苏教版七年级下册数学[不等式及其性质(基础)知识点整理及重点题型梳理]
- 格式:doc
- 大小:114.00 KB
- 文档页数:4
第七章 平面图形的认识(二)一、知识点:1、“三线八角”① 如何由线找角:一看线,二看型。
同位角是“F ”型;内错角是“Z ”型;同旁内角是“U ”型。
② 如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质: 判定定理 性质定理 条件结论 条件 结论 同位角相等两直线平行 两直线平行 同位角相等 内错角相等两直线平行 两直线平行 内错角相等 同旁内角互补 两直线平行 两直线平行 同旁内角互补4、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a 、b 、c ,则b a c b a +<<-6、三角形中的主要线段:三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:n 边形的内角和等于(n-2)•180°; 任意多边形的外角和等于360°。
第八章幂的运算幂(power)指乘方运算的结果。
a n指将a自乘n次(n个a相乘)。
把a n看作乘方的结果,叫做a的n次幂。
对于任意底数a,b,当m,n为正整数时,有:am•a n=a m+n (同底数幂相乘,底数不变,指数相加)am÷a n=a m-n (同底数幂相除,底数不变,指数相减)(am)n=a mn (幂的乘方,底数不变,指数相乘)(ab)n=a n a n (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)a0=1(a≠0) (任何不等于0的数的0次幂等于1)a-n=1/a n (a≠0) (任何不等于0 的数的-n次幂等于这个数的n次幂的倒数)科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法.复习知识点:1.乘方的概念:a中,a 叫做底数,求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
苏教版七年级下册数学知识点总结七年级下册数学主要包括相交线与平行线、实数、平面直角坐标系、二元一次方程组、不等式与不等式组、数据的收集、整理与描述这几个板块。
一、相交线与平行线1、相交线对顶角相等。
邻补角互补,即相加等于 180°。
垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
点到直线的距离:从直线外一点到这条直线的垂线段的长度。
2、平行线在同一平面内,不相交的两条直线叫做平行线。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
平移:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
图形的平移实质上是它的点的平移,连接各组对应点的线段平行(或在同一直线上)且相等。
二、实数1、平方根如果一个数的平方等于 a ,那么这个数叫做 a 的平方根。
一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
正数 a 的正的平方根叫做 a 的算术平方根,记作“\(\sqrt{a}\)”。
2、立方根如果一个数的立方等于 a ,那么这个数叫做 a 的立方根。
正数的立方根是正数,负数的立方根是负数,0 的立方根是 0 。
3、实数有理数和无理数统称为实数。
实数与数轴上的点一一对应。
三、平面直角坐标系1、相关概念在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为 x 轴或横轴,竖直的数轴称为 y 轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
坐标:对于平面内任意一点 P ,过点 P 分别向 x 轴、y 轴作垂线,垂足在 x 轴、y 轴上对应的数 a 、b 分别叫做点 P 的横坐标、纵坐标,有序数对(a ,b )叫做点 P 的坐标。
七年级下册不等式的知识点随着时间的推移,我们可以看到数学在我们未来的生活中具有越来越重要的地位,因为它被广泛用于科学,工程,经济,商业和金融学中。
所以在中学数学的学习过程中,不等式是一个必不可少的部分,尤其是在七年级下册的学习中。
本文将回顾不等式的定义,性质以及解决不等式问题的一般方法。
一、不等式基础知识不等式与等式一样,也是表示数学关系的符号。
但是,不等式不仅可以表示相等关系,还可以表示大小关系。
例如,当我们说2大于1时,我们可以写成2>1。
在这里,“>”表示“大于”的关系。
类似地,符号“<”表示“小于”的关系,符号“≥”表示“大于等于”的关系,符号“≤”表示“小于等于”的关系。
二、不等式的性质1. 如果两个不等式两端都加上(或减去)同一个数,得到的新的不等式关系不变。
2. 如果两个不等式两端都乘以(或除以)同一个正数,得到的新的不等式关系不变。
3. 如果是两个不等式两端都乘以(或除以)同一个负数,得到的新的不等式关系会改变,即原来大于的变成小于,原来小于的变成大于。
三、不等式的解法1. 加减法原则:将变量移到一支,同时相应地改变符号。
2. 乘除法原则:与一个正数、负数、分数取倒数同时改变符号。
3. 否定原则:将整个不等式两边取反。
举个例子,如果我们需要解决以下不等式:2x + 3 > 7我们可以采用以下步骤得出答案:1. 将3移动到一侧,得到2x > 42. 将2移到一侧,得到x > 2四、不等式的应用不等式是解决许多实际问题的数学工具。
在代数、几何、经济和金融学中,我们可以通过使用不等式来解决许多问题。
以下是一些应用示例:1. 等量关系。
如果我们需要判断哪个方案比其他方案更好,我们可以通过不等式解决。
例如,如果我们需要购买某种物品,我们可以通过比较我们的津贴(C)与物品价格的某个特定值(P)来确定哪一种方案更好,即C > P。
2. 边界和范围。
如果我们需要确定一个变量的范围,我们可以使用不等式。
苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x ,请你根据题意写出x 必须满足的不等式.【思路点拨】由题意知,x 必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【第二讲 一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______; (2)2,3x x <⎧⎨<-⎩的解集是______; (3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______. 【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①② (2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2.其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①② 解①得:4x <解②得:12x ≥- 故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】 解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树; 第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式. 到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得: 88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元, 可得:, 解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:, 解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
最新苏教版七年级下册数学知识点总结最新苏教版七年级下册数学知识点总结一、知识点:1、“三线八角”①如何由线找角:观察线条形状,确定角度。
同位角呈“F”型;内错角呈“Z”型;同旁内角呈“U”型。
②如何由角找线:确定角度,找到组成角的三条线中的公共直线。
2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质:判定定理:同位角相等;内错角相等;同旁内角互补。
结论:两直线平行。
性质定理:同位角相等;内错角相等;同旁内角互补。
4、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a、b、c,则a-b<c<a+b。
6、三角形中的主要线段:三角形的高、角平分线、中线。
注意:三角形的高、角平分线、中线都是线段。
高、角平分线、中线的应用。
7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:n边形的内角和等于(n-2)×180°;任意多边形的外角和等于360°。
二、幂的运算:幂(power)指乘方运算的结果。
a指将a自乘n次(n个a相乘)。
把a看作乘方的结果,叫做a的n次幂。
对于任意底数a,b,当m,n为正整数时,有:am×an=a(m+n)(同底数幂相乘,底数不变,指数相加)am/an=a(m-n)(同底数幂相除,底数不变,指数相减)amn(a)=(an)m(幂的乘方,底数不变,指数相乘)ab)n=aⁿbⁿ(积的乘方,把积的每一个因式乘方,再把所得的幂相乘)a¹=1(a≠0)(任何不等于0的数的次幂等于1)a⁻ⁿ=1/aⁿ(a≠0)(任何不等于0的数的-n次幂等于这个数的n次幂的倒数)科学记数法:将一个绝对值大于10(或者小于1)的整数记为a×10的形式(其中1≤|a|<10),这种记数法叫做科学记数法。
初一不等式知识点归纳总结在初一数学学习中,不等式是一个重要的内容,它们用于比较和描述数值的大小关系。
通过学习不等式,可以培养学生的逻辑思维能力和解决问题的能力。
本文将对初一阶段所学的不等式知识点进行归纳总结,旨在帮助学生更好地理解和掌握这一知识。
一、不等式的基本概念不等式是数学中表示数值大小关系的一种符号表达式。
常见的不等式符号有“<”(小于)、“>”(大于)、“≤”(小于等于)和“≥”(大于等于)。
例如:- 小于:3 < 5,表示3小于5;- 大于:5 > 3,表示5大于3;- 小于等于:2 ≤ 2,表示2小于等于2;- 大于等于:4 ≥ 3,表示4大于等于3。
二、不等式的解集表示法解不等式的结果称为解集,可以用不等式的形式或集合的形式来表示。
例如,不等式3x + 4 > 10的解集可以表示为{x | x > 2},读作“x的取值范围为大于2的实数”。
三、一元一次不等式一元一次不等式是指只含有一个未知数的一次式,并且不等式中带有不等号。
例如,2x + 3 < 5。
求解一元一次不等式的关键是确定未知数x的取值范围。
以下是一元一次不等式的求解步骤:1. 化简不等式,使得未知数的系数为正数;2. 根据不等式的符号确定解集的开闭性;3. 求解不等式,找出未知数的取值范围;4. 将解集表示出来。
四、一元一次不等式组一元一次不等式组是指多个一元一次不等式构成的集合。
例如,{x | x > 3} 和 {x | x + 2 < 6} 构成了一个一元一次不等式组。
解一元一次不等式组的关键是将不等式组中的每个不等式求解,并找出它们的交集作为最终的解集。
五、常见的不等式性质和解法1. 加减法性质:对不等式两边加减相同的数,不等式的关系不变;2. 乘除法性质:对不等式两边乘除相同的正数,不等式的关系不变;对不等式两边乘除相同的负数,不等式的关系改变;3. 绝对值不等式:解绝对值不等式时,根据绝对值的定义进行分类讨论,得出不等式的解集;4. 平方不等式:解平方不等式时,需要考虑平方的非负性以及不等式的符号,通过分析平方项的正负情况得出不等式的解集。
11.3 不等式的性质一、知识点归纳不等式的性质概括起来就是两句话:加减法与等式的计算规则一样;乘除法需要注意符号,同乘(除)“-”时不等式改变方向。
(一)性质1:不等式的两边同加上(减去)同一个数或者同一个整式,不等号的方向不变。
也就是说加减法不等式和等式的计算方法一样。
例1:化简下列不等式(1)14x +< (2)a a b x +<3-解:(1)14x +<11x +-<4-1 同减一个数1,此步骤可省x <3(2)a a b x +<3-a-a a b-a x +<3- 同减一个整式a ,此步骤可省a b x <2-(二)性质2:不等式的两边同乘(除)同一个正数,不等号的方向不变。
不等式的两边同乘(除)同一个负数,不等号的方向改变。
例2:化简下列不等式(1)28x < (2)39x -< (3)a 3a x <解:(1)28x <2822x < 同除以2,符号不变,此步骤可省 4x < (2)39x -<3933x ---> 同除以﹣3,符号改变,此步骤可省 3-x > (3)a 3a x < 不知道a 的正负,需要分类讨论a >0时,a 3a x a a< 同除以a ,a >0,符号不变,此步骤可省 3x < 0a <时,a 3a x a a> 同除以a ,a <0,符号改变,此步骤可省 x 3> 不等式两边同乘以0,两边结果都是0,就成等式了。
(三)不等式两边同号,两边同取倒数,不等号改变。
如:(1)23->- 两边都是负的1123-<- 两边取倒数,不等号改变(2)23< 两边都是正的1123> 两边取倒数,不等号改变 (3)若a 、b 、c 、d 都是正实数,a c b d> b d a c > 两边取倒数,不等号改变 此题涉及到分式,了解就行。
二、练习与提高此题涉及到分式,了解就行。
1. (2012江苏常州2分)已知a 、b 、c 、d 都是正实数,且a c b d <,给出下列四个不等式:①a c a+b c+d <;②c a c+d a+b <;③d b c+d a+b <;④b d a+b c+d<。
苏教版初一下册数学知识点苏教版初一下册数学知识点概述一、数与代数1. 有理数- 有理数的概念- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 有理数的绝对值- 有理数的科学计数法2. 整式的运算- 单项式与多项式- 整式的加减运算- 整式的乘法运算- 整式的除法运算- 因式分解3. 线性方程与不等式- 一元一次方程的解法- 二元一次方程组的解法- 不等式及其解集- 一元一次不等式及其解集- 一元一次不等式的整数解二、几何1. 平面图形的认识- 平行线与垂线- 平行线的性质- 三角形的基本概念- 特殊三角形(等腰三角形、等边三角形) - 平行四边形的基本概念2. 图形的变换- 平移- 旋转- 轴对称3. 角与相交线- 角的度量与比较- 角的和差- 垂直与平行线的性质- 相交线的性质三、统计与概率1. 统计- 统计调查- 频数与频率- 统计图表(条形图、折线图、饼图)2. 概率- 随机事件- 概率的初步认识- 简单事件发生的可能性四、解题方法与技巧1. 解题策略- 分析问题- 寻找规律- 归纳总结2. 技巧应用- 代数运算技巧- 几何证明技巧- 不等式解题技巧以上是苏教版初一下册数学的主要知识点概述。
这些知识点构成了初中数学的基础,对于后续学习具有重要意义。
掌握这些知识点,需要通过大量的练习和应用来加深理解。
教师和学生都应该重视这些基础知识的学习,为以后的学习打下坚实的基础。
七年级不等式知识点梳理不等式在数学中占有重要的地位,是许多数学领域的基础。
在初中数学学习中,学习不等式的内容是必不可少的。
本文将从七年级的数学内容出发,对不等式的知识点进行梳理,让大家更好地理解和掌握不等式的概念和应用。
一、不等式的基本概念不等式是数学中描述数之间大小关系的一种工具。
在初中阶段,我们主要学习一元一次不等式的概念和运算方法。
一个一元一次不等式的一般形式为ax+b>c或ax+b<c,其中a、b、c都是实数,且a≠0。
不等式中的符号>(大于)或<(小于)表示大小关系,称为不等号。
二、不等式的性质在了解了不等式的基本概念后,我们需要掌握不等式的一些基本性质:1.如果一个不等式两边都加上(或减去)相同的数,不等式的符号不变。
2.如果一个不等式两边都乘以(或除以)正数,不等式的符号不变。
3.如果一个不等式两边都乘以(或除以)负数,不等式的符号反向。
三、一元一次不等式的解法了解了不等式的基本概念和性质后,我们需要学习如何解一元一次不等式。
解一元一次不等式的关键是将未知量(一般是x)移到不等式左边,将常数移到不等式右边。
需要注意的是,当不等号两边都乘以负数时,不等式的符号要反向。
举个例子,对于不等式2x+1>5,我们可以通过以下步骤求解:2x+1>52x>4x>2因此,不等式的解集为{x | x>2}。
四、不等式的应用不等式在实际问题中有广泛的应用。
我们学习了如何解一元一次不等式后,可以通过应用不等式的基本性质和解法,解决一些实际问题。
例如,商场正在打折,一种商品原价为120元,现在打8折。
假设小明要用不超过100元的价格购买这种商品,他能否达成目标?解:小明要用不超过100元的价格购买商品,设该商品的折扣后价为x元,则有不等式0.8×120≤x≤100。
0.8×120≤x表示商品的真实价格不会高于打折前的价格,即实际价格要小于等于折扣后的价格,而x≤100表示小明的购买价格不超过100元,不等式解得56≤x≤100。
苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习不等式及其性质(提高)知识讲解【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【要点梳理】知识点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.知识点二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;二是确定方向,对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.【一元一次不等式370042不等式的基本性质】知识点三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握应注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【典型例题】类型一、不等式的概念1.有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、小砝码皆为1克,且下图是将糖果与砝码放在等臂天平上的两种情形.判断下列正确的情形是()【思路点拨】根据图示可知1个糖果的质量>5克,3个糖果的质量<16克,依此求出1个糖果的质量取值范围,再在4个选项中找出情形正确的.【答案】D【解析】解:由图(1)知,每一个糖果的重量大于5克,由图(2)知:3个糖果的重量小于16克,即每一个糖果的重量小于163克.故A 选项错;两个糖果的重量小于3221033=克故B 选项错;三个糖果的重量大于15克小于16克故C 选项错,四个糖果的重量小于166********⨯==克故D 选项对.【总结升华】观察图示,确定大小.本题涉及的知识点是不等式,涉及的数学思想是数形结合思想,解决问题的基本思路是根据图示信息列出不等式.举一反三:【变式】【答案】类型二、不等式的解及解集2.若关于x 的不等式x ≤a 只有三个正整数解,求a 的取值范围.【思路点拨】首先根据题意确定三个正整数解,然后再确定a 的范围.【答案】3≤a <4【解析】解:∵不等式x ≤a 只有三个正整数解,∴三个正整数解为:1,2,3,∴3≤a <4,【总结升华】此题主要考查了一元一次不等式的整数解,做此题的关键是确定好三个正整数解.3. (2015春•安县期末)如图所示,图中阴影部分表示x 的取值范围,则下列表示中正确的是( )A .-3≤x <2B .-3<x ≤2C .-3≤x ≤2D .-3<x <2【思路点拨】x 表示-3右边的数,即大于-3,并且是2以及2左边的数,即小于或等于2的数.【答案】B【解析】解: A 、因为-3≤x <2,在数轴上-3的点应该是实心的圆点;C 、因为-3≤x≤2,在数轴上-3和2的点应该都是实心的圆点;D 、因为-3<x <2,在数轴上-3和2的点应该都是空心的圆点;故选B .【总结升华】在数轴上 表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示,“>”,“≥”向右画;“<”,“≤”向左画.举一反三:【变式】根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为________.【答案】4提示:由程序图可知,计算求值时所使用的数学表达式为224y x =-.把x =1输入求值,若求得的结果大于0,则直接得到输出值y ;若求得的结果小于0,则需要把得到的结果作为输入值再代入计算,循环往复,直到使最终的结果大于0为止.类型三、不等式的基本性质4.若关于x 、y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x+y <2,则a 的取值范围是________.【思路点拨】观察方程组不难发现只要把两个方程相加即能求出x+y 的值.因为x+y <2,故可以构建关于a 的不等式.然后利用不等式的性质就能求出a 的取值范围.【答案】a <4【解析】解:将两方程相加得:4x+4y =4+a .将方程的两边同除以4得 44a x y ++=. 依题意:424a +<. 将不等式的两边同乘以4得4+a <8.将不等式的两边同时减去4得a <4.故a 的取值范围是a <4.【总结升华】解关于x 的一元一次不等式,就是要将不等式逐步化为x >a 或x <a 的形式,化简的依据是不等式的性质.举一反三:【变式1】(2015春•沙河市期末)若关于x的不等式(1﹣a)x>3可化为,则a的取值范围是.【答案】a>1.解:关于x的不等式(1﹣a)x>3可化为,1﹣a<0,a>1.【一元一次不等式370042练习3】【变式2】a、b是有理数,下列各式中成立的是( ).A.若a>b,则a2>b2;B.若a2>b2,则a>bC.若a≠b,则|a|≠|b| D.若|a|≠|b|,则a≠b【答案】D。
七年级下学期不等式知识点在数学中,不等式是指两个数之间的大小关系,通常表示为一个小于号“<”,一个大于号“>”或者一个小于等于号“≤”,一个大于等于号“≥”。
在七年级下学期的数学课程中,我们开始学习不等式的知识点,下面就为大家详细介绍一下。
一、不等式的基本概念不等式是数学中的一种重要的表达方式,我们要理解不等式的三个基本要素:关系符、不等式左侧和右侧的内容。
1. 关系符:小于号“<”表示小于关系;大于号“>”表示大于关系;小于等于号“≤”表示小于等于关系;大于等于号“≥”表示大于等于关系。
2. 左侧和右侧的内容:不等式中左侧和右侧的内容可以是变量、常数或者数学表达式,一般用字母表示未知数。
3. 不等式的解集:不等式所表示的是不等量之间的大小关系,解集就是符合不等式中所表示大小关系的数值的集合。
二、不等式的基本性质不同的不等式可以具有不同的性质,下面就为大家介绍一下常见的不等式性质。
1. 加减性:不等式两侧都加上(或减去)同一个数,不等式的大小关系不变。
2. 乘除性:不等式两侧都乘以(或除以)同一个正数,不等式的大小关系不变;不等式两侧都乘以(或除以)同一个负数,不等式的大小关系会发生变化。
3. 转化性:小于号“<”可以通过除以一个正数或乘以一个负数转变成大于号“>”;大于号“>”可以通过除以一个正数或乘以一个负数转变成小于号“<”。
三、线性不等式线性不等式是指变量的最高次数为1的不等式,常见形式为ax+b>0、ax+b<0、ax+b≥0、ax+b≤0。
我们可以采用逆向思维,将不等式中的未知数x当作变形系数,将不等式转化为等式。
解线性不等式的时候,需要将不等式转化为等式,求出等号两侧x的解,再按照不等式的大小关系,得出最终的解集。
四、一元二次不等式一元二次不等式是指变量的最高次数为2的不等式,常见形式为ax²+bx+c>0、ax²+bx+c<0、ax²+bx+c≥0、ax²+bx+c≤0。
七年级下数学不等式知识点在七年级下学期数学中,不等式是一个十分重要的知识点。
在这篇文章中,我们将深入了解不等式的定义、性质和解法。
一、不等式的定义不等式是一种数学语句,表示两个数的大小关系。
通常用大于号(>)、小于号(<)、大于等于(≥)、小于等于(≤)等符号来表示不等式。
例如,2 > 1 表示2大于1,3 < 4 表示3小于4,5 ≤ 5 表示5小于等于5。
二、不等式的性质1. 传递性:如果a > b,b > c,则a > c。
2. 对称性:如果a > b,则b < a。
3. 加减性:如果a > b,则a + c > b + c;如果a < b,则a + c <b + c。
4. 乘除性:如果a > 0 且b > 0,则a × b > 0;如果a > b 且c > 0,则a × c > b × c;如果a > b 且c < 0,则a × c < b × c。
5. 反比例关系性质:如果a > b 且c > 0,则a/c < b/c;如果a >b 且c < 0,则a/c > b/c。
三、不等式的解法1. 移项法:把不等号两边的式子移项,使得未知量在一边,常数在另一边。
例如:3x - 2 > 4x + 1,把4x移到左边,把1移到右边,得到x < -3。
2. 加减法:把不等式两边加上或减去相同的数。
例如:2x + 1 < 5x - 2,把2x移到右边,把1移到左边,得到-x < -3,再把不等式两边乘以-1,得到x > 3。
3. 乘除法:如果对不等式两边同时乘以一个正数,不等式方向不变;如果对不等式两边同时乘以一个负数,不等式方向翻转。
例如:-2x + 1 > 5,把不等式两边加上-1,得到-2x > 4,再把不等式两边乘以-1/2,得到x < -2。
第七章 一元一次不等式与不等式组一、知识总结(一)不等式及其性质1、不等式:(1)定义用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(2)不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
(3)不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。
求不等式的解集的过程叫做解不等式。
不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值。
二者的关系是:解集包括解,所有的解组成了解集。
(4)解不等式:求不等式解的过程叫做解不等式。
2、不等式的基本性质性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
即:如果b >a ,那么c b c ±>±a .性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
即:如果b >a ,并且0c >,那么bc >ac ;cb c >a . 性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
即:如果b >a ,并且0c <,那么bc <ac ;c b c <a . 性质4:如果b >a ,那么a <b .(对称性)性质5:如果b >a ,c >b ,那么c >a .(传递性)(二)一元一次不等式1、定义:含有一个未知数,未知数的次数是1,且不等号两边都是整式的不等式, 叫做一元一次不等式。
2.一元一次不等式的解法:根据是不等式的基本性质;一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1. 解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。
苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习实际问题与一元一次不等式(基础)知识讲解【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题;2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【实际问题与一元一次不等式409415 小结:】要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意.要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来;(3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如:若“设还需要B 型车x 辆 ”,而在答中应为“至少需要11辆 B 型车 ”.这一点应十分注意.【典型例题】类型一、行程问题1.爆破施工时,导火索燃烧的速度是0.8cm/s ,人跑开的速度是5m/s ,为了使点火的战士在施工时能跑到100m 以外(包括100m )的安全地区,导火索至少需要多长?【思路点拨】设导火索要xcm 长,根据导火索燃烧的速度为0.8cm/s ,人跑开的速度是5m/s ,为了使点导火索的战士在爆破时能跑到离爆破点100m 的安全地区,可列不等式求解. 【答案与解析】解:设导火索要xcm 长,根据题意得:1000.85x ≥ 解得:16x ≥答:导火索至少要16cm 长.【总结升华】本题考查一元一次不等式在实际问题中的应用,关键是以100m 的安全距离作为不等量关系列不等式求解.类型二、工程问题2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要完成多少土方? 【思路点拨】假设以后几天平均每天完成x 土方,一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,那么该土方工程还剩300-60=240土方,现在要比原计划至少提前两天完成任务,说明至多4天完成任务,用去一天,还剩4-1=3(天)则列不等式2403x≤ 解得x 即可知以后平均每天至少完成多少土方.【答案与解析】解:设以后几天平均每天完成x 土方.由题意得: 30060621x---≤ 解得: x≥80答:现在要比原计划至少提前两天完成任务,以后几天平均每天至少要完成80土方.【总结升华】解本类工程问题,主要是找准正确的工程不等式,如本题,以天数作为基准列不等式.【实际问题与一元一次不等式409415 例3】举一反三:【变式】(2014春•常州期末)某人计划20天内至少加工400个零件,前5天平均每天加工了33个零件,此后,该工人平均每天至少需加工多少个零件,才能在规定的时间内完成任务?【答案】解:设以后平均每天加工x 个零件,由题意的:5×33+(20﹣5)x≥400,解得:x≥2153. ∵x 为正整数,∴x 取16.答:该工人以后平均每天至少加工16个零件.类型三、利润问题3.水果店进了某种水果1t ,进价是7元/kg .售价定为10元/kg ,销售一半以后,为了尽快售完,准备打折出售.如果要使总利润不低于2000元,那么余下的水果至少可以按原定价的几折出售?【答案与解析】解:设余下的水果可以按原定价的x 折出售,根据题意得:1t =1000kg10001000(107)(107)20001022x ⨯-⨯+-⨯≥ 解得:8x ≥ 答:余下的水果至少可以按原定价的8折出售.【总结升华】本题考查一元一次不等式的应用,关键以利润作为不等量关系列不等式. 举一反三:【变式】某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折出售,但又要保证利润不低于20%,则商店最多打 折.【答案】六.类型四、方案选择4.(2015•庆阳)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.【思路点拨】(1)设每个篮球和每个排球的销售利润分别为x 元,y 元,根据题意得到方程组;即可解得结果;(2)设购进篮球m 个,排球(100﹣m )个,根据题意得不等式组即可得到结果.【答案与解析】解:(1)设每个篮球和每个排球的销售利润分别为x 元,y 元,根据题意得:,解得:, 答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m 个,排球(100﹣m )个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【总结升华】本题考查了一元一次不等式的应用,二元一次方程组的应用,找准数量关系是解题的关键.。
第七章 平面图形的认识(二)一、知识点:1、“三线八角”① 如何由线找角:一看线,二看型。
同位角是“F ”型;内错角是“Z ”型;同旁内角是“U ”型。
② 如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质: 判定定理 性质定理 条件结论 条件 结论 同位角相等两直线平行 两直线平行 同位角相等 内错角相等两直线平行 两直线平行 内错角相等 同旁内角互补 两直线平行 两直线平行 同旁内角互补4、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a 、b 、c ,则b a c b a +<<-6、三角形中的主要线段:三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:n 边形的内角和等于(n-2)•180°; 任意多边形的外角和等于360°。
第八章幂的运算幂(power)指乘方运算的结果。
a n指将a自乘n次(n个a相乘)。
把a n看作乘方的结果,叫做a的n次幂。
对于任意底数a,b,当m,n为正整数时,有:am•a n=a m+n (同底数幂相乘,底数不变,指数相加)am÷a n=a m-n (同底数幂相除,底数不变,指数相减)(am)n=a mn (幂的乘方,底数不变,指数相乘)(ab)n=a n a n (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)a0=1(a≠0) (任何不等于0的数的0次幂等于1)a-n=1/a n (a≠0) (任何不等于0 的数的-n次幂等于这个数的n次幂的倒数)科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法.复习知识点:1.乘方的概念:a中,a 叫做底数,求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。