分子进化树构建方法
- 格式:ppt
- 大小:2.50 MB
- 文档页数:42
分子进化的推导与系统发育树构建研究分子进化的推导和系统发育树构建研究是现代生物学领域中一项重要的研究课题。
它通过分析生物体内的分子遗传信息,来推导物种间的进化关系,并进一步构建系统发育树。
本文将介绍分子进化的推导过程以及系统发育树的构建方法。
在分子进化的推导过程中,研究者通常会选择一段具有较高变异性的DNA、RNA或蛋白质序列作为研究对象。
这些序列在不同物种之间的差异反映了它们的进化关系。
首先,研究者需要对所选序列进行测序,并通过生物信息学方法对序列进行比对和分析。
比对可以揭示序列中的共有特征与差异,而分析则可以计算序列之间的相似性和进化距离。
为了推导物种之间的进化关系,研究者可以利用不同的进化模型进行分析,例如Jukes-Cantor模型、Kimura两参数模型和最大似然法等。
这些模型基于一系列假设和统计方法,可以估计序列的演化速率和进化关系。
通过计算进化距离矩阵,研究者可以建立物种之间的相似性网络图,并利用聚类算法将物种进行分类和分组。
系统发育树是推导物种间进化关系的重要工具。
它是一种图形化的表示方式,用树状结构展示不同物种之间的演化关系。
构建系统发育树的方法有多种,例如最简原则、最大拟然法和贝叶斯推断等。
最简原则是一种直观且简单的构建方法,它假设进化关系中的分支数目最少。
最大拟然法则基于最大似然估计原理,通过计算相似性矩阵的概率分布来确定最优的拓扑结构。
贝叶斯推断则是一种统计推断方法,它通过考虑先验概率和后验概率来推测系统发育树的结构。
在构建系统发育树的过程中,研究者还需要对结果进行评估和验证。
常用的评估指标包括支持率和置信度。
支持率可以评估进化树的可靠性,它通过重复计算获得统计学意义上的支持度。
而置信度则通过随机重抽样验证树的一致性和稳定性。
综上所述,分子进化的推导和系统发育树构建是研究生物进化关系的重要方法。
通过分析分子遗传信息和构建系统发育树,我们可以更好地了解不同物种之间的进化历程和亲缘关系。
3个基因构建进化树的方法基因是生物体内部的遗传物质,它们携带着生物体的遗传信息,并且决定了生物体的性状和特征。
在生物学研究中,通过研究基因的变化和演化关系,可以揭示生物种群之间的进化历程和亲缘关系。
构建进化树是研究基因演化的重要方法之一,它可以帮助我们了解不同物种之间的演化关系以及共同祖先的存在。
构建进化树的方法有很多种,其中比较常用的方法之一是基于DNA 或RNA序列的系统发育分析。
DNA和RNA是生物体内的核酸分子,它们携带着基因信息,并且在生物进化过程中会发生变异和演化。
通过比较不同物种之间的DNA或RNA序列差异,可以推断它们之间的亲缘关系和进化历程。
在构建进化树的方法中,一种常用的方法是基于单个基因的系统发育分析。
通过选择一个具有高变异性的基因,如线粒体DNA或核基因的特定区域,可以对不同物种之间的进化关系进行推断。
这种方法的优点是操作简单,成本低廉,但由于只考虑了单个基因的信息,可能会导致结果的不准确性。
为了提高进化树的准确性,还可以使用多个基因进行系统发育分析。
多个基因可以提供更多的信息,从而增加了结果的可靠性。
同时,使用多个基因还可以减少单个基因由于突变等原因引起的误差。
然而,选择哪些基因进行分析是一个关键问题,需要考虑基因的稳定性、变异速率以及在不同物种之间的保守性。
另一种构建进化树的方法是基于基因组数据的系统发育分析。
随着基因组测序技术的发展,我们可以获取到更多物种的基因组序列。
通过比较不同物种的基因组序列,可以揭示它们之间的进化关系。
基因组数据具有更高的分辨率和更全面的信息,可以提供更准确的进化树。
除了基于DNA或RNA序列的系统发育分析,还有其他一些方法可以用于构建进化树。
例如,可以利用蛋白质序列的相似性进行系统发育分析。
蛋白质是基因的产物,它们在不同物种之间可能存在相似性。
通过比较不同物种的蛋白质序列,可以推断它们之间的亲缘关系。
还可以利用形态学特征进行系统发育分析。
形态学特征是生物体外部的形状、结构和功能等方面的特征。
分子系统发育树构建的简易方法
分子系统发育树的构建是根据分子序列的差异来推断不同物种之间的进化关系。
下面是一个简易的分子系统发育树构建方法:
1. 选择目标基因序列:选择与所研究物种相关的基因序列(如核糖体RNA或蛋白质编码基因)作为目标序列。
2. 数据收集:收集各个相关物种的目标基因序列数据。
可以通过公共数据库(如NCBI)或研究文献中的已有数据进行获取。
3. 序列比对:使用序列比对软件将收集到的序列进行比对,找出相同和不同的碱基或氨基酸位置。
常用的比对软件有CLUSTALW和MAFFT。
4. 构建进化树:根据序列比对结果,使用进化树构建软件(如MEGA)进行系统发育树的构建。
常用的进化树构建方法包括最大简约法(UPGMA)和最大似然法(ML)。
5. 进化树评估:对构建的系统发育树进行评估,可以使用Bootstrap方法进行支持值分析,提高树的可靠性。
6. 结果解读:根据构建的系统发育树,可以解读不同物种之间的进化关系和群体间的分化程度。
需要注意的是,分子系统发育树是基于目标基因序列的进化关系推断,仅仅代表目标基因的进化历史,并不一定能完全反映
整个物种的进化历史。
因此,在研究中还需要综合考虑其他重要因素,如形态特征和生态行为等。
分子进化树的构建方法分子进化树的构建方法分类:实验探索|标签:|字号大2011-05-21 09:33:32|中小订阅分子进化树的构建方法自夕岚一瞥的博客一、引言开始动笔写这篇短文之前,我问自己,为什么要写这样的文章?写这样的文章有实际的意义吗?我希望能够解决什么样的问题?带着这样的疑惑,我随手在丁香园(DXY)上以关键字“进化分析求助”进行了搜索,居然有289篇相关的帖子(2006年9月12日)。
而以关键字“进化分析”和“进化”为关键字搜索,分别找到2,733和7,724篇相关的帖子。
考虑到有些帖子的内容与分子进化无关,这里我保守的估计,大约有3,000~4,000篇帖子的内容,是关于分子进化的。
粗略地归纳一下,我大致将提出的问题分为下述的几类:1.涉及基本概念。
例如,“分子进化与生物进化是不是一个概念”,“关于微卫星进化模型有没有什么新的进展”以及“关于Kruglyak的模型有没有改进的出现”,等等。
2.关于构建进化树的方法的选择。
例如,“用boostrap NJ 得到XX图,请问该怎样理解?能否应用于文章?用boostrap test中的ME法得到的是XXX树,请问与上个树比,哪个更好”,等等。
3.关于软件的选择。
例如,“想做一个进化树,不知道什么软件能更好的使用且可以说明问题,并且有没有说明如何做”,“拿到了16sr RNA数据,打算做一个系统进化树分析,可是原来没有做过这方面的工作啊,都要什么软件”,“请问各位高手用clustalx做出来的进化树与phylip做的有什么区别”,“请问有做过进化树分析的朋友,能不能提供一下,做树的时候参数的设置,以及代表的意思。
还有各个分支等数值的意思,说明的问题等”,等等。
4.蛋白家族的分类问题。
例如,“搜集所有的关于一个特定domain 的序列,共141条,做的进化树不知具体怎么分析”,等等。
5.新基因功能的推断。
例如,“根据一个新基因A 氨基酸序列构建的系统发生树,这个进化树能否说明这个新基因A 和B同源,属于同一基因家族”,等等。
分子进化树算法分子进化树算法是一种用于研究生物进化关系的计算方法。
通过分析DNA、RNA或蛋白质序列的差异和相似性,可以构建出生物物种的进化树。
本文将介绍分子进化树算法的原理、应用和局限性。
一、原理分子进化树算法的原理基于遗传变异和进化。
生物个体的遗传信息通过DNA、RNA或蛋白质序列传递给后代,而在这个过程中会出现突变和重组等变异事件。
这些变异事件积累起来,形成了不同物种之间的差异。
分子进化树算法通过比较不同物种之间的序列差异和相似性,来推断它们之间的进化关系。
具体而言,分子进化树算法首先收集不同物种的DNA、RNA或蛋白质序列数据,然后利用计算方法计算它们之间的差异和相似性。
常用的计算方法包括序列比对、距离计算和进化模型推断。
通过这些计算,可得到一个差异矩阵或距离矩阵,它描述了不同物种之间的关系。
接下来,算法会利用这个矩阵来构建进化树,常见的构建方法有最小进化树、最大似然法和贝叶斯推断等。
二、应用分子进化树算法在生物学研究中有着广泛的应用。
首先,它可以帮助研究者揭示不同物种之间的进化关系。
通过构建进化树,可以了解物种的亲缘关系、起源时间和地理分布等信息。
这对于研究物种的进化历史和生态演化具有重要意义。
分子进化树算法可以用于物种鉴定和系统学研究。
在分类学中,鉴定物种是一个基础性任务。
通过分析物种的分子序列,可以判断它们是否属于同一物种,进而指导分类学的研究和实践。
分子进化树算法还可以用于研究基因功能和基因家族的进化。
通过比较不同物种中的基因序列,可以推断基因的功能和进化过程。
这对于深入理解基因的演化和功能具有重要意义。
三、局限性尽管分子进化树算法在生物学研究中有广泛应用,但也存在一些局限性。
首先,算法的结果受到数据质量和选择的进化模型的影响。
如果数据质量不高或选择的进化模型不合适,可能会导致结果的不准确性。
分子进化树算法无法解决样本不完整或有限的情况。
如果物种样本有限或者存在缺失数据,算法可能无法准确地构建进化树。
利用MEGA 来构建进化树(molecular evolutionary genetics analysis 分子进化遗传分析)打开mega5,选择Align----edit/built alignment----create a new alignment—OK选择DNA/protein出现新的对话框Open------选择已经保存好的用clustalx 经过比对保存的以.aln格式的文件打开之后,出现下面的页面双击文件名可以进行修改的。
我的就是从这里开始修改把A,B,C 都去掉,只留号码就好右键菜单点击delete 删除带※的那一行。
得到下面的图示,点击保存,重新起名字。
之后点击此图内的Alignment 选择Align by clustalW即可。
默认设置即可,点击OK就进行比对了,此后会出现一个过渡对话框,显示的是两两比对和多序列比对的过程之后回到初始页面,就是这个页面之后点File---点开,把刚才保留的文件点开然后出现下面的页面多了几个内容,点击TA的那个框框。
之后出现这样的框框图片然后在主程序中选择phylogeny---construct/test neighbor-joining tree,然后出现下面的页面黄色框框处的的参数是可以改变的,该图为我已经改变好的,把Bootstrap 的值改为1000 Methods根据文献上的参考改为了Kimura2-parameter model.之后点击compute,就出现了,而且还带有必需的支持率即自展值,是用来检验你所计算的进化树分支可信度的。
简单地讲就是把序列的位点都重排,重排后的序列再用相同的办法构树,如果原来树的分枝在重排后构的树中也出现了,就给这个分枝打上一分,如果没出现就给0分,这样经过你给定的repetitions 次(至少1000次)重排构树打分后,每个分枝就都得出分值,计算机会给你换算成bootstrap值。
重排的序列有很多组合,值越小说明分枝的可信度越低,最好根据数据的情况选用不同的构树方法和模型。
分子进化学中的进化树构建方法随着科技的进步和生物技术的广泛应用,分子生物学的研究逐渐深入,成为生物学、生物技术和医药学等领域的重要研究方向。
而分子进化学作为分子生物学中的一个重要分支,研究物种间的分子差异和进化关系。
其中,构建进化树是分子进化学研究中的重要工作,下面我们来了解一下进化树构建的方法。
一、进化树的基本概念进化树是描述不同物种、不同基因或不同蛋白质之间进化关系的图形化表示。
在进化树中,每一个分支代表了一个物种、一个基因或一个蛋白质序列,分支的长度表示了物种、基因或序列的进化距离,而进化距离则是衡量不同物种或不同序列之间关系的基本参数。
而构建进化树的过程则是根据分子序列数据的重构得到物种或基因的进化树。
二、进化树的构建方法构建进化树有多种方法,主要有距离矩阵法、系统发育学法、最大似然法和贝叶斯法等。
下面我们逐一介绍这些方法的基本原理。
1.距离矩阵法距离矩阵法是最早采用的一种构建进化树的方法,它基于序列之间的距离矩阵计算和聚类方法来得到进化树。
该方法首先计算所有分子序列之间的距离(距离可由序列相似性计算得出),然后根据聚类方法构建进化树。
聚类方法包括单链接聚类、均链接聚类和最大链接聚类等。
距离矩阵法的优点是构建速度快、适用性广,但是对于高变异的序列来说,该方法可能会产生误导性的结果。
2.系统发育学法系统发育学法是基于系统学原理,采用系统发生学的理论和方法来构建进化树。
该方法主要是通过分子序列的相似性构建系统发育分析矩阵,然后利用不同的计算方法(如UPGMA、NJ和ML等)推断进化树。
系统发育学法的优点是能够更准确地反映分子序列的演化,并且可以通过不同的方法比较结果,但是该方法需要大量的计算资源和长时间的计算。
3.最大似然法最大似然法是一种统计学上的方法,通过最大化序列数据与观测数据的相似度,来推断出最可能的进化树。
该方法需要整合进化模型和数据,然后计算不同进化模型下数据的似然函数,最终选择似然度最大的进化树。
邻接法极大似然法进化树邻接法,极大似然法,进化树,这些术语可能对我们普通人来说有些陌生,但对进化生物学领域里的研究者来说,这些都是非常重要的工具和方法。
邻接法(Neighbor Joining Method)是构建进化树的一种方法,它是一种计算进化距离的方法,为了找到最短的进化距离来构建进化树。
它采用了一种自下而上的聚类方法,通过计算不同物种之间的相似度和距离,以此构建进化树。
邻接法具有构建速度快、计算简单、精度高等特点,因而在分子进化分析中得到了广泛应用。
邻接法的算法流程大致是这样的:在初始状态下,将每个物种看作是一个独特的组,每个组只有一个节点。
然后,需要确定两个最相似的组,它们会被合并成一个新的组,合并后的节点成为超级节点。
在合并过程中,需要计算每个超级节点间的不同距离,这个距离的计算涉及到多个相似度的计算,如配对差异百分比和基因重构距离等。
最终,将所有组合并成一个完整的进化树。
极大似然法(Maximum Likelihood Method)是一种通过观察数据来确定最可能的进化树的方法。
该方法基于一些假设,如分子序列进化的每个位置都是相互独立和分别经历等。
通过计算这些假设的概率分布,然后比较每个可能的树的概率大小,得到最可能的树。
这种算法可以在处理大量数据时提供精确的结果,但也需要非常高的计算性能。
它的应用比邻接法更加广泛,特别是在大规模数据集上,因为其计算效率很高,同时在分析分子进化分析领域也有较为广泛的应用。
进化树是衡量生物进化程度的一种重要方法,通过这个图形表示生命之间的关系。
从一组物种或基因组成的群体的相似性,推断出物种或基因之间的进化距离。
进化树是一个有向无环图,表示物种或基因的进化历史和基因树。
通过对进化树的研究可以帮助我们更好地了解生命的演化历程,并可以帮助我们在遗传学和生物学等领域得出正确的结论。
总之,邻接法、极大似然法、进化树是进化生物学领域中不可或缺的工具。
它们为我们提供了一种重要的方法来研究生物的演化历程,有助于我们更好地理解生命之间的相似性和关联。
3个基因构建进化树的方法进化是生物学中一个重要的概念,它描述了生物种群随时间的演化过程。
进化树是一种用来表示不同物种之间演化关系的图表,它可以帮助我们理解生物的演化历史和亲缘关系。
构建进化树的方法有很多种,其中一种常用的方法是基于基因序列的比较。
本文将介绍基于3个基因的构建进化树的方法。
基因是生物体内用来传递遗传信息的分子,它们以DNA的形式存在于细胞中。
每个物种的基因组中都有很多基因,其中一些基因在不同物种之间保持高度保守,也就是说它们的序列变化很小。
这些保守的基因可以用来构建进化树。
在构建进化树的过程中,我们需要选择适合的基因进行比较。
一般来说,选择的基因应该满足以下几个条件:首先,基因在不同物种中的序列变化应该相对较小,这样才能准确地反映物种之间的演化关系;其次,基因在不同物种中应该有足够的变异,这样才能提供足够的信息来推断进化关系;最后,基因的比较应该能够得到可靠的结果,这就要求我们选择那些已经被广泛研究和验证的基因。
在基因选择完毕后,我们需要获取各个物种的基因序列。
这可以通过DNA测序技术来实现,现代的测序技术已经非常高效和准确,可以快速得到大量的基因序列数据。
在获取到基因序列后,我们需要对这些序列进行比对和分析,以便得到物种之间的差异。
比对可以使用一些开源的软件来完成,比如BLAST和ClustalW等。
通过比对,我们可以得到物种之间基因序列的异同点,这些差异点可以用来推断进化关系。
基于比对结果,我们可以使用一些计算模型来构建进化树。
常用的计算模型有距离法、最大简约法和最大似然法等。
这些方法都是基于不同的原理来进行计算的,它们可以根据基因序列的差异程度来计算物种之间的进化距离,并将这些距离用树状图的形式展示出来。
进化树的构建过程是一个迭代的过程,通过不断调整模型参数,我们可以得到更准确的进化树。
基于3个基因的构建进化树的方法可以提高进化树的准确性。
因为多个基因的比较能够提供更多的信息,可以避免单个基因的局限性。
怎样使用MEGA建立进化树在进行生物信息学研究中,建立进化树是一项非常重要的任务。
MEGA (分子进化遗传学分析)是一款常用的软件,专门用于进行进化树和多序列分析。
下面将详细介绍如何使用MEGA建立进化树。
安装完成后,打开MEGA软件。
在MEGA的主界面上,有几个常用的功能选项,包括「File」、「Edit」、「View」、「Tools」、「Align」、「Phylogeny」和「Help」。
我们主要关注「Phylogeny」(进化树)选项。
在新窗口中,我们需要选择构建进化树的方法。
MEGA支持多种构建进化树的方法,包括Neighbor Joining、Maximum Parsimony、Maximum Likelihood和Bayesian等。
在这里,我们以Neighbor Joining方法为例进行演示。
在Neighbor Joining方法中,我们需要先选择计算进化距离的方法。
MEGA支持许多计算进化距离的方法,如P-distance、Kimura 2-parameter、Tamura 3-parameter等。
在这里,我们选择P-distance方法。
在选择了计算进化距离的方法后,我们还需要选择树的标准。
MEGA支持Bootstrap(Bootstrap方法是统计学中一种用于评估统计性信号和树的可靠性的方法)和Nearest-Neighbor Interchange等标准。
在这里,我们选择Bootstrap标准。
在选择了进化距离的方法和树的标准后,我们需要选择输入序列数据的文件格式。
MEGA支持多种格式的序列文件,如FASTA、PHYLIP和MEGA 等。
选择相应的格式后,我们需要导入序列数据。
可以通过从文件中导入或从剪贴板中粘贴来导入序列数据。
MEGA是一款非常强大的进化树分析软件,但对于初学者来说,可能需要一些时间去了解其中的各种选项和功能。
因此,建议在使用MEGA之前,先阅读相关文档和教程,以便更好地使用MEGA进行进化树的构建和分析。
生物大数据技术的进化树构建方法与工具随着现代生物学研究范式不断发展,生物大数据成为生物学研究的重要资源。
在生物大数据中,进化树构建是解决物种分类和亲缘关系的关键环节之一。
进化树提供了生物物种之间的演化关系,帮助我们理解生物多样性的起源和演化过程。
在本文中,我将介绍生物大数据技术中用于构建进化树的方法与工具。
进化树构建的方法包括距离法、最大简约法和贝叶斯法等。
距离法是一种基于物种间差异的测量方法,常用的距离指标有进化距离、遗传距离和相似性距离等。
最大简约法则基于进化过程中最简单的演化树,寻找一棵树,使得所有的观察数据与这棵树的解释最为一致。
贝叶斯法是一种基于概率统计的方法,利用贝叶斯统计推断物种之间的关系,它可以通过蒙特卡罗马尔科夫链蒙特卡罗(MCMC)方法来求解。
生物大数据技术的进化树构建方法中有许多重要的工具。
其中,最广泛使用的方法之一是分子系统学。
分子系统学利用生物大数据中的遗传序列信息来构建进化树,最常用的序列包括基因组序列和蛋白质序列。
常见的分子系统学工具有MEGA、PHYLIP、RAxML和MrBayes等。
MEGA是一个综合的分子进化分析软件,集成了多种进化模型和构建方法。
PHYLIP是最早的公开可用的构建进化树的软件包,其中包含了多种构建方法和分析工具。
RAxML是一种用于大规模物种分类研究的软件,它具有高效的计算性能和准确的模型选择。
MrBayes是一种基于贝叶斯统计学的软件,能够估计单个和多个基因的进化树。
此外,还有一些新兴的工具用于生物大数据中进化树的构建。
一种常见的方法是使用基于物种演化树的软件包,例如ASTRAL和PhyloNet。
ASTRAL利用结合物种组织树关系和基因树关系的联合推断来构建物种进化树,它能够处理物种树混淆或基因树不完整的情况。
PhyloNet是一种基于网络理论和统计学的方法,可以推断出复杂的物种进化网络,包括基因水平的基因转移和混合。
除了这些方法和工具外,还有一些改进的技术被用于生物大数据中的进化树构建。
利⽤MEGA4构建分⼦系统进化树利⽤MEGA 4构建分⼦系统进化树-图⽰
1、利⽤Clustal X软件对序列进⾏多重⽐对,保存的⽂件为aln格式。
2、利⽤MEGA 4软件将aln格式⽂件转换为meg⽂件,操作如下:
File按钮下的Convert To MEGA Format命令
点击后出现对话框,如下:
点击OK按钮,出现以下界⾯:
点击“保存”按钮,则aln⽂件成功转换为meg⽂件并保存在同⼀⽬录下。
3、关闭转换⽂件窗⼝,回到MEGA 4程序的主窗⼝,如下图:
点击“Click me to activate a data file”按钮,选择之前转换好的meg⽂件并打开,如下图:
选择所输⼊的数据类型(核酸or蛋⽩),之后点击OK即可。
此时,在MEGA4主程序窗⼝的底部出现了我们所输⼊的⽂件名(如下图),之后就可以构建分⼦系统进化树了。
4、通常选择邻接法(neighbor-joining,NJ)构建分⼦系统进化树。
分⼦进化树构建的简要步骤(以蛋⽩为例)PhyML利⽤氨基酸序列建树步骤(核酸建树也可以作为参考)前⾔:本⽂阅读对象适合建树新⼿,⽣物信息学⾼⼿请勿嘲笑,其中有什么错误还恳请指点。
为什么要建树及其你要解决什么问题这⾥不做讨论,只是⼀个纯粹的建树过程,前期的序列收集过程⾃⼰费⼼,根据⾃⼰的需要来做。
这⾥主要是最⼤似然法来建树,NJ法像mega这些软件中都有集成,最新的mega7也集成ML法,不过模型及各种参数不⼀定适合你,所以学习多种多种⽅法也是有⽤的,PhyML速度较慢,如果数列数量较多、步长检验次数多,等待时间会很长,有可能达到⼏⼗⼩时,也与电脑配置有关,⼀般时间都是以⼩时计数,所以要有⼼理准备,如果数据量⼤,推荐⽤RaxML或其他⽅法建树,它处理速度要⽐PhyML 快,不过RaxML是纯命令操作,对不熟悉命令及参数意义的⼈有⼀定难度,我只在linux 下操作过,在win下没有使⽤过。
本⽂是⽤氨基酸建树过程,如果你是⽤核酸序列建树,也可以参考这个过程,核酸替代模型请⽤jmodeltest或其他同功软件计算。
由于PhyML计算过程⽐较长,做⼀遍⽐较耗时,推荐你⽤其他软件⽤NJ法先⾏试验建树,看看你选择的序列是否有效及符合你的预期结果,调整好序列后再⽤PhyML跑⼀遍看结果是否符合⾃⼰的要求。
PhyML有线上版本,只需要提交序列⽐对结果,设置模型参数,留下邮箱等待就会给你返回结果,不过时间不可控,根据⾃⾝情况选择线上还是本地⾃⼰建树。
⽔平有限,如有错误遗漏恳请各位指点。
如果在⽂库不能下载,可以去⽹盘下载,见⽂末。
●建树过程:序列准备-模型选择-建树及树的验证。
●环境准备:电脑^-^Windows或者Linux都可以(没试过mac,如果是mac环境,请参考具体的操作⼿册)、ProtTest、PhyMl及序列⽐对的软件,线上或本地都可以。
1.序列准备:在⾃⼰熟悉的数据库中(我⾃⼰⽐较熟悉Ncbi)上做blast,选取跟要建树蛋⽩同源的各物种序列,下载到本地,整合到⼀个fasta⽂件中,注意修改物种名称,字数最好不要太长,序列⽐对后.phy格式⽂件对⽂件名长度有限制(这个可能跟软件有关系,只要⾃⼰知道是什么物种,不⾄于混淆就⾏),注意规范性,fasta⽂件中最好除了>头标,字母及下划线不要有其他不相关的字符,因为如果后⾯你要⽤软件分析.phy⽂件的时候这些软件对.phy的格式要求⽐较变态,有其他多余字符它都会报错的(你如果在dos 下⽤命令合并⽂件请注意⽂件中最后⼀⾏的字符,请删除)。
计:ˆ1 + v ˆ 2 = K 12 v ˆ1 + v ˆ3 = K 13 v ˆ2 + v ˆ3 = K 23 v 估值为 1 ( K 12 + K 13 − K 23 2 1 ˆ2 = ( K 12 + K 23 − K 13 v 2 1 ˆ3 = (K 13 + K 23 − K 12 v 2 实际序列并非具有相等的碱基频率,因而 Jukes-Cantor 距离不会使似然值最大,但它们的确为迭代法提供了很好的初始值。
Newton-Raphson 迭代法为找 -vi 到最大似然值的数值解提供了直接的方法,且从寻求 pi=1-e 的估值来看,这一方法在描述上是最为简单的。
表 5.7 给出了图 5.4 中人类(1、大猩猩(2、长臂猿(3线粒体序列收敛过程的例子。
三个序列间的平均碱基频率用作模型中的概率项πi。
ˆ1 = v 表 5.7 图 5.4 中人类、大猩猩和长臂猿线粒体序列非约束型最大似然树分枝长度的连续迭代 v2 v3 迭代 v1 初始值 0.0423 0.0174 0.2215 1 0.0420 0.0196 0.2230 2 0.0420 0.01990.2299 3 0.0420 0.0199 0.2299 标准差 0.0297 0.0218 0.0600 用几个序列作为树端来构建系统树时,可采用以上所述的一般方法。
先指定一种系统树,然后对来自该系统树似然函数的方程进行 Newton-Raphson 迭代来估计分枝长度。
在理论上,应研究所有可能的系统树来寻找具有最大似然值的系统树。
Fukami 和 Tateno(1989证实至多存在一组对于 L 给出平稳值的分枝长度,且这组分枝长度提供了所需的最大似然估计。
将这一方法应用于图 5.4 所列的 5 种线粒体序列,获得了图 5.16 所示的无根树状图。
117人类 0.015 0.030 1 0.000 黑猩猩大猩猩 0.000 0.051 0.045 2 3 0.138 猩猩长臂猿图 5.16 利用 Felsenstein 的 PHYLIP 软件构建的图 5.4 线粒体序列资料的最大似然树四.对系统树 Bootstrap 抽样在任一特定的树状拓扑结构内,已知最大似然值提供了分枝长度的一致估计值,这意味着随着资料量的增加,估计值逐渐接近真值。
系统发育树构建方法及其应用简介:系统发育树(Phylogenetic tree)是生物学中常用的工具,用于表示不同物种之间的进化关系。
构建一个准确的系统发育树对于研究生物进化历史、分类和演化过程有着重要的意义。
本文将介绍系统发育树的构建方法以及其在生物学研究中的应用。
一、系统发育树构建方法1. 分子系统发育树构建方法分子系统发育树是通过比较不同物种基因或蛋白质序列的差异性来构建的。
常用的分子系统发育树构建方法包括:(1) 距离法(Distance-based methods):通过计算不同物种之间的序列相似性距离来构建系统发育树。
这种方法基于假设,认为进化关系越近,序列之间的相似性越高。
(2) 个体基因树法(Gene tree methods):通过基因序列的比对和进化关系的推断来构建系统发育树。
这种方法通常被用于研究基因家族在不同物种之间的进化关系。
(3) 群体基因树法(Coalescent-based methods):通过比较人口遗传学和种族学数据来构建系统发育树。
这种方法可以帮助我们理解不同群体之间的种群历史和迁移模式。
2. 形态系统发育树构建方法形态系统发育树是通过比较不同物种形态特征的异同来构建的。
常用的形态系统发育树构建方法包括:(1) 分离法(Cladistic methods):通过对比物种形态特征的共性和差异性来构建系统发育树。
这种方法基于假设,认为进化趋势是分支与分化的结果。
(2) 综合法(Integrated methods):结合形态特征和分子遗传学数据,综合分析不同物种间的形态和分子演化关系。
二、系统发育树的应用1. 生物分类学系统发育树为生物分类学提供了关键的工具。
通过构建系统发育树,我们可以清晰地了解不同物种之间的亲缘关系,进而对它们进行分类和命名。
2. 进化历史研究系统发育树可以帮助研究者重建物种的进化历史,并揭示不同物种之间的共同祖先及其衍生物的关系。
这有助于我们理解生物进化的模式和过程。