第1章 质点运动学(2)汇总
- 格式:ppt
- 大小:1.15 MB
- 文档页数:8
质点运动学的总结和归纳质点运动学是物理学中研究质点在空间中运动规律和性质的学科。
通过对质点在直线运动和曲线运动中的速度、加速度等物理量进行分析,可以揭示质点运动的规律和特性。
本文将对质点运动学的相关概念、公式和应用进行总结和归纳,以帮助读者更好地理解质点运动学的基本原理。
一、质点运动学的基本概念质点是指物体在运动过程中无视其自身大小和形状,只考虑其位置坐标和质量的理想化模型。
在质点运动学中,我们假设质点可以沿直线或曲线轨迹运动,通过对质点位置、速度和加速度等物理量的描述,来分析质点的运动规律。
二、质点直线运动质点在直线上的运动可以以时间为自变量,通过位移、速度和加速度等物理量来进行描述。
其中,位移表示质点从初始位置到最终位置的位移量,速度是质点在单位时间内位移的变化率,而加速度则是速度在单位时间内的变化率。
质点直线运动的关键公式有以下几个:1. 位移公式:s = s0 + vt,其中s表示位移,s0表示初始位置,v表示速度,t表示时间;2. 平均速度公式:v = Δs/Δt,其中Δs表示位移变化量,Δt表示时间变化量;3. 瞬时速度公式:v = ds/dt,其中ds表示极小位移,dt表示极小时间间隔;4. 加速度公式:a = Δv/Δt = dv/dt,其中Δv表示速度变化量,dv表示极小速度变化量。
三、质点曲线运动质点在曲线上的运动相对复杂,需要通过坐标系和向量运算进行描述。
常见的曲线运动包括匀速圆周运动和抛体运动。
1. 匀速圆周运动:质点在同心圆轨道上以恒定的速度做圆周运动。
此时,我们需要通过极坐标系来描述质点的位置,以及角速度、角加速度等物理量。
2. 抛体运动:质点在重力作用下以抛体轨迹运动,实际上是由于自由落体运动和水平匀速运动的合成。
此时,我们需要通过平面直角坐标系来描述质点的运动,并使用矢量分解和运动学公式进行计算。
四、应用举例质点运动学在日常生活和科学研究中有着广泛的应用。
以下是几个常见的应用举例:1. 射击运动:通过研究质点在飞行过程中的速度和角度等参数,可以计算出射击运动的弹道和飞行轨迹,实现精确的打靶。
大学物理知识点汇总一、质点运动学1、描述质点运动的物理量位置、速度、加速度、动量、动能、角速度、角动量2、直线运动与曲线运动的分类直线运动:加速度与速度在同一直线上;曲线运动:加速度与速度不在同一直线上。
3、速度与加速度的关系速度与加速度方向相同,物体做加速运动;速度与加速度方向相反,物体做减速运动。
二、牛顿运动定律1、牛顿第一定律:力是改变物体运动状态的原因。
2、牛顿第二定律:物体的加速度与所受合外力成正比,与物体的质量成反比。
3、牛顿第三定律:作用力与反作用力大小相等,方向相反,作用在同一条直线上。
三、动量1、动量的定义:物体的质量和速度的乘积。
2、动量的计算公式:p = mv。
3、动量守恒定律:在不受外力作用的系统中,动量守恒。
四、能量1、动能:物体由于运动而具有的能量。
表达式:1/2mv²。
2、重力势能:物体由于被举高而具有的能量。
表达式:mgh。
3、动能定理:合外力对物体做的功等于物体动能的改变量。
表达式:W = 1/2mv² - 1/2mv0²。
4、机械能守恒定律:在只有重力或弹力对物体做功的系统中,物体的动能和势能相互转化,机械能总量保持不变。
表达式:mgh + 1/2mv ² = EK0 + EKt。
五、刚体与流体1、刚体的定义:不发生形变的物体。
2、刚体的转动惯量:转动惯量是表示刚体转动时惯性大小的物理量,它与刚体的质量、形状和转动轴的位置有关。
大学物理电磁学知识点汇总一、电荷和静电场1、电荷:电荷是带电的基本粒子,有正电荷和负电荷两种,电荷守恒。
2、静电场:由静止电荷在其周围空间产生的电场,称为静电场。
3、电场强度:描述静电场中某点电场强弱的物理量,称为电场强度。
4、高斯定理:在真空中,通过任意闭合曲面的电场强度通量等于该闭合曲面内电荷的代数和除以真空介电常数。
5、静电场中的导体和电介质:导体是指电阻率为无穷大的物质,在静电场中会感应出电荷;电介质是指电阻率不为零的物质,在静电场中会发生极化现象。
y第一章质点运动学主要内容一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r r称为位矢位矢r xi yj =+r v v ,大小 r r ==v 运动方程()r r t =r r运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B Ar r r xi yj =-=∆+∆r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ∆是标量。
明确r∆r、r ∆、s ∆的含义(∆≠∆≠∆rr r s )2. 速度(描述物体运动快慢和方向的物理量)平均速度 x y r x y i j i j t t tu u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt∆→∆==∆r r r(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ϖϖϖϖϖϖ+=+==,2222y x v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛==ϖϖds dr dt dt=r 速度的大小称速率。
3. 加速度(是描述速度变化快慢的物理量)平均加速度va t∆=∆rr瞬时加速度(加速度) 220limt d d ra t dt dtυυ→∆===∆r r rr △ a r方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x ϖϖϖϖρϖ2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dt dv dt dv a a a y xy x ϖ二.抛体运动 运动方程矢量式为 2012r v t gt =+rrr分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt=切向加速度tdv a dt=(速率随时间变化率)法向加速度2n v a R=(速度方向随时间变化率)。