须证Rt△CEO与Rt△BDO全等,由对顶角相等与∠1=∠∠2的条件,即可得证.利用角平分性质定理或判定定理时,一定要注意垂直的条件.题五: ∵∠∠1=∠∠2,BC⊥AC,BD⊥AD∴BC=BD(角平分线上的点,到这个角的两边的距离相等)∵∠∠1+∠∠3=∠∠2+∠∠4=90°,∴∠∠3=∠∠4(等角的余角相等).在△CBE与△DBE中∴△CBE ≌△DBE (SAS )∴CE =DE ,∠∠CEB =∠∠DEB ,∵C ,E ,D 三点在同一直线上,∴AB ⊥CD 于E ,∴AB 垂直平分CD解析:要证的结论“垂直平分”,实际是(1)AB ⊥CD ,(2)CE =ED ,把角相等和垂直两个条件写出后,再使用角平分线性质定理,得BC =BD ,利用△CBE 与△DBE 全等得证.用了角平分线性质定理,可代替用全等三角形得到的结论,简化证明过程。
1、如果分式232y x中,x,y 的值都变为原来的一半,则分式的值( ) A 、不变 B 、扩大2倍 C 、缩小2倍 D 、以上都不对2、 一件工作,甲独做x 小时完成,乙独做y 小时完成,那么甲、乙合做全部工作需( )A 、y x +1 B 、y x 11+ C 、y x +1 D 、yx xy+ 3、若方程0414=----xxx m 有增根,则m 的值是( )A 、-2B 、2C 、3D 、-3 4、已知反比例函数的图象经过点(21)P -,,则这个函数的图象位于( ) A .第一、三象限 B .第二、三象限 C .第二、四象限 D .第三、四象限 5、(2012江苏无锡)若双曲线ky=x与直线y=2x+1的一个交点的横坐标为﹣1,则k 的值为( ) A . ﹣1 B . 1 C . ﹣2 D . 2 6、若矩形的面积为6cm 2,则它的长y (cm)与宽(cm )之间的函数关系用图象表示为( )A B C D7、已知()111,P x y 、()222,P x y 、()333,P x y 是反比例函数2y x=的图象上的三点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是( )(A )321y y y << (B )123y y y << (C )213y y y << (D )231y y y << 8、下列四个函数:5y x =、3y x=-(x>0)、y =-x +4、1y x =(x<0)中, y 随x 的增大而减小的函数有( ) (A )1个 (B )2个 (C )3个 (D )4个 9、(2012江苏南通)已知点A(-1,y 1)、B(2,y 2)都在双曲线y = 3+2mx上,且y 1>y 2,则m 的取值范围是( )A .m <0B .m >0C .m >- 3 2D .m <- 3210、(2012荆门)如图,点A 是反比例函数y =2x (x >0)的图象上任意一点,AB ∥x 轴交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D 在x 轴上,则S □ABCD 为( ) A .2 B .3 C .4 D .511、反比例函数y =xk(k ≠0)的图象经过点(2,5),若点(1,n )在图象上,则n= . 12、已知y 与x 成反比例,当5=x 时1-=y ,那么当3=y 时=x13、直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为 .O x O x O x O x14、表1给出了正比例函数y 1=kx 的图象上部分点的坐标,表2给出了反比例函数y 2=mx的图象上部分点的坐标.则当y 1=y 2时,x 的值为 .15、函数1(0)y x x =≥ , xy 92=(0)x >的图象如图所示,则结论: ① 两函数图象的交点A 的坐标为(3 ,3 ) ② 当3x >时,21y y > ③ 当 1x =时, BC = 8 ④当 x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是 .第13题 第16题 16、如图,直线y =k 1x +b 与双曲线2k y=x交于A 、B两点,其横坐标分别为1和5,则不等式 k 1x <2k x-b 的解集是 . 17、已知x =2013,y =2012,求x yx y 4x 5y x xy4x 5y xy 2x 2222-+-+÷-++的值.18、先化简,再计算:⎪⎭⎫⎝⎛--+÷--25223x x x x ,其中x =-4;19、我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修,维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点,已知抢修车的速度是摩托车速度的1.5倍,求两车的速度.20、绿化率是指建设用地面积内的绿地面积与建设用地面积之比.某小区原计划建设用地面积为10 000平x 0.5 1 2 4y 2 -4 -2 -1 -0.5 x 0 1 2 3y 1 0 -2 -4 -6O xyl 1l 2-13(第12题图)y y 1=x y 2=9x x第15题图 第10题图ADC B yxO 2y x= 3y x=-方米,绿化率为15%,不符合“新建小区绿化率不得低于20%”的规定.为达到绿化率为20%的目标,现决定增加建设用地面积,并且增加的建设用地全部用于建设绿地.问增加的建设用地面积是多少?21、设矩形的面积是12 cm 2,相邻两边的长分别为x cm ,y cm. (1) 写出y 与x 的函数关系式; (2) 根据函数关系式填写下表;(3) 在所给的直角坐标系中,画出这个函数的图象.并根据函数图象,当x >2时,求y 的取值范围.x (cm )1 2 3 4 y (cm )22、(2012湖北襄阳)如图,直线y =k 1x +b 与双曲线y =2kx相交于A (1,2),B (m ,-1)两点.(1)求直线和双曲线的解析式; (2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式;(3)观察图象,请直接写出不等式k 1x +b >2kx的解集.23、时代超市规定:凡一次购买大米180kg 以上可以按原价打折出售,购买180kg (包括180kg )以下只能按原价出售。
m n C AB F E O DC A B 第16题图初中数学试卷 桑水出品宜兴外国语学校2015-2016学年初二数学第九周周测试卷班级 姓名 成绩1.下列四个图案中,轴对称图形的个数是( )A .1B .2C .3D .42.等腰三角形的两边长分别为4cm 和9cm ,则它的周长为( )A .17cmB .22cmC .17cm 或22cmD .17cm 或26cm3、2的平方根是 ( )A . 2 B.± 2 C.— 2 D.±24、直角三角形两条直角边的长分别为8和6,则斜边长为 ( )A .28B . 4.8C . 20D . 105、小亮在镜中看到身后墙上的时钟如下,则实际时间最接近8:00的是 ( )6、如图所示,m ∥n ,点B ,C 是直线n 上两点,点A 是直线m 上一点,在直线m 上另找一点D ,使得以点D ,B ,C 为顶点的三角形和△ABC 全等,这样的点D ( ).A .不存在B 有1个C 。
有3个D 。
有无数个第6题图 第7题图 14 第15题图 第16题图7、如图,四边形ABCD 中,∠C=ο50,∠B=∠D=ο90,E ,F 分别是BC ,DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为 A .ο50 B .ο60 C .ο70 D .ο80 ( ).8、在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是A 、1<AB <9 B 、4<AB <24C 、5<AB <19D 、9<AB <19 ( )9.已知正数x 的两个平方根是3m +和215m -,则x = ;10. 已知腰为25的等腰三角形底边上的高为24,则这个等腰三角形的底边长为 ;11.在△ABC 中,AB =9,AC=12,BC=15,则△ABC 的中线AD= ;12.已知a 、b 为两个连续的整数,且28a b <<,则a b += .13.等腰三角形的一边长是4cm ,另一边长是9cm ,则这个等腰三角形的周长是________cm 。
理想教育辅导中心八年级一对一辅导资料
第九周等腰三角形
一、填空题
1.已知等腰三角形一个内角的度数为30°,那么它的底角的度数是_________.
2.等腰三角形的顶角的度数是底角的4倍,则它的顶角是________.
3.等腰三角形的两边长分别为3厘米和6厘米,这个三角形的周长为_________.
4.如图,在中,平分,则D点到AB的距离为________.
5.如图,在中,平分,若,则
.
6.如图,,AB的垂直平分线交AC于D,则.
7.如图,中,DE垂直平分的周长为13,那么的周长为__________.
8.如图,已知边的垂直平分线交于点,则的周长为
__________.
二、解答题
1.如图,中,,试说明:.
2.如图,求作一点P,使,并且使点P到的两边的距离相等,并说明你的理由.
3.如图,已知中,DE垂直平分AC,交C于点E,交BC于点D,的周长是20厘米,AC长为8厘米,你能判断出的周长吗?试试看.
4.已知:如图,于E,且,已知,求的度数.
5.如图,已知,AB的垂直平分线MN交AC于点D,求的度数.
6.如图,已知:在中,,,BD是的角平分线,求的度数.
7.如图,已知:在中,,,BD是的高,求的度数.
8.如图,已知:在中,D是AC上一点,且, .求:的度数.
9.如图,已知:在等边三角形ABC中,D、E分别在AB和AC上,且,BE和CD相交于点P.求:的度数.。
苏科版八年级数学上册1.1 全等图形同步强化提优训练一.选择题(30分)1. 两个三角形全等是指这两个三角形的()A. 形状、大小和位置都相同B. 形状、大小都相同,与位置没有关系C. 形状相同,与大小和位置没有关系D. 形状、大小和位置都没有关系2、下列各选项中的两个图形属于全等形的是()3、下列图形中与已知图形全等的是()A.B.C.D.4、小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是( )A.1 B.2 C.3 D.45、如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为( )A.90° B.105° C.120° D.135°第5题图第6题图第7题图6、在如图所示的图形中,全等图形有( )A. 1对B. 2对C. 3对D. 4对7.如图,△ABC≌△DEF,则此图中相等的线段有( )A.1对 B.2对C.3对 D.4对8.下列四个图形中,属于全等图形的是( )A.③和④ B.②和③ C.①和③ D.①②④第8题图第9题图9.如图,A、E、D三点在同一条直线上,且△BAE≌△ACD.若BE=2.5,CD=1,则DE的长为()A.1.3 B.1.4 C.1.5 D.无法确定10.全等三角形又叫做合同三角形.平面内的合同三角形分为真正合同三角形和镜面合同三角形.假如△ABC和△A′B′C′是全等三角形,且点A与点A′对应,点B与点B′对应,点C与点C′对应.当沿周界A﹣B﹣C﹣A及A′﹣B′﹣C′﹣A′环绕时,若运动方向相同,则称它们是真正合同三角形(如图①);若运动方向相反,则称它们是镜面合同三角形(如图②).两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中的一个翻转180度.下列各组合同三角形中,属于镜面合同三角形的是( )A. B.C.D.二.填空题(30分)11.如图所示的两个三角形全等,则∠α的度数是________.第11题图第12题图第13题图12.如图,△ABC≌△DEF,则EF的长为__________.13.如图,在△ABC中,D、E分别是AB、BC上的点.若△ADC≌△EDC≌△EDB,则∠BAC 的度数是_______.14.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2= .第14题图第15题图15.与左图所示图形全等的是 .16.如图的图案是由全等的图形拼成的其中.AD=0.5 cm,BC=1 cm,则AF= cm.第16题图第17题图17.如图,等边△ABC的边长为1 cm,D,F分别是AB,AC上的点,将△ADE沿直线DE折叠,点A落在点A'处,且点A'在△ABC外部,则阴影部分图形的周长为 cm.18、如图,在3×3的正方形网格中,∠1+∠2= 度.第18题图第19题图第20题图19、如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2= 45° .20、如图,有6幅条形方格图,每个小方格的边长都是1,那么图中由实线围成的图形属于全等图形的是________(填序号).三。
1、在平面中,下列命题为真命题的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形2、如图,在菱形ABCD中,对角线AC、BD相交于点O,E为BC的中点,则下列式子中一定成立的是()A.AC=2OE B.BC=2OE C.AD=OE D.OB=OE3、如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25 B.20 C.15 D.104、如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°(第2题)(第3题)(第4题)(第8题)5、四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种6、已知平行四边形ABCD中,∠A+∠C=200°,则∠B的度数是7、菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=8、如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为α (0︒<α<90︒)。
若∠1=110︒,则∠α= 。
9、如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为度时,两条对角线长度相等.(第9题)(第10题)(第11题)(第12题)10、如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF 时,∠AOE的大小是.11、如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于。
初二数学一对一辅导第九周
一.选择题(共4小题)
1.(2015•泰安)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()
A.4个B.3个C.2个D.1个
2.(2015•邗江区)如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=40°,则∠DEF的度数是()A.75°B.70°C.65°D.60°
3.(2015•安徽模拟)如图,已知矩形纸片ABCD,E是AB边的中点,点G为BC边上的一点,现沿EG 将纸片折叠,使点B落在纸片上的点H处,连接AH.若AB=EG,则与∠BEG相等的角的个数为()A.4 B.3 C.2 D.1
4.(2015•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,4
二.填空题(共8小题)
5.(2015春•张家港市期末)如图,已知Rt△ABC≌Rt△DEC,连结AD,若∠1=20°,则∠B的度数
是.
6.(2015秋•丹阳市校级月考)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A 运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.
7.(2014•和平区三模)如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BA的长度为.
8.(2013秋•招远市期末)如图,在△AABC中,∠ACB=90°,BC=3cm,过点C作AB的垂线,垂足为D,点E在AC上,且CE=3cm,过点E作AC的垂线交CD的延长线于点F.若EF=7cm,则AE的.9.(2013秋•东莞市校级期末)如图,AE=AF,AB=AC,∠A=60°,∠B=26°,则∠BOC=.10.(2015•宁夏)如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为.
11.(2015•高青县一模)在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是.
12.(2015•河南模拟)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F=30°,DE=1,则EF的长是.
三.解答题(共8小题)
13.(2015•孝感三模)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.
求证:(1)△ACD≌△BEC;
(2)CF⊥DE.
14.(2015•黄冈模拟)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,
AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.
15.(2015•茂名模拟)用尺轨三等分任意角是数学中的一大难题,但我们可以用“折纸法”把一个直角三等分.如图所示,
具体做法:
(1)将一矩形纸片ABCD对折,EF为折痕;
(2)继续沿过点C的直线CO对折,使点B落在EF上得到点G,则CO、
CG就把∠BCD三等分了.请你写出它的推理过程.
16.(2015春•临清市期末)如图,△ABC中,AB=AC,且AC上的中线BD把这个三角形的周长分成了12cm和6cm的两部分,求这个三角形的腰长和底边的长.
17.(2014秋•上蔡县校级期末)如图,在△ABC中,AD是∠BAC平分线,AD的垂
直平分线分别交AB、BC延长线于F、E.求证:
(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.
18.(2014秋•昌图县期末)某工厂的大门如图所示,其中四边形ABCD
是长方形,上部是以AB为直径的半圆,其中AD=2.3米,AB=2米,现有一辆装满货物的卡车,高2.5米,宽1.6米,问这辆车能否通过厂门?说明理由.
19.(2015•廊坊二模)如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE的数量关系
是;
(2)将正方形DEFG绕点D逆时针方向旋转α
(0°<α≤360°),①判断(1)中的结论是否仍然
成立?请利用图2证明你的结论;②若
BC=DE=4,当AE取最大值时,求AF的值.
20.(2011•宁波模拟)在直线l上摆放着三个正方形
(1)如图1,已知水平放置的两个正方形的边长依次是a,b斜着放置的正方形的面积S=,两个直角三角形的面积和为;(均用a,b表示)
(2)如图2,小正方形面积S1=1,斜着放置的正方形的面积S=4,求图中两个钝角三角形的面积m1和m2,并给出图中四个三角形的面积关系;
(3)图3是由五个正方形所搭成的平面图,T与S分别表示所在的三角形与正方形的面积,试写出T与S 的关系式,并利用(1)和(2)的结论说明理由.。