第23练 等腰三角形的证明与反证法八年级下学期数学(北师大版)(原卷版)
- 格式:doc
- 大小:128.38 KB
- 文档页数:3
课题等腰三角形的判定与反证法【学习目标】1.理解等腰三角形的判定定理,并会运用其进行简单的证明.2.了解反证法的基本证明思路,并能简单应用.【学习重点】等腰三角形的判定定理,并会运用其进行简单的证明.【学习难点】反证法的证明方法.情景导入生成问题旧知回顾:1.等腰三角形性质定理内容是什么?等腰三角形两底角相等.2.我们把性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两角所对的边也相等吗?答:还成立.如图,△ABC中,∠B=∠C.求证:AB=AC.证明:作AD⊥BC于D,由∠ADB=∠ADC=90°,∠B=∠C,AD=AD,∴△ABD≌△ACD,∴AB=AC.自学互研生成能力知识模块一等腰三角形的判定【自主探究】阅读教材P8的内容,回答下列问题:等腰三角形的判定定理内容是什么?答:有两个角相等的三角形是等腰三角形,简称“等角对等边”.范例:如图,在△ABC中,AB=AC,点D是AB上一点,过D作DE⊥BC于E,并与CA的延长线相交于点F.求证:AD=AF.证明:在△ABC中,∵AB=AC,∴∠B=∠C(等边对等角).∵DE⊥BC,∴∠DEB=∠DEC=90°,∴∠2+∠B=∠F+∠C=90°,∴∠2=∠F,∵∠1=∠2,∴∠1=∠F,∴AF=AD(等角对等边).仿例1:如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点,试判断OE和AB的位置关系,并给出证明.证明:∵AC=BD,∠BAC=∠ABD,AB=BA,∴△ABC≌△BAD(SAS),∴∠OAB=∠OBA,∴OA=OB(等角对等边),∵OE是中线,∴OE⊥AB.仿例2:如图,在△ABC中,BC=5 cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是5 cm.归纳:注意等角对等边的灵活应用,仿例2中平行线和角平分线结合是得出等腰三角形的范例.知识模块二反证法阅读教材P8的内容,回答下列问题:-9什么是反证法?有哪些重要步骤?答:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.【合作探究】1.用反证法证明“等腰三角形的底角都是锐角”.已知:在△ABC中,AB=AC,求证:∠B、∠C都是锐角.证明:假设∠B、∠C都是直角或钝角,∴∠B≥90°,∠C≥90°,∴∠B+∠C≥90°+90°=180°,∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾,∴假设不成立,原命题的结论正确,即∠B、∠C都是锐角.2.用反证法证明一个三角形中不能有两个直角的第一步是假设这个三角形中有两个角是直角.3.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.归纳:对直接证明有困难的命题均可用反证法证明,它有三个基本步骤:①反设;②推出矛盾;③否定反设、肯定命题成立.交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一等腰三角形的判定知识模块二反证法检测反馈达成目标见光盘.课后反思查漏补缺1.收获:_______________________________________________________2.存在困惑:___________________________________________________。
1.1 等腰三角形第3课时 等腰三角形的判定与反证法一、学习准备:1、等腰三角形的两底角 。
2、等腰三角形 、 及 互相重合。
3、等腰三角形两底角的平分线 。
4、等边三角形的三个内角都 ,并且每个内角 。
二、学习目标:1、掌握等腰三角形的判别方法。
2、结合实例体会反证法的含义。
三、学习提示:1、自主学习:看书P8完成填空:等腰三角形的 相等。
反过来,有两个角相等的三角形是 。
定理: 是等腰三角形。
简称: 。
2、合作探究:例2 已知:如图,AB=DC ,BD=CA 。
求证:△AED 是等腰三角形。
讨论:①证明一个三角形是等腰三角形,可以利用的方法是什么? ②怎样证明AE=DE ? ③怎样证明∠ADB=∠DAC? 3、自主学习P8的想一想。
小明在证明时,先假设 ,然后推导出ABC DE、基本事实、 相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法。
4、自主学习P9例3,并完成证明。
练习:P9 随堂练习四、学习小结:这节课你有哪些收获和体会? 五、夯实基础:1.在△ABC 中,AB=AC,∠B =36°,D 、E 在BC 边上,且AD 和AE 把∠BAC 三等分,则图中等腰三角形的个数( ) (A )3 (B )4 (C )5 (D )62.如图,在△ABC 中,AB=AC ,BD=BC ,AD=DE=EB ,则∠A 等于( ) (A )30° (B )36° (C )45 ° (D )54°3.等腰三角形的一个内角为70°,它的一腰上的高与底边所夹的角的度数是( )(A )35° (B )20° (C )35 °或 20°(D )无法确定4.等腰三角形的顶角等于一个底角的3倍,则顶角的度数为 ,底角的度数为5.等腰三角形三个内角与顶角的外角之和等于260°,则它的底角度数为 6.等腰△ABC 中,AB=AC ,BC=6cm ,则△ABC 的周长的取值范围是 7.已知如图,在△ABC 中,∠B =90°,AB =BC , BD =CE ,M 是AC 的中点,求证:△DEM 是等腰三角形六、能力提升:1.如图,等腰三角形ABC 中,AB =AC ,∠A =90°,BD 平分∠ABC ,DE ⊥BC 且BC =10,求△DCE 的周长。
第一章三角形的证明 1.3 等腰三角形的判定与反证法1.如图所示,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD等于( )A.3cm B.4cm C.1.5cm D.2cm2.“a<b”的反面应是( )A.a>b但a≠b B.a>b C.a=b D.a=b或a>b3.如图,AC、BD相交于点O,∠A=∠D,如果请你再补充一个条件,使得△BOC 是等腰三角形,那么你补充的条件不能是( )A.OA=OD B.AB=CD C.∠ABO=∠DCO D.∠ABC=∠DCB4. 下列能判定△ABC为等腰三角形的是( )A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C.AB=AC=2,BC=4 D.AB=3,BC=7,周长为10 5.如图,在一张长方形纸条上任意画一条截线AB,将纸条沿截线AB折叠,所得△ABC的形状一定是( )A.等边三角形 B.等腰三角形 C.全等三角形 D.直角三角形6.如图,在△ABC中,AD⊥BC于D,若添加下列条件中的一个:①BD=CD;②AD平分∠BAC;③AD=BD.其中能使△ABC成为等腰三角形的有( )A.①② B.②③ C.①③ D.①②③7. 如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )A.6 B.7 C.8 D.98. 如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N 处与灯塔P的距离为( )A.40海里 B.60海里 C.70海里 D.80海里9.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是( )A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC10.如图,BD是△ABC的角平分线,∠ABD=36°,∠C=72°,则图中的等腰三角形有( )A.2个 B.3个 C.4个 D.5个11.如图,在一张长方形纸条上任意画一条截线AB,将纸条沿截线AB折叠,所得△ABC的形状一定是.12.如图,△ABC中,AD⊥BC于D,若添加下列条件中的一个:①BD=CD;②AD 平分∠BAC;③AD=BD.其中能使△ABC成为等腰三角形的有 .13. 在△ABC中,已知∠B=∠C,则AB=14. 如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB于点E,则图中有等腰三角形个.15. 用反证法证明命题“对顶角相等”第一步假设.16. 用反证法证明:如果AB∥CD,AB∥EF,那么CD∥EF,证明的第一步是假定CD (平行;不平行)于EF17. 如图,在△ABC中,∠B≠∠C,求证:AB≠AC,当用反证法证明时,第一步应假设AB=18. 如图,△ABC中,AB=AC,并且BD是AC边上的高,CE是AB边上的高,它们相交于点O,则图中除△ABC外一定是等腰三角形的是19. 在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个.20. 如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N.若BM+CN=9,则线段MN的长为 .12.已知△ABC中,AB=AC,求证∠B<90°.下面写出了用反证法证明过程中的四个步骤:①所以∠B+∠C+∠A>180°,这与三角形内角和定理相矛盾;②所以∠B<90°;③假设∠B≥90°;④那么由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是 (填序号).21. 某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为( )22. 已知:如图,直线a、b被c所截,∠1、∠2是同位角,且∠1≠∠2.求证:a与b不平行.证明:假设,则,这与相矛盾,所以不成立,所以a与b不平行.23. 如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.24. 在△ABC中,AB=AC,点E、F分别在AB、AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.25. 如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证∶△BDE是等腰三角形.26. 求证:角平分线和中线重合的三角形是等腰三角形.已知:在△ABC中,BD=CD,AD平分∠BAC.求证:AB=AC.27. 如图,等腰三角形ABC中,AB=AC,D是AB边上一点,E是AC延长线上一点,且BD=CE,DE交BC于F.求证:DF=EF.28. 用反证法证明:等腰三角形的底角必是锐角.已知:△ABC中,AB=AC,求证:△ABC的底角为锐角.29. 如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD 相交于点O.求证:(1)△DBC≌△ECB;(2)OB=OC.30. 如图,在等边三角形ABC中,BD平分∠ABC,延长BC到E,使CE=CD,连接DE.(1)成逸同学说:BD=DE,她说得对吗?请你说明道理;(2)小敏说:把“BD平分∠ABC”改成其他条件,也能得到同样的结论,你认为应该如何改呢?31. 如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D 不与B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC=,∠DEC=;点D从B向C运动时,∠BDA逐渐变 (填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.答案;1---10 ADCDB ADDAB11. 等腰三角形12. ①②13. AC14. 515. 对顶角不相等16. 不平行17. AC18. △OBC19. 820. ③④①②21. 24°22. a∥b ∠1=∠2 ∠1≠∠2 a∥b23. 证明:∵DE∥AC,∴∠DAC=∠EDA.∵AD平分∠BAC,∴∠DAC=∠EAD.∴∠EAD=∠EDA.∵AD⊥BD,∴∠EAD+∠B=90°,∠EDA+∠BDE=90°.∴∠B=∠BDE.∴△BDE是等腰三角形.24. 证明:∵AE=AF,AB=AC,∠EAC=∠FAB,∴△AFB≌△AEC,∴∠ABF=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠PBC=∠PCB,∴PB=PC,其余相等的线段有:BF=CE,PE=PF,BE=CF.25. 证明:∵DE∥AC,∴∠DAC=∠ADE,∵AD平分∠BAC,∴∠DAC=∠DAE,∴∠DAE=∠ADE.∵AD⊥BD,∴∠DAE+∠B=90°,∠ADE+∠BDE=90°,∴∠B=∠BDE,∴△BDE 是等腰三角形.26. 证明:延长AD 到点E ,使DE =AD ,连接BE ,∵AD 是中线,∴BD=CD.在△ADC 和△EDB 中,⎩⎪⎨⎪⎧AD =ED ∠BDE=∠CDABD =CD,∴△ADC≌△EDB(SAS).∴BE =AC ,∠BED =∠CAD.∵AD 是角平分线,∴∠CAD =∠BAD.∴∠BED =∠BAD ,∴AB =BE ,∴AB =AC.∴△ABC 是等腰三角形.27. 证明:过点D 作DG∥AC 交BC 于G ,∴∠DGB=∠ACB,∠DGF=∠ECF, ∵AB=AC ,∴∠B=∠ACB,∴∠DGB=∠B,∴DG=BD =CE.在△DFG 与△EFC 中,∠DGF=∠ECF,∠DFG=∠EFC,DG =EC ,∴△DFG≌△EFC,∴DF=EF. 28. 证明:假设△ABC 的底角不为锐角,则底角为钝角或直角,∵AB =AC ,∴∠B =∠C≥90°,∴∠B +∠C≥180°,∴∠A +∠B +∠C >180°,这与三角形内角和等于180°相矛盾,∴等腰三角形的底角必是锐角. 29. 证明:(1)∵AB=AC ,∴∠ECB=∠DBC.在△DBC 与△ECB 中,⎩⎪⎨⎪⎧BD =CE ∠DBC=∠ECB BC =CB,∴△DBC≌△ECB;(2)由(1)知△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.30. 解:(1)BD =DE 是正确的.理由:∵△ABC 为等边三角形,BD 平分∠ABC ,∴∠DBC =12∠ABC =30°,∠ACB =60°.∴∠DCE =180°-∠ACB =120°.又∵CE =CD ,∴∠E =30°.∴∠DBC =∠E.∴BD =DE.(2)可改为:BD ⊥AC.理由:∵BD ⊥AC ,∴∠BDC =90°.∴∠DBC =30°.由(1)可知∠E =30°,∴∠DBC =∠E.∴BD =DE. 31. 解:(1)25°;115°;小;(2)当DC =2时,△ABD ≌△DCE.理由:∵∠C =40°,∴∠DEC +∠EDC =140°.word版初中数学又∵∠ADE=40°,∴∠ADB+∠EDC=140°.∴∠ADB=∠DEC.又∵AB=DC=2,∴△ABD≌△DCE(AAS);(3)可以,∠BDA的度数为110°或80°.理由:当∠BDA=110°时,∠ADC=70°.∵∠C=40°,∴∠DAC=180°-∠ADC-∠C=180°-70°-40°=70°.∴∠AED=180°-∠DAC-∠ADE=180°-70°-40°=70°.∴∠AED=∠DAE.∴AD=ED.∴△ADE是等腰三角形.当∠BDA=80°时,∠ADC=100°.∴∠DAC=180°-∠ADC-∠C=180°-100°-40°=40°.∴∠DAE=∠ADE.∴AE=DE.∴△ADE是等腰三角形.11 / 11。
北师大版八年级数学(下)第一章三角形的证明第3课时等腰三角形的判定与反证法例1:在三角形中已知两个内角,能判定这个三角形是等腰三角形的是()A.30°、60°B.40°、70°C.50°、60°D.100°、30°解:A、∵三角形中已知两个内角为30°、60°,∴第三个内角为180°﹣30°﹣60°=90°,∴这个三角形是直角三角形,不是等腰三角形,故选项A不符合题意;B、∵三角形中已知两个内角为40°、70°,∴第三个内角为180°﹣40°﹣70°=70°,∴这个三角形由两个内角相等,∴这个三角形是等腰三角形,故选项B符合题意;C、∵三角形中已知两个内角为50°、60°,∴第三个内角为180°﹣50°﹣60°=70°,∴这个三角形不是等腰三角形,故选项C不符合题意;D、∵三角形中已知两个内角为100°、30°,∴第三个内角为180°﹣100°﹣30°=50°,∴不是等腰三角形,故选项D不符合题意;故选:B.练习:下列给出的5个图中,能判定△ABC是等腰三角形的有()A.2个B.3个C.4个D.5个解:图①中,∵∠C=180°﹣∠A﹣∠B=180°﹣70°﹣66°=44°,∴∠A≠∠B≠∠C,∴△ABC不是等腰三角形;图②中,∵∠B+∠C=140°,∠B=70°,∴∠C=140°﹣70°=70°,∴∠B=∠C,∴△ABC是等腰三角形;图③中,∵AD∥BC,∴∠C=∠CAD=50°,∵∠B=50°,∴∠B=∠C,∴△ABC是等腰三角形;图④中,∵AD∥BC,∴∠BCA=∠CAD=30°,∠BAD=180°﹣∠B=180°﹣120°=60°,∴∠BAC=60°﹣30°=30°,∴∠BAC=∠BCA,∴△ABC是等腰三角形;图⑤中,∵AB∥DE,∴∠A=∠D=30°,∵∠BCD=∠A+∠B=60°,∴∠B=60°﹣∠A=30°,∴∠B=∠A,∴△ABC是等腰三角形;能判定△ABC是等腰三角形的有4个,故选:C.作业:1.下面叙述不可能是等腰三角形的是()A.有两个内角分别为75°,75°的三角形B.有两个内角分别为110°和40°的三角形C.有一个外角为100°,一个内角为50°的三角形D.有一个外角为140°,一个内角为100°的三角形解:A、有两个内角分别为75°,75°的三角形,另一内角为30°,可以构成等腰三角形;B、有两个内角分别为110°和40°的三角形,另一内角为30°,不能构成等腰三角形,C、有一个外角为100°,一个内角为50°的三角形,与外角相邻的内角是80°,第三个角是50°,可以构成等腰三角形;D、有一个外角为140°,一个内角为100°的三角形,与外角相邻的内角是40°,另外一个内角是40°,可以构成等腰三角形.故选:B.例2:如图,在△ABC中,AB=AC,∠BAC=108°,BD=AD=AE,则图中等腰三角形的个数为()A.3个B.4个C.5个D.6个解:∵AB=AC,∠BAC=108°,∴△ABC是等腰三角形,∠B=∠C=(180°﹣108°)=36°,∵BD=AD=AE,∴△ABD、△ADE是等腰三角形,∠DAB=∠B=36°,∠AED =∠ADE=∠B+∠DAB=72°,∴∠EAC=∠AED﹣∠C=72°﹣36°=36°,∴∠EAC=∠C,∴△ACE是等腰三角形,AE=CE,∵∠DAE=180°﹣∠ADE﹣∠AED =180°﹣72°﹣72°=36°,∴∠BAE=∠DAB+∠DAE=72°,∴∠BAE=∠AED,∴△BAE是等腰三角形,BA=BE,同理:△CAD是等腰三角形,则图中等腰三角形的个数为6个,故选:D.练习:如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,CE平分∠ACB,CE 交BD于点O,那么图中的等腰三角形个数()A.4B.6C.7D.8解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BO=CO,∴△ABC,△ABD,△ACE,△BOC是等腰三角形,∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,∴BE=BO,CO=CD,BC=BD=CE,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选:D.作业:2.如图,AD=BC,AB=AC=BD,∠C=72°,则图中一共有()个等腰三角形.A.3B.4C.5D.6解:∵AB=AC=BD,∴△ABD与△BAC是等腰三角形,在△ABD与△BAC中,,∴△ABD≌△BAC(SSS),∴∠D=∠C=72°,∴∠BAD=∠D=∠C=∠ABC=72°,∴∠∠ABD=∠BAC=36°,∴∠DAE=∠CBE=32°,∴∠AED=∠BEC=72°,∴∠D=∠AED=∠C=∠BE,∴△ADE和△BCE是等腰三角形,∵∠AED=∠BEC,∴△ADE≌△BCE(AAS),∴AE=BE,∴△ABE是等腰三角形,故选:C.例3:已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD 为等腰三角形,则∠ACD的度数为.解:如图,有三种情形:①当AC=AD时,∠ACD=70°.②当CD′=AD′时,∠ACD′=40°.③当AC=AD″时,∠ACD″=20°,故答案为70°或40°或20°练习: 若△ABC的边AB=8cm,周长为18cm,当边BC=8cm或5cm或2cm时,△ABC为等腰三角形.解:∵△ABC的边AB=8cm,周长为18cm,∴BC+AC=10cm.①当AB=BC=8cm时,AC=2cm,能构成三角形,符合题意.②当BC=AC=5cm时,能构成三角形,符合题意.③当AB=AC=8cm时,BC=2cm,能构成三角形,符合题意.综上所述,BC的长度是8cm或5cm或2cm时,△ABC为等腰三角形.故答案是:8cm或5cm或2.作业:3.在△ABC中,与∠A相邻的外角是130°,要使△ABC为等腰三角形,则∠B的度数是()A.50°B.65°C.50°或65°D.50°或65°或80°解:∠A=180°﹣130°=50°.当AB=AC时,∠B=∠C=(180°﹣50°)=65°;当BC=BA时,∠A=∠C=50°,则∠B=180°﹣50°﹣50°=80°;当CA=CB时,∠A=∠B=50°.∠B的度数为50°或65°或80°,故选:D.例4:如图,点D,E在△ABC的边BC上,BD=AD=DE=AE=CE.(1)求∠DAE的度数;(2)求证:△ABC是等腰三角形.解:(1)解:∵AD=DE=AE,∴△ADE是等边三角形,∴∠DAE=60°;(2)证明:∵△ADE是等边三角形∴∠ADE=∠AED=60°,∵BD=AD,∴∠B=∠BAD,∵∠ADE=∠B+∠BAD∴∠B=30°,同理∠C=30°,∴∠B=∠C,∴△ABC是等腰三角形.练习:在△ABC中,AB=AC,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB 交AE的延长线于F.(1)若∠BAC=120°,求∠BAD的度数.(2)求证:△ADF是等腰三角形.解:(1)解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°;(2)证明:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC即∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∴△ADF是等腰三角形.作业:4.如图,在△ABC中,∠BAC=120°,∠B=40°,边AB的垂直平分线与边AB交于点E,与边BC交于点D.(1)求∠ADC的度数;(2)求证:△ACD为等腰三角形.解:(1)∵DE垂直平分AB,∴DB=DA,∴∠B=∠DAB,∵∠B=40°,∴∠B=∠DAB=40°,∴∠ADC=∠B+∠DAB=80°;(2)∵∠DAC=∠BAC﹣∠DAB=120°﹣40°=80°=∠ADC,∴CA=CD,∴△ACD为等腰三角形.例5:证明:在一个三角形中,至少有一个内角小于或等于60度.证明:假设在一个三角形中没有一个角小于或等于60°,即都大于60°;那么,这个三角形的三个内角之和就会大于180°;这与定理“三角形的三个内角之和等于180°”相矛盾,原命题正确.练习:求证:在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交.已知:直线l1,l2,l3在同一平面内,且l1∥l2,l3与l1相交于点P.求证:l3与l2相交.作业:5.用反证法证明:一个三角形中不能有两个角是直角.已知:△ABC.求证:∠A,∠B,∠C中不能有两个角是直角.证明:假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°,则∠A+∠B+∠C=90°+90°+∠C>180°.这与三角形内角和定理矛盾,∠A=∠B=90°不成立.所以一个三角形中不能有两个角是直角.。
第3课时等腰三角形的判定及反证法【知识与技能】探索等腰三角形判定定理,掌握反证法.【过程与方法】理解等腰三角形的判定定理,并会运用其进行简单的证明.【情感态度】培养学生的逆向思维能力.【教学重点】理解等腰三角形的判定定理.【教学难点】了解反证法的基本证明思路,并能简单应用一.情景导入,初步认知问题 1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2.我们是如何证明上述定理的?【教学说明】通过问题回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进行交流.二.思考探究,获取新知1.我们把等腰三角形的性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两个角所对的边也相等吗?【归纳结论】有两个角相等的三角形是等腰三角形.(简称:等角对等边)2.小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?我们来看一位同学的想法:如图,在△ABC中,已知∠B≠∠C,此时AB与AC要么相等,要么不相等.假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B ≠∠C.“∠C=∠B”与已知条件“∠B≠∠C”相矛盾,因此AB≠AC 你能理解他的推理过程吗?再例如,我们要证明△ABC中不可能有两个直角,也可以采用这位同学的证法,假设有两个角是直角,不妨设∠A=90°,∠B=90°,可得∠A+∠B=180°,但∠A+∠B+∠C=180°, “∠A+∠B=180°”与“∠A+∠B+∠C=180°”相矛盾,因此△ABC中不可能有两个直角.引导学生思考:上面两道题的证法有什么共同的特点呢?【归纳结论】都是先假设命题的结论不成立,然后由此推导出了与已知公理或已证明过的定理相矛盾,从而证明命题的结论一定成立.这也是证明命题的一种方法,我们把它叫做反证法.【教学说明】总结这一证明方法,叙述并阐释反证法的含义,让学生了解.三.运用新知,深化理解1.已知:如图,∠CAE是△ABC的外角,AD∥BC且∠1=∠2.求证:AB=AC.证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).又∵∠1=∠2,∴∠B=∠C.∴AB=AC(等角对等边).2.如图,BD平分∠CBA,CD平分∠ACB,且MN∥BC,设AB=12,AC=18,求△AMN的周长.解:∵BD平分∠CBA,CD平分∠ACB,∴∠MBD=∠DBC,∠NCD=∠BCD.∵MN∥BC,∴∠MDB=∠DBC,∠NDC=∠BCD.∴∠MDB=∠MBD,∠NDC=∠NCD.∴MB=MD,NC=ND.∴C△AMN=AM+AN+MN=AM+AN+MD+ND=AM+AN+MB+NC=(AM+MB)+(AN+NC) =AB+AC=30.3.如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,BD = CE.求证:△ABC是等腰三角形.解:∵S△ABC =21(AB·CE)=21(AC·BD)且BD = CE,∴AB=AC.∴△ABC是等腰三角形.4.如图,在△ABC中,AB = AC,DE∥BC,求证:△ADE是等腰三角形.证明:∵AB = AC,∴∠B=∠C,∵DE∥BC,∴∠B=∠E,∠D=∠C.∴∠D=∠E.∴△ADE是等腰三角形.5.垂直于同一条直线的两条直线平行.证明:假设a、b 不平行,那么a、b 相交∵a⊥c,b⊥c∴∠1=900,∠2=900∴∠1+∠2=180°而a、b相交,则∠1+∠2≠180°与∠1+∠2=180°相矛盾.∴假设不成立.即:垂直于同一条直线的两条直线平行【教学说明】学生在独立思考的基础上再小组交流,培养学生应用知识解决问题的能力.四.师生互动,课堂小结结合本节课的学习,谈谈等腰三角形性质的判定的区别和联系.五.教学板书举例谈谈用反证法说理的基本思路.布置作业:教材“习题1.3”中第1、2、3 题.通过学生的练习,发现学生对等腰三角形的判定定理掌握的较好,而用反证法证明定理的应用掌握不够好,应在这方面多加练习讲解.。
1.1 等腰三角形第3课时等腰三角形的判定与反证法一.选择题〔共8小题〕1.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,那么图中等腰三角形共有〔〕A. 5个B. 6个C. 7个D. 8个第1题第2题第4题7.如图,坐标平面内一点A〔2,﹣1〕,O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为〔〕A. 2 B. 3 C. 4 D. 53.以下条件中不能确定是等腰三角形的是〔〕A.三条边都相等的三角形D.一条中线把面积分成相等的两局部的三角形B.有一个锐角是45°的直角三角形C.一个外角的平分线平行于三角形一边的三角形4.如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于点O,给出四个条件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四个条件中,选择两个可以判定△ABC是等腰三角形的方法有〔〕A. 2种B. 3种C. 4种D. 6种5.以下能断定△ABC为等腰三角形的是〔〕A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C. AB=AC=2,BC=4 D. AB=3,BC=7,周长为136.以下说法中:〔1〕顶角相等,并且有一腰相等的两个等腰三角形全等;〔2〕底边相等,且周长相等的两个等腰三角形全等;〔3〕腰长相等,且有一角是50°的两个等腰三角形全等;〔4〕两条直角边对应相等的两个直角三角形全等;错误的有〔〕A. 1个B.2个C. 3个D.4个7.以下各组数据,可以构成等腰三角形的是〔〕A. 1,2,1 B. 2,2,1 C. 1,3,1 D.2,2,58.:如图,以下三角形中,AB=AC,那么经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是〔〕A.①③④B.①②③④C.①②④D.①③二.填空题〔共10小题〕9.求证:一个三角形中,至少有一个内角不小于60°,用反证法证明时的假设为“三角形的_______________.10.如图,∠BAC=100°,∠B=40°,∠D=20°,AB=3,那么CD=_________第10题第11题第14题第18题11.如图,△ABC是等腰三角形,且AB=AC,BM,CM分别平分∠ABC,∠ACB,DE经过点M,且DE∥BC,那么图中有_________个等腰三角形.12.在△ABC中,与∠A相邻的外角是100°,要使△ABC是等腰三角形,那么∠B的度数是_________.13.在△ABC中,∠A=100°,当∠B=_________°时,△ABC是等腰三角形.14.如图,在△ABC中AB=AC,∠A=36°,BD平分∠ABC,那么∠1=_________度,图中有_________个等腰三角形.15.假设三角形三边长满足〔a﹣b〕〔a﹣c〕=0,那么△ABC的形状是_________.16.如果一个三角形有两个角分别为80°,50°,那么这个三角形是_________三角形.17.在平面上用18根火柴首尾相接围成等腰三角形,这样的等腰三角形一共可以围攻成_________种.18.如图,AD平分∠EAC,且AD∥BC,那么△ABC一定是_________三角形.三.解答题〔共5小题〕19.用反证法证明:等腰三角形两底角必为锐角.20.如图,在△ABC和△DCB中,AC与BD相交于点O.AB=DC,AC=BD.〔1〕求证:△ABC≌△DCB;〔2〕△OBC的形状是_________.〔直接写出结论,不需证明〕21.:如图,OA平分∠BAC,∠1=∠2.求证:△ABC是等腰三角形.22.如图,在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,给出以下四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.〔1〕上述四个条件中,哪两个可以判定△ABC是等腰三角形?〔2〕选择第〔1〕题中的一种情形为条件,试说明△ABC是等腰三角形.23.如图,△ABC中,∠A=36°,AB=AC,CD平分∠ACB,试说明△BCD是等腰三角形.答案:一、DCDCBABA二、9、三个内角都小于60°;10、3;11、5;12、80°或50°或20°;13、40度;14、72,3;15、等腰三角形;16、等腰;17、4;18、等腰三、19.证明:①设等腰三角形底角∠B,∠C都是直角,那么∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,那么∠B+∠C>180°,而∠A+∠B+∠C >180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B ,∠C 只能为锐角.故等腰三角形两底角必为锐角.20、〔1〕证明:在△ABC 和△DCB 中,∴△ABC ≌△DCB 〔SSS 〕.〔2〕解:∵△ABC ≌△DCB ,∴∠OBC=∠OCB .∴OB=OC .∴△OBC 为等腰三角形.故填等腰三角形.21、解答: 证明:作OE ⊥AB 于E ,OF ⊥AC 于F ,∵AO 平分∠BAC ,∴OE=OF 〔角平分线上的点到角两边的距离相等〕.∵∠1=∠2,∴OB=OC .∴Rt △OBE ≌Rt △OCF 〔HL 〕.∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB .∴AB=AC .∴△ABC 是等腰三角形.22.解:〔1〕①③,①④,②③和②④;〔2〕以①④为条件,理由:∵OB=OC ,∴∠OBC=∠OCB .又∵∠DBO=∠ECO ,∴∠DBO+∠OBC=∠ECO+∠OCB ,即∠ABC=∠ACB ,∴AB=AC ,∴△ABC 是等腰三角形.23.解:△ABC 中 ∵AB=AC ,∠A=36°∴∠B=∠ACB=21〔180°﹣∠A 〕=72° ∵CD 平分∠ACB∴∠DCB=21∠ACB=36° 在△DBC 中∠BDC=180°﹣∠B ﹣∠DCB=72°=∠B∴CD=CB即△BCD 是等腰三角形.第1课时 三角形的全等和等腰三角形的性质一.选择题〔共8小题〕1.如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,连接AD 、AE ,如果只添加一个条件使∠DAB=∠EAC,那么添加的条件不能为〔 〕A . BD=CEB . AD=AEC . DA=DED . BE=CD2.等腰三角形的一个角是80°,那么它顶角的度数是〔 〕A . 80°B . 80°或20°C . 80°或50°D . 20°3.实数x ,y 满足,那么以x ,y 的值为两边长的等腰三角形的周长是〔 〕A . 20或16B . 20C . 16D . 以上答案均不对5.如图,在△ABC 中,AB=AC ,∠A=40°,BD 为∠ABC 的平分线,那么∠BDC 的度数是〔 〕A . 60°B . 70°C . 75°D . 80°5.等腰三角形的两边长分别是3和5,那么该三角形的周长是〔 〕A . 8B . 9C . 10或12D . 11或136.如图,给出以下四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有〔 〕A .1组B .2组C .3组D .4组8.在等腰△ABC 中,AB=AC ,中线BD 将这个三角形的周长分为15和12两个局部, 那么这个等腰三角形的底边长为〔 〕A . 7B . 11C . 7或11D . 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,那么顶角的度数为〔 〕A . 60°B . 120°C . 60°或150°D . 60°或120°二.填空题〔共10小题〕9.等腰三角形的一个内角为80°,那么另两个角的度数是 _________ .10.如图,AB∥CD,AB=AC ,∠ABC=68°,那么∠ACD= _________ .第10题 第11题 第12题 第13题11.如图,在△ABC 中,AB=AC ,△ABC 的外角∠DAC=130°,那么∠B= _________ °.12.如图,AB∥CD,AE=AF ,CE 交AB 于点F ,∠C=110°,那么∠A=________°.13.如图,在△ABC 中,AB=AC ,BC=6,AD⊥BC 于D ,那么BD=_________ .14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,那么∠BAC=_________°.第14题第15题第16题第17题第18题15.如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,那么∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,那么∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,那么∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP,CP=CF,那么∠EPF=_________ 度.三.解答题〔共5小题〕19.:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:〔1〕△ABD≌△ACD;〔2〕BE=CE.21.如下图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE 和AB的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出以下四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.〔1〕上述四个条件中,由哪两个条件可以判定AB=AC?〔用序号写出所有的情形〕〔2〕选择〔1〕小题中的一种情形,说明AB=AC.23.〔1〕如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?〔2〕如图,假设点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜测线段DE、DB、EC之间有何数量关系?证明你的猜测.参考答案一、CBBCDCCD二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;14、69;15、30°;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∴△OBD≌△OCE〔AAS〕.∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:〔1〕∵D是BC的中点,∴BD=CD,在△A BD和△ACD中,,∴△ABD≌△ACD〔SSS〕;…〔4分〕〔2〕由〔1〕知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE 〔SAS〕,∴BE=CE〔全等三角形的对应边相等〕.〔其他正确证法同样给分〕…〔4分〕21、解:OE⊥AB.证明:在△B A C和△ABD中,,∴△BAC≌△ABD〔SAS〕.∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.答:OE⊥AB.22、〔1〕答:有①③、①④、②③、②④共4种情形.〔2〕解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:〔1〕成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.〔2〕∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠AC G,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.。
第23练等腰三角形的证明与反证法
1.下列能判定△ABC为等腰三角形的是
A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°
C.∠A=2∠B=80°D.AB=3,BC=6,周长为13
2.如图,在△ABC中,∠B≠∠C,求证:AB≠AC.当用反证法证明时,第一步应假设
A.∠B=∠C B.AB=AC
C.AB=BC D.∠A=∠B
3.如果过三角形重心的一条直线将该三角形分成两个直角三角形,则该三角形一定是A.锐角三角形B.钝角三角形
C.等腰三角形D.等边三角形
4.如图,在△ABC中,∠ABC=60°,∠C=45°,AD是BC边上的高,∠ABC的平分线BE交AD于点F,则图中共有等腰三角形
A.2个B.3个
C.4个D.5个
5.用反证法证明命题“三角形中至少有一个内角大于或等于60 ”,第一步应假设__________.
6.在△ABC中,∠A=40°,当∠B=__________时,△ABC是等腰三角形.
7.如图,AD=BC,AC=BD,求证:△EAB是等腰三角形.
8.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.
求证:△BDE是等腰三角形.
9.已知,在△ABC中,AB=8,且BC=2a+2,AC=22.
(1)求a的取值范围;
(2)若△ABC为等腰三角形,求这个三角形的周长.
10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且
△为等腰三角形,则点C的个数是
使得ABC
A.6 B.7
C.8 D.9
11.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;
(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)。