北京航空航天大学数值分析课程知识点总结
- 格式:pdf
- 大小:318.43 KB
- 文档页数:28
第3章矩阵特征值与特征向量的计算--------学习小结一、本章学习体会通过本章的学习,我知道了求矩阵的特征值和特征向量的问题是代数计算的重要课题,在这一章,我了解到了直接计算矩阵的特征值和特征向量的MATLAB程序、间接计算矩阵的特征值和特征向量的幂法、反幂法、Jacobi方法、QR方法及MATLAB计算程序。
我了解到自己对数值分析及MATLAB的掌握还很肤浅,了解到了自己的不足,同时意识到自己知识点薄弱的地方,还有对知识的理解有偏差。
有的知识点理解的不透彻,自己可以动手做题,但编程实现还需要一定的编程语言知识以及数学知识和机器语言之间的转换。
四种方法各有其特点和适用范围。
幂法主要用于计算矩阵按模最大的特征值及其相应的特征向量;反幂法主要用于计算矩阵按模最小的特征值及其相应的特征向量;Jacobi方法用于求实对称矩阵的全部特征值和特征向量的方法;QR方法则适用于计算一般实矩阵的全部特征值,尤其适用于计算中小型实矩阵的全部特征值。
归结起来,这四种方法亦有其共同点,那就是都是用了迭代的方法来求矩阵的特征值和特征向量。
此外,用MATLAB自带的解法求解特征值和特征向量也非常快速,而且不用编辑函数建立m文件。
二、本章知识梳理本章对于矩阵的特征值和特征向量的算法提出了新的思路,如幂法和反幂法、Jacobi 、QR 方法等。
本章的小结主要从方法的思想,以及一些定理展开。
以下是各种方法的运用范围1、幂法:主要用于计算矩阵按模最大的特征值和其相应的特征向量;2、反幂法:主要计算矩阵按模最小的特征值以及其相应的特征向量;3、Jacobi 方法:用于求实对称矩阵的全部特征值和特征向量的方法;4、QR 方法:适用于计算一般实矩阵的全部特征值,尤其适用于计算中小型实矩阵的全部特征值。
3.1幂法与反幂法一、乘幂法1、基本思想])([2111101∑=-+===n i i k i i kk k k X X u A u A u λλααλ 2、一般算法1)任意给定初始向量;0n R u ∈2)对于k=1,2,...111---=k k k u u y 1-=k k y A u 1111X X y k αα→ 3)如果ε<--1k k u u ,则,,1,1m k m k u u -≈λk u X ≈13、三种迭代公式(1)使用范数2•(2)使用范数∞•(3))max (k u 表示k u 的绝对值最大的分量。
数值分析知识点总结数值分析是计算数值解的方法和理论,它研究的是如何利用计算机对数学问题进行数值计算和数值逼近。
数值分析包括了数值方法的设计、分析和实现,以及误差分析和计算复杂性分析等方面。
下面是数值分析的一些重要知识点的总结。
1.数值算法:数值算法是解决数学问题的计算方法,它由一系列具体的计算步骤组成。
常见的数值算法有插值、数值积分、数值微分、常微分方程数值解法等。
2.数值稳定性:数值稳定性是指数值算法在计算过程中对误差的敏感程度。
一个数值算法如果对输入数据的微小扰动具有较大的响应,就称为不稳定算法;反之,如果对输入数据的微小扰动具有较小的响应,就称为稳定算法。
3.四舍五入误差:在浮点数计算中,由于计算机表示的限制,涉及舍入运算的计算可能会引入误差。
四舍五入误差是指在进行舍入运算时,取最近的浮点数近似值所引入的误差。
4.条件数:条件数是用来衡量数值问题的不稳定性的一个指标。
它描述了输入数据的微小扰动在计算结果中的放大程度。
条件数的大小决定了数值算法的数值稳定性,通常越大表示问题越不稳定。
5.插值:插值是基于已知数据点,构造插值函数来近似未知数据点的方法。
常用的插值方法有线性插值、多项式插值和样条插值等。
6. 数值积分:数值积分是用数值方法进行积分计算的一种方法。
常见的数值积分方法有梯形法则、Simpson法则和Gauss-Legendre积分法等。
7.数值微分:数值微分是通过数值方法来计算函数的导数的一种方法。
常用的数值微分方法有中心差分法和前向差分法等。
8. 常微分方程数值解法:常微分方程数值解法用于求解常微分方程的近似解。
常用的常微分方程数值解法有Euler法、Runge-Kutta法和Adams法等。
9.误差分析:误差分析是对数值算法计算结果误差的研究。
可以通过理论分析或实验方法来估计误差,并找到减小误差的方法。
10.计算复杂性分析:计算复杂性分析是对数值算法运行时间和计算资源的需求进行评估的方法。
数值分析各章重点公式整理数值分析是计算数学的一个分支,主要涉及计算和分析数值近似解的方法。
本文将从数值分析的基本概念、插值与逼近、数值微分和数值积分、非线性方程数值解、线性方程组直接解法、线性方程组迭代解法和特征值问题等几个方面,对数值分析中的重点内容进行整理。
一、数值分析的基本概念数值分析是用数值方法解决实际问题的方法和技术。
其主要研究目标是通过一定的计算机运算来获取数学问题的近似解。
数值分析涉及到误差分析、收敛性分析、稳定性分析等概念,对于数值方法的正确性和可行性提供了理论依据。
二、插值与逼近插值是通过已知数据点构造一个函数,使得这个函数通过已知数据点。
常用的插值方法有拉格朗日插值和牛顿插值。
逼近是选择一种较为简单的函数来近似表示给定的复杂函数。
常用的逼近方法有最小二乘法和切比雪夫逼近。
三、数值微分和数值积分数值微分主要研究如何通过函数值的有限差分来估计导数值。
常用的数值微分方法有前向差分、后向差分和中心差分。
数值积分主要研究如何通过数值方法求出函数在一定区间上的定积分值。
常用的数值积分方法有梯形法则和 Simpson 法则。
四、非线性方程数值解非线性方程通常难以用解析方法求解,而数值方法则可以通过迭代来逼近方程的根。
常用的数值解法有二分法、牛顿法和割线法。
同时,对于多维非线性方程,也可以使用牛顿法的变形,牛顿下山法。
五、线性方程组直接解法线性方程组是数值分析中的一个重要问题。
直接解法主要有高斯消元法、LU 分解法和 Cholesky 分解法。
高斯消元法通过矩阵的初等行变换将线性方程组化为上三角方程组来求解。
LU 分解法将系数矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积,然后通过回代求解。
Cholesky 分解法则适用于对称正定矩阵的解法。
六、线性方程组迭代解法线性方程组的迭代解法通过选取适当的初始解,通过迭代来逼近精确解。
常用的迭代解法有Jacobi迭代法、Gauss-Seidel迭代法和超松弛迭代法。
期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。
数值逼近的主要内容包括多项式逼近、插值和最小二乘等。
1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。
通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。
其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。
多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。
2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。
常用的插值方法有拉格朗日插值和牛顿插值。
拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。
牛顿插值则利用差商的概念来构造插值多项式。
插值方法在数值微分和数值积分中有广泛的应用。
3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。
通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。
最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。
第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。
数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。
1. 迭代法迭代法是求解非线性方程组的常用方法之一。
通过不断迭代逼近方程的根,可以得到方程组的数值解。
常用的迭代法有牛顿迭代法和弦截法。
迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。
2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。
常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。
常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。
3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。
摘 要在科学工作中经常出现这类问题,我们关注求解非线性方程或非线性方程组——求x 使得f (x )=0或求得X= 使得F (X )=0。
这些方程中,至少一个变量以任意的非线性方程形式出现。
在实变量变量的实值函数这种最简单的情况下,提出的一般问题是:已知函数f :R →R ,求x 的解使得f (X )=0这里主要讨论解决这类问题的一般方法和过程。
在许多应用中可以发现非线性方程的例子。
例如在光的衍射理论中,我们需要用到方程:X-tanX=0在行星轨道的计算中我们需要开普勒方程:X-asinX=b其中a 和b 任意取值。
在科学研究和科学计算中常常碰到以上的非线性方程求解问题。
非线性方程的解一般不能解析求出。
所以数值解法显得非常重要,而数值解法在实际中的实现则更为重要。
本文将介绍几种数值解法以及Matlab 中的实现程序。
为研究非线性方程数值解,给出了二分法、简单迭代法和牛顿迭代法的Matlab 程序,并进行了近似计算。
结果表明,牛顿迭代法收敛最快。
关键词:非线性方程;Matlab 程序;二分法;迭代法;简单迭代法;弦截法。
()T1n x x x ⋅⋅⋅2,,非线性方程数值解法1 二分法设f (x)在[a,b]连续,假定f (a)<0,f (b)>0,取中点 ,检查f (x0)符号。
若f (x0)=0,则x0就是一个根;若f (x0)>0,记a为a1,x0为b1,则得有根区间[a1,b1];若f(x0)<0,记x0为a1,b为b1,则得有根区间[a1,b1]。
后两种情况都得到有根区间[a1,b1],它的长度为原区间的一半。
对[a1,b1],令 ,再用同样的方法,可得新的有根区间[a2,b2],它的长度为[a1,b1]的一半,如此反复进行下去,其中每一个区间是前一区间的一半。
有这就是方程的根。
而即为方程的近似根,且有估计误差下面用二分法求在区间[1,2]上的根.因为二分法只能求单根,首先可以搜索函数(2.2)在区间[1,2]的根的情况。
数值分析第五章学习⼩结第五章学习⼩结姓名:张亚杰班级:机械1505班学号:S2*******⼀、本章学习体会本章的内容与实际关联很⼤,可以解决很多⼯程实际问题。
1、主要有两⽅⾯内容:插值与逼近。
插值即是由已知数据通过某种多项式求出在特定区间的函数值。
逼近即是⽤简单函数近似代替复杂函数,如何在给定的精度下,求出计算量最⼩最佳的多项式,是函数逼近要解决的问题。
2、插值中样条插值⽐较难,需要花⼀定的时间。
逼近主要是必须使选择的多项式计算出的误差最⼩。
3、我个⼈觉得本章的难点是样条插值与最佳平⽅逼近。
⼆、知识构图:因为本章内容较多,故本次知识架构图分为三部分:插值、正交多项式和逼近。
1、插值:2、正交多项式和逼近的知识总结采取以下⽅式:⼀、正交多项式1、正交多项式的概念与性质若在区间上⾮负的函数满⾜(1)对⼀切整数存在;(2)对区间上⾮负连续函数,若则在上,那么,就称为区间上的权函数。
常见的权函数有2、两个函数的内积定义:给定[](),(),,()f x g x C a b x ρ∈是上的权函数,称为函数()f x 与()g x 在[a,b]上的内积。
内积的性质:(1)对称性:()(),,f g g f =;(2)数乘性:(),(,)(,)kf g f kg k f g ==;(3)可加性:()()()1212,,,f f g f g f g +=+;(4)⾮负性:若在[a,b]上()0f x ≠,则。
(,)a b ()x ρ0,()bna n x x dx ρ≥?(,)ab ()f x ()0bn ax x dx ρ=?(,)a b ()0f x ≡()x ρ(,)ab 2()1,()11()11(),0(),x x x a x b x x x x x e x x e x ρρρρρ--≡≤≤=-<<=-≤≤=≤<∞=-∞<<+∞(,)a b (,)()()()ba f g x f x g x dx ρ=?(,)0f f >3、函数的正交(1)两个函数的正交与正交函数系若内积则称()f x 与()g x 在区间[a,b]上带权()x ρ正交若函数系.满⾜则称是上带权的正交函数系。
百度文库•好好学习.天天向上数值分析重点第一章误差分析近似数误差大小的度量方法:绝对误差/相对误差帝效数字1、有效数字的判断定义:从末尾到第一个非零数字之间的所有数字的个数。
几个重点结论:(1) 、设数X 的近似值可以表示为 X* =±0.a {a 2 - a n xlO m其中m 是整数E,2,…,”)是0到9中的一个数字, 而6 H 0.如果其绝对误差限为< _ x 1"2(不超过其末尾数的半个单位)则称近似数x*具有"位有效数字。
(2) 、相对误差与有效数字的关系(课差:精确值与近似值的差值) x* = ±0.a }a 2 • • a” x 10" = a x .a 2a y a n x >a 1xl0//,"1A -/ S 丄xl (严得到相对误差限■Sr(讣知讣煤心—xl0〃i 2 ----------- =_Lx]0ZV - ---------- - = ------- a } x 10m_,2a,唱(r ;)+菁(一;)+•••+签GT)例如:E (X1+X2)= £(Xl)+ e(X2)e (xi*X2)=1x11 e(X2)+Ix2l e (xi)e (X1/X2) ={lxil 8 (X2)+IX2l e (Xi)}/IX2l2第二章代数插值通过一些实验所得的离散点找到函数的一个满足精度要求且便于计算的近似表达式(多项式)。
n+1个互异的节点可以唯一确定一个n次多项式。
填空1 •差商与微商的关系f[x9xo9xl9..9x j=--—例1:f(x) = x5-x + l,试求其如下差商:/[2°,2*,22,2\ 2\ 25] /[2°, 2*,22,23,24,25,26]例2:已知一个四阶差商和一个五阶差商,用定义反求另一个四阶差商。
一般地,称阶差商的一阶差商为R阶差商:为他)关于点“I,…心的k阶差商。
数值分析期末知识点总结一、引言数值分析是一门研究如何使用计算机提高数学模型数值计算精度和效率的学科。
它是计算数学的一个重要分支,涉及到数值计算、数值逼近和误差分析等一系列内容。
在数值分析课程中,我们将学习到数值解微分方程、线性代数问题的求解、插值与拟合、积分等一系列内容。
本文将对数值分析期末知识点进行总结,以便帮助大家复习。
二、常见数值计算方法1. 插值与拟合插值与拟合是数值分析中重要的内容,它们用于在给定数据点集上构造一个函数,以便在其他点上进行求值。
插值是通过一些已知数据点来求得一个函数,使得这个函数能够通过这些点,而拟合则是通过已知数据点来求得一个函数,使得这个函数在这些点附近能够比较好地拟合数据。
常见的插值方法包括线性插值、拉格朗日插值、牛顿插值等;而拟合方法包括最小二乘法拟合、多项式拟合等。
2. 数值解微分方程数值解微分方程是数值分析的一个重要内容,它讨论如何使用计算机对微分方程进行数值求解。
微分方程是自然界中描述变化的数学方程,它们在物理学、化学、生物学等领域都有着重要的应用。
数值解微分方程的方法包括欧拉法、中点法、四阶龙格-库塔法等。
3. 数值线性代数数值线性代数是数值分析领域的另一个重要内容,它讨论如何使用数值方法解决线性代数问题。
原始的线性代数问题可能非常大或者非常复杂,因此我们常常需要使用计算机进行数值计算。
数值线性代数的方法包括高斯消元法、LU分解、Jacobi迭代法、Gauss-Seidel 迭代法等。
4. 数值积分数值积分是数值分析的一个重要内容,它讨论如何使用数值方法对积分进行数值求解。
在实际问题中,有很多积分问题是无法解析求解的,因此我们需要使用数值方法进行近似求解。
数值积分的方法包括复合辛普森法、复合梯形法、龙贝格积分法等。
三、数值分析的误差分析在数值计算过程中,我们会遇到误差的问题。
这些误差可能来自于测量、舍入、截断等各种原因。
因此,误差分析是数值分析中一个非常重要的内容。