奥数四年级数学游戏与对策课件
- 格式:pptx
- 大小:10.59 MB
- 文档页数:14
巧做游戏与对策巧点晴——方法和技巧“余数制胜法”“对称制胜法”“例推法”等都是游戏与对策的常用思考方法。
巧指导——例题精讲我国古代有一个“田忌赛马”的故事:齐王经常要求和将军田忌赛马,规定各从自己的马中选上等马、中等马和下等马各一匹,进行三场比赛,每场各出一匹马,每胜一场可得一千金。
田忌的朋友孙膑给他出了一个主意,叫田忌用下等马对齐王的上等马,上等马对齐王的中等马,中等马对齐王的下等马。
结果,田忌先负一场然后连胜两场,反而赢了一千金。
这个故事是对策的一个典型例子。
它告诉我们:在竞争时,要认真分析研究,寻找并制定尽可能好的方案,利用它取得尽可能大的胜利,或在胜利无望时,也不至于输得太惨。
在20世纪形成了对策论这门新兴科学,专门研究这种思想。
A级冲刺名校·基础点晴【例1】有两堆火柴,一堆16根,一堆11根。
甲、乙两人轮流从中拿走1根或几根甚至一堆,但每次只能在某一堆中拿火柴,谁拿走最后一根算谁胜,问甲如何才能取胜?做一做1桌面上有2000根火柴,甲、乙两人轮流地取1根或2根火柴,谁取到最后一根火柴为胜,问甲获胜的策略是什么?【例2】甲、乙两人轮流往一张圆桌面上放同样大小的硬币,规定每人每次只能放一枚,硬币平放且不能有重叠部分放好的硬币不再移动。
谁放了最后一枚,使得对方再也找不到地方放下一枚硬币的时候他就赢了。
请说明放第一枚硬币的甲百战百胜的策略。
做一做 2 两个小朋友各持有同样大小的圆纸片若干张,他们轮流把纸片放到一张长方桌面上(桌面比圆纸片大),纸片边缘不越出桌面而且互相不重叠。
轮到谁无法放圆纸片时,就算谁失败,问有什么办法可以取胜?【例3】一张3×10的长方形网格纸有30个小方格,甲、乙两人轮流在切纸机上沿方格线的直线剪一切。
甲将一分分为两份,先送一份给乙,由乙按同样要求再剪。
然后乙又选送一份给甲,甲再这样剪……如此重复。
谁送给对方的只有一个方格谁就获胜。
问甲要想获胜有何策略?做一做3 甲、乙两人在1×100(100个格子)的长条纸上,从左向右移动一枚棋子(这枚棋子在第一格上)。
小学奥数精讲:对策问题之必胜策略小学奥数精讲:必胜策略对策问题知识点总结:1.一取余制胜(取棋子,报数游戏)1.1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)如果有余数,先拿必胜,拿掉余数,之后总与对手凑成1+n即可。
如果无余数,则后拿,总与对手凑成1+n即可。
1.2.每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。
所以想赢的关键就在于能不能取到倒数第二枚棋子。
问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。
(总数-1)÷(1+n),之后同1中做法。
2.抢占制胜点(倒推法)2.1.能一步到棋子的位置均是不能走的地方即负位2.2.处处为别人着想。
自己不能走的地方逼别人走进去即可,即确定制胜点。
3.对称法3.1.同等情况下,模仿对方步骤可以达到制胜目的。
3.2.不同等情况下,创造对等局面方可制胜。
例题:1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。
规定谁取走最后一根火柴谁获胜。
如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16……4,有余数,先拿必胜。
甲先拿4个;乙拿a个,甲就拿6-a个。
2.甲乙两人轮流报数,报出的数只能是1~7的自然数。
同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。
请问必胜的策略是什么?分析:80÷(1+7)=10,无余数,后拿必胜。
甲拿a个,乙就拿8-a个必胜。
3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。
规定将棋子移到最后一格者谁赢。
甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124……7,有余数,先走必胜。
甲先走7格;乙走a格,甲就拿8-a个必胜。
4.5张扑克牌,每人每次只能拿1张到4张。
谁取最后一张谁输。
必胜的策略是什么?分析:先拿4张,留给别人1张就行。
第09讲游戏策略知识点、重点、难点对策论又称博弈论,我们学习的对策问题,主要是研究在两人的游戏过程中如何使自己取胜的策略问题.如果说“统筹规划”所研究的是“静的”对象的话,那么“对策问题”所研究的就是一个“动的”对手,因而在考虑问题时需要设想对手可能采取的各种方案,并使己方的策略能在对手所有可能采取的方案中都处于有利位置,我们将这种状态称为“必胜状态”.那么在给定的游戏规则下,是否存在必胜状态,以及为了达到必胜状态所采取的策略就成了问题的关键.需要强调的是,我们的目标不是“可能胜”,而是“必胜”!我们不能存在侥幸心里,不能寄希望于对方的失误,而是要在假定双方都足够聪明的前提下寻找必胜策略.例题精讲例1有12枚棋子,甲、乙两人轮流取,规定甲先取,每人每次至少取1枚,最多取3枚.如果谁取走最后一枚棋子谁赢,那么谁有必胜策略?如果谁取走最后一枚棋子谁输,那么谁有必胜策略?必胜策略是什么?练习1有15枚棋子,甲、乙两人轮流取,规定甲先取,每人每次至少取1枚,最多取2枚.如果谁取走最后一枚棋子谁赢,那么谁有必胜策略?如果谁取走最后一枚棋子谁输,那么谁有必胜策略?必胜策略是什么?例2现有2014根火柴,甲、乙两人轮流从中取出火柴,规定甲先取,每人每次至少从中取2根,最多取出4根,谁无法取出火柴谁就赢.请问:谁一定赢?策略是什么?练习2现有2009颗糖,甲、乙两人轮流从中取出糖,规定甲先取,每人每次至少从中取2颗,最多取出5颗,谁无法取出糖谁就赢.请问:谁一定赢?策略是什么?例3甲、乙两人玩一个游戏:有两堆小球,甲、乙两人轮流从中取球,每次只能从同一堆中取,个数不为零即可,规定取到最后一个球的人赢,甲先取球.如果开始时两堆分别有5个球和8个球,那么谁有必胜策略?请说明理由.练习3有两堆金币,一堆有2009枚,另一堆有2014枚.甲、乙两人轮流从中拿金币,每次只能从同一堆中拿,个数不为零即可.规定拿到最后一枚金币的人获胜,胜者可以获得所有金币.如果甲先拿,那么谁有必胜策略?请说明理由.例4如图,方格A中放有一枚棋子,甲先乙后轮流移动这枚棋子,只能向上、向右或向右上方走一步,最终将棋子走到方格B的人获胜.请问:谁一定能获胜?必胜策略是什么?BA例5有一块巧克力,它被直线划分成3行7列的21个小方块,如图所示.现在让你和对手进行一种两人轮流切巧克力的游戏,规则如下:(1)每人每次只许沿一条直线把巧克力切成两块;(2)拿走其中一块,把另一块留给对手再切;(3)不断重复前两步,最后谁能恰好留给对手一个小方块,谁获胜.如果你首先切巧克力,那么你第一次应该切走多少个小方块,才能保证自己最后获胜?精选习题1.10枚正面朝下的硬币排成一排放在桌子上,两个小朋友玩翻硬币游戏,规定:每人每次只能翻动1枚或2枚硬币使之正面朝上,翻过的硬币不能再翻.两人轮流翻硬币,翻动最后一枚硬币的人获胜.请问:谁有必胜策略?必胜策略是什么?2.现有200个石子,甲、乙两人轮流从中取出石子,每次最少取2个,最多取4个,谁无法取出石子谁就赢.如果甲先取,那么谁有必胜策略?必胜策略是什么?。
第三讲 游戏与对策一、基本前提游戏双方足够聪明,目的都是获胜。
二、方法:倒推三、游戏类型(一)拿火柴棍/抢数如:桌子上放着10根火柴,二人轮流每次取走1—2根,规定谁取走最后一根火柴谁获胜。
你知道必胜的方法吗?分析:如果从开始分析,“局面”太大,有太多种取法要讨论。
所以我们尝试从结果倒推。
如上图,要必胜,也就是要让自己拿到10号火柴,那就应给对方留下8,9,10三根火柴供他取,这样对方不管取一根还是两根,自己都能拿到最后的10号火柴。
照这样分析,自己应该拿到7号火柴(这样就是给对方留下了8,9,10号三根)就必胜。
同理分析,要想取7号,就应该取4号,要想取4号,就应该取1号。
那么,本题的制胜点就是1,4,7,10号火柴,对于足够聪明的人来说,拿到第一个制胜点1号火柴,一定能拿到其余的制胜点。
所以本题要必胜,就要抢先取1根,然后对方取a 根,自己就取3-a 根,这样保证自己能取到每一个制胜点,最终取到10号火柴。
总结一下,同学们应该能看出,这里面有周期现象(只是周期是从后往前排布的),周期是几呢?是可取的最大限度2再加1等于3,制胜点是哪些呢?是每个周期的最后一根。
掌握此规律,就不难总结出这类题的解题方法了:解题方法:(1)找周期:周期等于可拿最大限度+1(2)总数÷周期1 桌子上放着60根火柴,聪明昊、神奇涛二人轮流每次取走1—3根,规定谁取走最后一根火柴谁获胜。
你知道必胜的方法吗?解析: 周期为 3+1=4(根)60÷4=15(组) (整除,应该抢后)制胜点:4,8,12 (60)做法:1、让对方先取2、对方取a 根,自己就取4-a 根2 有一种抢数游戏,是两个人从自然数1开始轮流报数,规定每次至少报几个数与至多报几个数(都是自然数),最后谁报到规定的“某个数字”为胜。
如“抢50”,规定每次必须报1或2个1 2 3 4 5 6 7 8 9 10有余数:抢先拿余数整除(余数为0):抢后自然数,从1开始,谁抢报到50为胜。
取胜的策略月 日 姓 名【知识要点】在数学竞赛中,有一类很有趣味的智力游戏,涉及到的课本知识并不多,但是技巧性比较强,在游戏的过程中,对立者总是竭尽全力争取最大的胜利,不希望自己失败,因此对立者都认真选择对付对方的办法。
用数学的观点和方法来研究取胜的策略叫对策问题。
对策问题又称博弈论(game theory)。
【解题技巧】①奇偶性;②倒推(这是最常用、最最要的一种办法,我们要求的是一种必胜情况而不是所有必胜或一种可能获胜的情况,把握好这个度很重要。
)③从特殊到一般;④穷举法(比较适合用于可能性较少,运算量不大的题目中经常用到)。
【例题精讲】例1 有200枚棋子放在盒子里面,小齐和小蓝两人轮流各取一枚或两枚,取到最后一枚者为胜,请问如果小齐先取,必胜的对策是什么呢?例2 两个人轮流报数,报出来的只能是1——6的自然数,每次报后把所报的数一一累加起来,谁先使这个累加的和达到888谁就获胜,请问你有必胜的把握吗,该如何安排呢?例3 有2堆纸牌,分别为34张,15略吗?例4 黑板上写着连续的自然数,从1到81的策略吗?!!随堂小测姓名成1.有一个叫“抢30数,每人每次只能报1个数或2个数,谁先报到302.桌面上放着54张扑克牌,两人轮流从中取1张,2张,或3张,取到最后一张者为输,怎样取才能保证获胜?3.有分别装了63,108个球的两个箱子,两人轮流在任意的箱子中去任意的的球数,规定是一次只能在一个箱子中取球,不能一个不取,取到最后球的人为胜者,先取者是必胜的,你能给出方案吗?课后作业姓 名 成 绩1.有13枚硬币甲,乙两人轮流取,每人每次取1—3个,规定最后一个取完的的人为胜,那么甲先取有必胜的把握吗?耶!!!。