12.2 第2课时 “边角边”1
- 格式:pdf
- 大小:235.89 KB
- 文档页数:17
12一、选择题1. 如图,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2. 能判定△ABC ≌△A ′B ′C ′的条件是( )A .AB=A ′B ′,AC=A ′C ′,∠C=∠C ′B. AB=A ′B ′, ∠A=∠A ′,BC=B ′C ′C. AC=A ′C ′, ∠A=∠A ′,BC=B ′CD. AC=A ′C ′, ∠C=∠C ′,BC=B ′C3. 如图,AD=BC ,要得到△ABD 和△CDB 全等,能够添加的条件是( )A. AB ∥CDB. AD ∥BCC. ∠A=∠CD. ∠ABC=∠CDA4.如图,ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( ) A .BC=EC ,∠B=∠E B .BC=EC ,AC=DCC .BC=DC ,∠A=∠D D .AC=DC ,∠A=∠D5.如图,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对 6.在△ABC 和C B A '''∆中,∠C =C '∠,b-a=a b '-',b+a=a b '+',则这两个三角形( )A. 不一定全等B.不全等C. 全等,按照“ASA ”D. 全等,按照“SAS ”第1题 第3题图第4题图 第5题图7.如图,已知AD 是△ABC 的BC 边上的高,下列能使△ABD ≌△AC D 的条件是( )A .AB=ACB .∠BAC=90°C .BD=ACD .∠B=45°8.如图,梯形ABCD 中,AD ∥BC ,点M 是AD 的中点,且MB=MC ,若AD=4,AB=6,BC=8,则梯形ABCD 的周长为( )A .22B .24C .26D .28二、填空题9. 如图,已知BD=CD ,要按照“SAS ”判定△ABD ≌△ACD ,则还需添加的条件是 . 10. 如图,AC 与BD 相交于点O ,若AO=BO ,AC =BD ,∠DBA=30°,∠DAB=50°,则∠CBO=度.第9题图第7题图 第8题图 第10题图第11题图11.西如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥DE ,BF=CE ,请添加一个适当的条件: ,使得AC=DF. 12.如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).13.(2005•天津)如图,OA=OB ,OC=OD ,∠O=60°,∠C=25°,则 ∠BED= 度.14. 如图,若AO=DO ,只需补充 就能够按照SAS 判定△AOB ≌△DOC.15. 如图,已知△ABC ,BA=BC ,BD 平分∠ABC ,若∠C=40°,则∠ABE 为度.16.在Rt △ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则AE= cm . 40︒D C B A E17. 已知:如图,DC=EA ,EC=BA ,DC ⊥AC , BA ⊥AC ,垂足分不是C 、A ,则BE 与DE 的位置关系是 . AC E B0 CE DB A 第13题图第14题图第12题图第15题图第16题图第17题图D18. △ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范畴是.三、解答题19. 如图,点A、F、C、D在同一直线上,点B和点E分不在直线A D的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.20.已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD ⊥AD,AE=DF,AB=DC.求证:∠ACE=∠DBF.21.如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.22. 如图,AB=AC,点E、F分不是AB、AC的中点,求证:△AFB ≌△AEC.23.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并讲明理由。
人教版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!人教版初中数学和你一起共同进步学业有成!第2课时“边角边”【学习目标】1、理解三角形全等“边角边”的内容.2、会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.3、经历探索三角形全等条件的过程,体会利用操作、 归纳获得数学结论的过程.【重点】掌握一般三角形全等的判定方法SAS【难点】运用全等三角形的判定方法解决证明线段或角相等的问题一,学前准备1. 回顾判定三角形全等的方法”SSS”二,探究活动活动1:探索三角形全等的条件1、如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.2、上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?总结得出:相等的两个三角形全等(简称“边角边”或“SAS”)活动2 :(全等三角形判定的简单应用)1、如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.(提示:要证明两个三角形全等,已具有两个条件,一是AD=CB(已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)证明:2、如图,已知AB=AC,AD=AE,∠1=∠2.求证:△ABD≌ACE.(完成后小组交流展示,比比书写过程谁写得好)课堂练习1、已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2、已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:AB∥CD3、思考:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”画一画:三角形的两条边分别为4cm和3cm,长度为3cm的边所对的角为30度,画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
第2课时 “边角边”1.理解并掌握三角形全等的判定方法——“边角边”.(重点)2.能运用“边角边”判定方法解决有关问题.(重点) 3.“边角边”判定方法的探究以及适合“边角边”判定方法的条件的寻找.(难点)一、情境导入小伟作业本上画的三角形被墨迹污染了,他想画一个与原来完全一样的三角形,他该怎么办?请你帮助小伟想一个办法,并说明你的理由.想一想:要画一个三角形与小伟画的三角形全等,需要几个与边或角的大小有关的条件?只知道一个条件(一角或一边)行吗?两个条件呢?三个条件呢? 让我们一起来探索三角形全等的条件吧!二、合作探究探究点一:应用“边角边”判定两三角形全等【类型一】 利用“SAS ”判定三角形全等如图,A 、D 、F 、B 在同一直线上,AD =BF ,AE =BC ,且AE ∥BC .求证:△AEF ≌△BCD .解析:由AE ∥BC ,根据平行线的性质,可得∠A =∠B ,由AD =BF 可得AF =BD ,又AE =BC ,根据SAS ,即可证得△AEF ≌△BCD .证明:∵AE ∥BC ,∴∠A =∠B .∵AD =BF ,∴AF =BD .在△AEF 和△BCD 中,∵⎩⎪⎨⎪⎧AE =BC ,∠A =∠B ,AF =BD ,∴△AEF ≌△BCD (SAS).方法总结:判定两个三角形全等时,若有两边一角对应相等时,角必须是两边的夹角.【类型二】 “边边角”不能证明三角形全等 下列条件中,不能证明△ABC ≌△DEF 的是( )A .AB =DE ,∠B =∠E ,BC =EF B .AB =DE ,∠A =∠D ,AC =DF C .BC =EF ,∠B =∠E ,AC =DF D .BC =EF ,∠C =∠F ,AC =DF 解析:要判断能不能使△ABC ≌△DEF ,应看所给出的条件是不是两边和这两边的夹角,只有选项C 的条件不符合,故选C.方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA 时是不能判定三角形全等的.探究点二:全等三角形判定与性质的综合运用【类型一】 利用全等三角形进行证明或计算已知:如图,BC ∥EF ,BC =BE ,AB =FB ,∠1=∠2,若∠1=45°,求∠C 的度数.解析:利用已知条件易证∠ABC =∠FBE ,再根据全等三角形的判定方法可证明△ABC ≌△FBE ,由全等三角形的性质即可得到∠C =∠BEF .再根据平行,可得出∠BEF 的度数,从而可知∠C 的度数.解:∵∠1=∠2,∴∠ABC =∠FBE .在△ABC 和△FBE 中,∵⎩⎪⎨⎪⎧BC =BE ,∠ABC =∠FBE ,AB =FB ,∴△ABC ≌△FBE (SAS),∴∠C =∠BEF .又∵BC ∥EF ,∴∠C =∠BEF =∠1=45°.方法总结:全等三角形是证明线段和角相等的重要工具.【类型二】 全等三角形与其他图形的综合如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:(1)AE =CG ;(2)AE ⊥CG .解析:(1)因为已知条件中有两个正方形,所以AD =CD ,DE =DG ,它们的夹角都是∠ADG 加上直角,可得夹角相等,所以△ADE 和△CDG 全等;(2)再利用互余关系可以证明AE ⊥CG .证明:(1)∵四边形ABCD 、DEFG 都是正方形,∴AD =CD ,GD =ED .∵∠CDG =90°+∠ADG ,∠ADE =90°+∠ADG ,∴∠CDG =∠ADE .在△ADE 和△CDG 中,∵⎩⎪⎨⎪⎧AD =CD ,∠ADE =∠CDG ,DE =GD ,∴△ADE ≌△CDG (SAS),∴AE =CG ;(2)设AE 与DG 相交于M ,AE 与CG 相交于N ,在△GMN 和△DME 中,由(1)得∠CGD =∠AED ,又∵∠GMN =∠DME ,∠DEM +∠DME =90°,∴∠CGD +∠GMN =90°,∴∠GNM =90°,∴AE ⊥CG .三、板书设计边角边1.两边及其夹角分别相等的两个三角形全等.简记为“边角边”或“SAS ”.2.“边角边”判定方法可用几何语言表示为:在△ABC 和△A 1B 1C 1中,∵⎩⎪⎨⎪⎧AB =A 1B 1,∠B =∠B 1,BC =B 1C 1,∴△ABC ≌△A 1B 1C 1(SAS).3.“SSA ”不能判定两个三角形全等.本节课从操作探究入手,具有较强的操作性和直观性,有利于学生从直观上积累感性认识,从而有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.。
第2课时 “边角边”1.理解并掌握三角形全等的判定方法——“边角边”.(重点)2.能运用“边角边”判定方法解决有关问题.(重点)3.“边角边”判定方法的探究以及适合“边角边”判定方法的条件的寻找.(难点)一、情境导入小伟作业本上画的三角形被墨迹污染了,他想画一个与原来完全一样的三角形,他该怎么办?请你帮助小伟想一个办法,并说明你的理由.想一想:要画一个三角形与小伟画的三角形全等,需要几个与边或角的大小有关的条件?只知道一个条件(一角或一边)行吗?两个条件呢?三个条件呢?让我们一起来探索三角形全等的条件吧!二、合作探究探究点一:应用“边角边”判定两三角形全等【类型一】 利用“SAS ”判定三角形全等如图,A 、D 、F 、B 在同一直线上,AD =BF ,AE =BC ,且AE ∥BC .求证:△AEF ≌△BCD .解析:由AE ∥BC ,根据平行线的性质,可得∠A =∠B ,由AD =BF 可得AF =BD ,又AE =BC ,根据SAS ,即可证得△AEF ≌△BCD .证明:∵AE ∥BC ,∴∠A =∠B .∵AD =BF ,∴AF =BD .在△AEF 和△BCD 中,∵⎩⎪⎨⎪⎧AE =BC ,∠A =∠B ,AF =BD ,∴△AEF ≌△BCD (SAS).方法总结:判定两个三角形全等时,若有两边一角对应相等时,角必须是两边的夹角. 【类型二】 “边边角”不能证明三角形全等下列条件中,不能证明△ABC ≌△DEF 的是( )A .AB =DE ,∠B =∠E ,BC =EFB .AB =DE ,∠A =∠D ,AC =DFC .BC =EF ,∠B =∠E ,AC =DFD .BC =EF ,∠C =∠F ,AC =DF解析:要判断能不能使△ABC ≌△DEF ,应看所给出的条件是不是两边和这两边的夹角,只有选项C 的条件不符合,故选C.方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA 时是不能判定三角形全等的.探究点二:全等三角形判定与性质的综合运用【类型一】 利用全等三角形进行证明或计算已知:如图,BC ∥EF ,BC =BE ,AB =FB ,∠1=∠2,若∠1=45°,求∠C 的度数.解析:利用已知条件易证∠ABC =∠FBE ,再根据全等三角形的判定方法可证明△ABC ≌△FBE ,由全等三角形的性质即可得到∠C =∠BEF .再根据平行,可得出∠BEF 的度数,从而可知∠C 的度数.解:∵∠1=∠2,∴∠ABC =∠FBE .在△ABC 和△FBE 中,∵⎩⎪⎨⎪⎧BC =BE ,∠ABC =∠FBE ,AB =FB ,∴△ABC≌△FBE (SAS),∴∠C =∠BEF .又∵BC ∥EF ,∴∠C =∠BEF =∠1=45°.方法总结:全等三角形是证明线段和角相等的重要工具.【类型二】 全等三角形与其他图形的综合如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:(1)AE =CG ;(2)AE ⊥CG .解析:(1)因为已知条件中有两个正方形,所以AD =CD ,DE =DG ,它们的夹角都是∠ADG 加上直角,可得夹角相等,所以△ADE 和△CDG 全等;(2)再利用互余关系可以证明AE ⊥CG .证明:(1)∵四边形ABCD 、DEFG 都是正方形,∴AD =CD ,GD =ED .∵∠CDG =90°+∠ADG ,∠ADE =90°+∠ADG ,∴∠CDG =∠ADE .在△ADE 和△CDG 中,∵⎩⎪⎨⎪⎧AD =CD ,∠ADE =∠CDG ,DE =GD ,∴△ADE≌△CDG (SAS),∴AE =CG ;(2)设AE 与DG 相交于M ,AE 与CG 相交于N ,在△GMN 和△DME 中,由(1)得∠CGD =∠AED ,又∵∠GMN =∠DME ,∠DEM +∠DME =90°,∴∠CGD +∠GMN =90°,∴∠GNM =90°,∴AE ⊥CG .三、板书设计边角边1.两边及其夹角分别相等的两个三角形全等.简记为“边角边”或“SAS ”.2.“边角边”判定方法可用几何语言表示为:在△ABC 和△A 1B 1C 1中,∵⎩⎪⎨⎪⎧AB =A 1B 1,∠B =∠B 1,BC =B 1C 1,∴△ABC ≌△A 1B 1C 1(SAS).3.“SSA ”不能判定两个三角形全等.本节课从操作探究入手,具有较强的操作性和直观性,有利于学生从直观上积累感性认识,从而有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.。
ABED第十二章 全等三角形12.2 全等三角形的判定第2课时 “边角边”学习目标:1.掌握三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.3.能运用“S AS ”证明简单的三角形全等问题. 重点:掌握一般三角形全等的判定方法S AS.难点:运用全等三角形的判定方法解决证明线段或角相等的问题.一、要点探究探究点1:三角形全等的判定定理2--“边角边”问题:两个三角形的两边和一角分别相等有几种情形?列举说明.活动:先任意画出一个△A′B′C′,使A′B′=AB ,A′C′=AC ,∠A′=∠A ,把画好的△A′B′C′剪下,放到△ABC 上,它们全等吗?你能得出什么结论?追问1:你是如何使∠A’=∠A 的? 结合这个问题,给出画△A’B’C’的方法.追问2:回忆作图过程,这两个三角形全等是满足哪三个条件?要点归纳:相等的两个三角形全等(简称“边角边”或“SAS ”).几何语言:如图,如果DEF ABC ∆∆⇒⎪⎭⎪⎬⎫===________________________________________课堂探究教学备注配套PPT 讲授1.情景引入 (见幻灯片3-4)2.探究点1新知讲授(见幻灯片5-13)ABC典例精析例1:【教材变式】已知:如图,AB=CB,∠1= ∠2. 求证:(1) AD=CD;(2) DB 平分∠ADC.变式:已知:AD=CD,DB平分∠ADC ,求证:∠A=∠C.例2:如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?方法总结:证明线段相等或者角相等时,常常通过证明它们是全等三角形的对应边或对应角来解决.针对训练如图,点E、F在AC上,AD//BC,AD=CB,AE=CF.求证:△AFD≌△CEB.探究点2:“边边角”不能作为判定三角形全等的依据做一做:如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?画一画:画△ABC 和△DEF,使∠B =∠E =30°, AB =DE=5 cm ,AC =DF =3 cm .观察所得的两个三角形是否全等?把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?要点归纳:有两边和其中一边的对角分别相等的两个三角形_________全等.典例精析教学备注3.探究点2新知讲授(见幻灯片14-16)例2:下列条件中,不能证明△ABC ≌△DEF 的是( ) A .AB =DE ,∠B =∠E ,BC =EF B .AB =DE ,∠A =∠D ,AC =DF C .BC =EF ,∠B =∠E ,AC =DF D .BC =EF ,∠C =∠F ,AC =DF方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA 时是不能判定三角形全等的.针对训练如图,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A .AB ∥CD B .AD ∥BC C .∠A=∠C D .∠ABC=∠CDA二、课堂小结1.在下列图中找出全等三角形进行连线.2.如图,AB=DB ,BC=BE ,欲证△ABE ≌△DBC ,则需要增加的条件是 ( )A.∠A =∠DB.∠E =∠CC.∠A=∠CD.∠ABD =∠EBC全等三角形判定定理2 简称 图示符号语言有两边及夹角对应相等的两个三角形全等“边角边”或“SAS ”∴△ABC ≌△A 1B 1C 1(SAS).注意:“一角”指的是两边的夹角.当堂检测教学备注配套PPT 讲授4.课堂小结5.当堂检测 (见幻灯片17-24)⎪⎩⎪⎨⎧=∠=∠=,,,11111C A AC A A B A AB Θ3.已知:如图2,AB=DB,CB=EB,∠1=∠2,求证:∠A=∠D.4.已知:如图,AB=AC,AD是△ABC的角平分线,求证:BD=CD.【变式1】已知:如图,AB=AC, BD=CD,求证:∠BAD= ∠CAD.【变式2】已知:如图,AB=AC, BD=CD,E为AD上一点,求证:BE=CE.拓展提升5.如图,已知CA=CB,AD=BD, M,N分别是CA,CB的中点,求证:DM=DN.教学备注配套PPT讲授。
、选择题如图, AB=AC ,AD=AE ,欲证△ ABD ≌△ ACE ,可补充条件 (6.在△ ABC 和 ABC 中,∠C = C ,b-a=b a ,b+a=b a ,则这两个三 角形( )121. 2. A.∠1=∠2B.∠B=∠ CC.∠ D=∠ED.∠BAE= ∠CAD能判定△ ABC ≌△ A ′ B ′ C ′的条件是 A . AB=A ′B ′ B. AB=A ′B ′C. AC=A ′ C ′ AC=A ′C ′,∠A=∠A ′, ∠A=∠A ′,∠ C=∠ C ′ BC=B ′ BC=B ′ C ′使△ABC ≌△DEC ,第不3题能图添加的一组条件是 A .BC=EC ,∠B=∠E 第4题 B .BC=EC C .BC=DC ,∠A=∠D 5.如图,在四边形 ABCD 中, 交于点 O ,则图中全等三角形共有( D .AC=DC , AB=AD ,CB=CD ,)∠ A=∠ D若连接 AC 、 BD 相D .4对D. AC=A ′C ′BC=B ′ C ) 第 5 题图AC=DCA. 不一定全等C. 全等,按照“B.不全等D. 全等,按照“ ”7.如图,已知 AD 是△ABC 的 BC 边上的高,下列能使△ ABD ≌△AC D 的条件是( )二、填空题9. 如图,已知 需添加的条件是10. 如图,AC 与 BD 相交于点 O ,若 AO=BO ,AC =BD ,∠DBA=30 °, ∠ DAB=50 °, 则∠ CBO=第 11 题图A .AB=ACB .∠ BAC=90 °C .BD=AC 8.如图,梯形ABCD 若 AD=4 ,BC=8,D . ∠B=45中, 则梯ADA .22B . 24∥BC ,点 M 是 AD 的中点,且 MB=MC , ABCD 的周长为(C .26D .28BD=CD ,要按照“ SAS ”判定△ ABD ≌△ ACD ,则还第 7 题图第 8 题图11.西如图,点B、F、C、E在同一条直线上,点A、D 在直线BE 的两侧,AB∥DE,BF=CE,请添加一个适当的条件:使得AC=DF.12.如图,已知AB 充的条件是13.(2005? 天津)AD,BAE DAC ,要使△ ABC ≌△ADE ,可补(写出一个即可).如图,OA=OB ,OC=OD,∠ O=60°,∠C=25°,第14 题图14. 如图,若AO=D D O ,只需补充OB≌△ DOC.就能够按照SAS判定△A15. 如图,已知△ ABC ,BA=BC ,BD 平分∠ ABC ,若∠C=40°,则∠ ABE 为度.16.在Rt△ABCA 中,∠ ACB=90 点E,使EC=BC,过EF⊥D则°,BC=2cm,交CD 的延CD⊥AB ,在AC 上取一长线于点F,若EF=5cm,CB E第15 题图第16 题图A第17 题图A17. 已知:如图,是C、A ,则BE 与DE 的位置关系是DC=EA,EC=BA,DC⊥AC,BDE,垂足分不C18. △ABC 中,AB=6 ,AC=2 ,AD 是BC边上的中线,则AD 的取值范畴是.三、解答题19. 如图,点A、F、C、D在同一直线上,点B和点E分不在直线A D 的两侧,且AB =DE,∠ A =∠ D,AF =DC.求证:BC∥ EF.20.已知:如图,点 A 、B、C、D 在同一条直线上,EA⊥AD ,FD⊥AD,AE=DF,AB=DC .求证:∠ ACE= ∠DBF.21.如图CE=CB,CD=CA,∠ DCA= ∠ECB,求证:DE=AB .AB=AC ,点 E 、F 分不是 AB 、AC 的中点,求证:△ AFB23.如图,一个含 45°的三角板 HBE 的两条直角边与正方形 ABCD的 两邻边重合,过 E 点作 EF ⊥AE 交∠DCE 的角平分线于 F 点,试探究线段≌△EC22. 如图,AE 数量关系,并讲明理由。