2021届中考数学总复习阶段检测7 圆【含答案】
- 格式:doc
- 大小:550.50 KB
- 文档页数:13
浙教版2021年中考数学总复习《圆》一、选择题1.如图,在⊙O中与∠1一定相等的角是( )A.∠2 B.∠3 C.∠4 D.∠52.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数为()A.60°B.50°C.40°D.30°3.如图,⊙O中,ABDC是圆内接四边形,∠BOC=110°,则∠BDC的度数是()A.110°B.70°C.55°D.125°4.如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A.40°B.60°C.70°D.80°5.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20° B.25° C.40° D.50°6.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)7.已知⊙O的半径为r,其内接正六边形,正四边形,正三角形的边长分别为a,b,c,则a:b:c值为()A.1:2:3B.3:2:1C.1::D.::18.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°二、填空题9.将面积为32π的半圆围成一个圆锥的侧面,则这个圆锥的底面半径为.10.“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,求直径CD的长”。
单元检测七 圆(时间:120分钟 总分:120分)一、选择题(每小题3分,共30分)1.如图,量角器外缘边上有A ,P ,Q 三点,它们所表示的读数分别是180°,70°,30°,则∠P AQ 的大小为( )A .10° B.20° C.30° D.40°2.图中圆与圆之间不同的位置关系有( )A .2种B .3种C .4种D .5种3.如图,在Rt△ABC 中,∠C=90°,∠B=30°,BC =4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是( )A .相离B .相切C .相交D .相切或相交4.如图,⊙O 1,⊙O 2,⊙O 3两两相外切,⊙O 1的半径r 1=1,⊙O 2的半径r 2=2,⊙O 3的半径r 3=3,则△O 1O 2O 3是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形 5.如图,P A ,P B 是⊙O 的切线,AC 是⊙O 的直径,∠P =40°,则∠BAC 的度数是( )A .40° B.30° C.20° D.10°6.已知圆锥的底面半径为1 cm ,母线长为3 cm ,则圆锥的侧面积是( )A .6 cm 2B .3π cm 2C .6π cm 2D .3π2cm 27.如图,正六边形ABCDEF 内接于⊙O,已知弦心距OM =3,则此正六边形的边长为( )A .3B .4C .5D .68.在Rt△ABC 中,斜边AB =4,∠B=60°,将△ABC 绕点B 按顺时针方向旋转60°,顶点C 运动的路线长是( )A .π3B .2π3C .πD .4π39.如图是一个有盖子的圆柱体水杯,底面周长为6π cm ,高为18 cm ,若盖子与杯体的重合部分忽略不计,则制作10个这样的水杯至少需要的材料是( )A .108π cm 2B .1 080π cm 2C .126π cm 2D .1 260π cm 210.如图,在直角坐标系中,四边形OABC 为正方形,顶点A ,C 在坐标轴上,以边AB 为弦的⊙M 与x 轴相切,若点A 的坐标为(0,8),则圆心M 的坐标为( )A .(4,5)B .(-5,4)C .(-4,6)D .(-4,5) 二、填空题(每小题3分,共24分)11.如图,从⊙O 外一点A 引圆的切线AB ,切点为B ,连接AO 并延长交圆于点C ,连接BC .若∠A=26°,则∠ACB 的度数为__________.12.如图,宽为2 cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为__________cm.13.如图,AB 是⊙O 的直径,点C ,D 都在⊙O 上,连接CA ,CB ,DC ,DB .已知∠D=30°,BC =3,则AB 的长是__________.14.如图,⊙O 1,⊙O 2的直径分别为2 cm 和4 cm ,现将⊙O 1向⊙O 2平移,当O 1O 2=__________ cm 时,⊙O 1与⊙O 2相切.15.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB 与底面半径OB 的夹角为α,tan α=43,则圆锥的底面积是__________平方米(结果保留π).16.如图,在半径为5,圆心角等于45°的扇形AOB 内部作一个正方形CDEF ,使点C 在OA 上,点D ,E 在OB 上,点F 在AB 上,则阴影部分的面积为__________(结果保留π).17.如图,在锐角△ABC 中,AC 是最短边,以AC 中点O 为圆心,12AC 长为半径作⊙O,交BC 于E ,过点O 作OD∥BC 交⊙O 于点D ,连接AD ,DC .若∠DAO=65°,则∠B+∠BAD =____________.18.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则S 四边形ADCE ∶S 正方形ABCD 的值为__________.三、解答题(共66分)19.(6分)如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠A P C=60°.(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.(6分)如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG·BF.21.(8分)已知在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧AD上取一点E 使∠EBC=∠DEC,延长BE依次交AC于点G,交⊙O于点H.(1)求证:AC⊥BH;(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长.22.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,P为BC的中点,动点Q从点P出发,沿射线P C方向以2 cm/s的速度运动,以P为圆心,P Q的长为半径作圆.设点Q运动的时间为t s.(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;(2)已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.23. (9分)如图,C是以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)过点O 作线段AC 的垂线OE ,垂足为点E(尺规作图,保留作图痕迹,不写作法); (3)若CD =4,AC =45,求垂线段OE 的长.24. (9分)如图,在△ABC 中,点D 在AC 上,DA=DB ,∠C=∠DBC ,以AB 为直径的⊙O 交AC 于点E ,F 是⊙O 上的点,且AF BF .(1)求证:BC 是⊙O 的切线;(2)若sin C =35,AE =32,求sin F 的值和AF 的长.25.(10分)如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,且AC =CD ,∠ACD =120°.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部分的面积.26.(10分)如图,BD 为⊙O 的直径,AB =AC ,AD 交BC 于点E ,AE =2,ED =4.(1)求证:△ABE∽△ADB; (2)求AB 的长;(3)延长DB 到F ,使得BF =BO ,连接FA ,试判断直线FA 与⊙O 的位置关系,并说明理由.参考答案一、1.B 如图,由圆周角与圆心角的关系,可得∠BAP =35°,∠BAQ =15°, ∴∠PAQ =20°.故选B.2.A3.B 如图,过点C 作CD ⊥AB 于D .∵∠B =30°,BC =4 cm , ∴CD =2 cm ,即点C 到AB 的距离等于⊙C 的半径. 故⊙C 与AB 相切,故选B.4.B 由题意,可得O 1O 2=3,O 2O 3=5,O 1O 3=4. ∵32+42=52,∴△O 1O 2O 3是直角三角形.故选B. 5.C ∵PA ,PB 是⊙O 的切线,∴PA =PB ,OA ⊥PA .∴∠PAB =∠PBA =12(180°-∠P )=70°,∠PAC =90°.∴∠BAC =∠PAC -∠PAB =20°. 6.B 7.D 8.B 9.D 10.D 二、11.32° 12.134如图,EF =8-2=6(cm),DC =2 cm ,设OF =R ,则OD =R -2.在Rt△ODF 中,OD 2+DF 2=OF 2,∴(R -2)2+⎝ ⎛⎭⎪⎫622=R 2,∴R =134.13.6 14.1或315.36π 由题意可知△AOB 为直角三角形,tan α=AO OB ,即43=8OB,解得OB =6,所以底面⊙O 的面积为πR 2=π·62=36π. 16.58π-32如图,连接OF ,∵∠AOB =45°,∠CDO =90°, ∴OD =CD .又∵四边形CDEF 是正方形, ∴CD =EF =DE .设正方形的边长为x ,则OE =2x ,EF =x ,在Rt△OEF 中,OE 2+EF 2=OF 2,(2x )2+x 2=(5)2, 则x =1,∴S 阴影=S 扇形AOB -S △COD -S 正方形CDEF =45360π(5)2-12×1×1-12=58π-32.17.65° 18.58三、19.(1)证明:在△ABC 中,∵∠BAC =∠APC =60°,∠APC =∠ABC ,∴∠ABC =60°,∴∠ACB =180°-∠BAC -∠ABC =180°-60°-60°=60°,∴△ABC 是等边三角形.(2)解:如图,连接OB ,则OB =8,∠OBD =30°.又∵OD ⊥BC 于D ,∴OD =12OB =4.20.证明:∵AB 为⊙O 的直径,∴∠ACB =90°. 又CD ⊥AB ,∴∠BCD =∠A . 又∠A =∠F ,∴∠BCG =∠F .又∠CBG =∠FBC ,∴△BCG ∽△BFC . ∴BC BG =BF BC.∴BC 2=BG ·BF .21.解:(1)证明:连接AD (如图),∵∠DAC =∠DEC ,∠EBC =∠DEC , ∴∠DAC =∠EBC .又∵AC 是⊙O 的直径, ∴∠ADC =90°.∴∠DCA +∠DAC =90°.∴∠EBC +∠DCA =90°.∴∠BGC =180°-(∠EBC +∠DCA )=180°-90°=90°. ∴AC ⊥BH .(2)∵∠BDA =180°-∠ADC =90°,∠ABC =45°,∴∠BAD =45°.∴BD =AD .∵BD =8,∴AD =8. 又∵∠ADC =90°,AC =10,∴DC =AC 2-AD 2=102-82=6. ∴BC =BD +DC =8+6=14.又∵∠BGC =∠ADC =90°,∠BCG =∠ACD , ∴△BCG ∽△ACD .∴CG DC =BC AC.∴CG 6=1410.∴CG =425. 连接AE .∵AC 是直径,∴∠AEC =90°. 又∵EG ⊥AC ,∴△CEG ∽△CAE . ∴CE AC =CG CE .∴CE 2=AC ·CG =425×10=84. ∴CE =84=221.22.解:(1)直线AB 与⊙P 相切.如图,过P 作PD ⊥AB ,垂足为D . 在Rt△ABC 中,∠ACB =90°, ∵AC =6 cm ,BC =8 cm ,∴AB =AC 2+BC 2=10 cm. ∵P 为BC 中点,∴PB =4 cm.∵∠PDB =∠ACB =90°,∠PBD =∠ABC , ∴△PBD ∽△ABC . ∴PD AC =PB AB ,即PD 6=410. ∴PD =2.4(cm).当t =1.2时,PQ =2t =2.4(cm).∴PD =PQ ,即圆心P 到直线AB 的距离等于⊙P 的半径.∴直线AB 与⊙P 相切. (2)∵∠ACB =90°,∴AB 为△ABC 的外接圆的直径.∴OB =12AB =5 cm.连接OP ,如图.∵P 为BC 中点,∴OP =12AC =3 cm.∵点P 在⊙O 内部, ∴⊙P 与⊙O 只能内切. ∴5-2t =3或2t -5=3. ∴t =1或4.∴⊙P 与⊙O 相切时,t 的值为1或4.23.解:(1)证明:连接OC ,∵CD 切⊙O 于点C ,∴OC ⊥CD . 又∵AD ⊥CD ,∴OC ∥AD . ∴∠OCA =∠DAC .∵OC =OA ,∴∠OCA =∠OAC .∴∠OAC =∠DAC .∴AC 平分∠DAB .(2)如图所示.(3)在Rt△ACD 中,CD =4,AC =45,∴AD =AC 2-CD 2=(45)2-42=8.∵OE ⊥AC ,OA =OC ,∴AE =12AC =2 5.∵∠OAE =∠CAD ,∠AEO =∠ADC ,∴△AEO ∽△ADC .∴OE CD =AE AD.∴OE =AE AD ×CD =258×4=5,即垂线段OE 的长为 5. 24.(1)证明:∵DA =DB , ∴∠DAB =∠DBA . 又∵∠C =∠DBC ,∴∠DBA +∠DBC =12×180°=90°.∴AB ⊥BC .又∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线. (2)解:如图,连接BE ,∵AB 是⊙O 的直径, ∴∠AEB=90°. ∴∠EBC+∠C=90°. ∵∠ABC=90°,∴∠ABE+∠EBC=90°. ∴∠C=∠ABE.又∵∠AFE=∠ABE , ∴∠AFE=∠C.∴sin ∠AFE=sin ∠ABE=sin C.∴sin ∠AFE=35.连接BF ,∴∠AFB=90°.在Rt △ABE 中,AB=AEsin ∠ABE=5 2.∵AF =BF , ∴AF=BF=5.25.(1)证明:连接OC . ∵AC =CD ,∠ACD =120°, ∴∠A =∠D =30°. ∵OA =OC ,∴∠ACO =∠A =30°.∴∠OCD =∠ACD -∠ACO =90°. ∴CD 是⊙O 的切线. (2)解:∵∠A =30°, ∴∠COD =2∠A =60°.∴S 扇形OBC =60π×22360=23π.在Rt△OCD 中,CD =OC ·tan 60°=2 3. ∴S Rt△OCD =12OC ·CD =12×2×23=2 3.∴图中阴影部分的面积为23-23π.26.解:(1)证明:∵AB =AC , ∴∠ABC =∠C .∵∠C =∠D ,∴∠ABC =∠D . 又∵∠BAE =∠EAB , ∴△ABE ∽△ADB .(2)∵△ABE ∽△ADB ,∴AB AD =AE AB,∴AB 2=AD ·AE =(AE +ED )·AE =(2+4)×2=12, ∴AB =2 3.(3)直线FA 与⊙O 相切,理由如下:连接OA ,∵BD 为⊙O 的直径,∴∠BAD =90°,∴BD =AB 2+AD 2=12+(2+4)2=43,BF =BO =12BD =2 3.∵AB =23,∴BF =BO =AB ,可证∠OAF =90°, ∴直线FA 与⊙O 相切.。
阶段测评(七) 圆(时间:45分钟 总分:100分)一、选择题(每题4分,共32分)1.如图,点A ,B ,C 在⊙O 上,∠AOB =72°,那么∠ACB =( D )A .28°B .54°C .18°D .36°,(第1题图)),(第2题图)) 2.AB 是⊙O 的直径,PA 切⊙O 于点A ,PO 交⊙O 于点C.连接BC ,假设∠P =40°,那么∠B 等于( B )A .20°B .25°C .30°D .40° 3.如图,▱ABCD 中,∠B =70°,BC =6,以AD 为直径的⊙O 交CD 于点E ,那么弧DE 的长为( B ) A .13π B .23π C .76π D .43π ,(第3题图)),(第4题图)) 4.如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB ,OC ,假设∠BAC 和∠BOC 互补,那么弦BC 的长度为( B )A .3 3B .4 3C .5 3D .6 3 5.如图,⊙O 的直径AB =4,BC 切⊙O 于点B ,OC 平行于弦AD ,OC =5,那么AD 的长为( B ) A .65 B .85C .75D .235,(第5题图)) ,(第6题图))6.如图,矩形ABCD 的边AB =1,BE 平分∠ABC ,交AD 于点E ,假设点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,那么图中阴影局部的面积是( B )A .2-π4B .32-π4 7.一个三角形的三边长分别为5,7,8.那么其内切圆的半径为(C )A .32B .32C . 3D .2 3 8.如图,在Rt △ABC 中,∠C =90°,AC =3.将其绕B 点顺时针旋转一周,那么分别以BA ,BC 为半径的圆形成一圆环.该圆环的面积为( C )A .3πB .3πC .9πD .6π二、填空题(每题4分,共24分)9.⊙O 的半径是5,点A 到圆心O 的距离是7,那么点A 与⊙O 的位置关系是__点A 在⊙O 外__.10.如图是小明制作的一个圆锥形纸帽的示意图.那么围成这个纸帽的纸的面积为__942__cm 2.(π取3.14)(第10题图)(第11题图)11.如图,在△ABC 中,∠ACB =90°,AC =1,AB =2,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,那么弧CD 的长等于__π3__.(结果保存π) 12.如图,BC 是⊙O 的直径,点A 在圆上,连接AO ,AC ,∠AOB =64°,那么∠ACB =__32°__. (第12题图)13.点P 是半径为1的⊙O 外一点,PA 切⊙O 于点A ,且PA =1,AB 是⊙O 的弦,AB =2,连接PB ,那么PB =__1或5__.14.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线y =-34x +3上的动点,过点P 作⊙A 的切线,切点为Q ,那么切线长PQ 的最小值是__22__.三、解答题(共44分)15.(10分)实践与操作如图,△ABC 是直角三角形,∠ACB =90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ;(保存作图痕迹,不写作法.请标明字母)(2)在你按(1)中要求所作的图中,假设BC =3,∠A =30°,求DE ︵的长.(2)∵⊙C 切AB 于点D ,∴CD ⊥AB ,∴∠ADC =90°.∵∠ACB =90°,∠A =30°,∴∠B =∠ACD =60°.在Rt △BCD 中,BC =3,∴CD =BC·sin B =3·sin 60°=332, ∴lDE ︵=60π·332180=32π. 16.(10分)如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C.(1)假设点A(0,6),N(0,2),∠ABN =30°,求点B 的坐标;(2)假设D 为线段NB 的中点,求证:直线CD 是⊙M 的切线.解:(1)∵A 的坐标为(0,6),N(0,2),∴AN =4.∵∠ABN =30°,∠ANB =90°,∴AB =2AN =8,∴由勾股定理可知:NB =AB 2-AN 2=43,又NB ∥x 轴,∴B(43,2);(2)连接MC ,NC.∵AN 是⊙M 的直径,∴∠ACN =90°,∴∠NCB =90°.在Rt △NCB 中,D 为NB 的中点,∴∠CND =∠NCD.∵MC =MN ,∴∠MCN =∠MNC ,∵∠MNC +∠CND =90°,∴∠MCN +∠NCD =90°,即M C ⊥CD ,17.(12分)如图,⊙O 的直径AB =6 cm ,P 是AB 延长线上的一点,过P 点作⊙O 的切线,切点为C ,连接AC. (1)假设∠CPA =30°,求PC 的长;(2)假设点P 在AB 的延长线上运动,∠CPA 的平分线交AC 于点M ,你认为∠CMP 的大小是否发生变化?假设变化,请说明理由;假设不变,求出∠CMP 的值.解:(1)连接OC.∵PC 是⊙O 的切线,∴∠OCP =90°.∵∠CPA =30°,OC =AB 2=3, ∴tan 30°=3PC,即PC =33; (2)∠CMP 的大小不发生变化.总有∠CMP =∠A +∠MPA =45°.理由如下:∵PM 是∠CPA 的平分线,∴∠CPM =∠MPA.∵OA =OC ,∴∠A =∠ACO.在△APC 中,∵∠A +∠ACP +∠CPA =180°,∴2∠A +2∠MPA =90°,∴∠A +∠MPA =45°,∴∠CMP =∠A +∠MPA =45°,即∠CMP 的大小不发生变化.18.(12分)如图,在平面直角坐标系中,直线l :y =-2x -8分别与x 轴,y 轴相交于A ,B 两点,点P(0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P.(1)连接PA ,假设PA =PB ,试判断⊙P 与x 轴的位置关系,并说明理由;(2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?解:(1)⊙P 与x 轴相切.理由如下:∵y =-2x -8与x 轴交于A(-4,0),与y 轴交于B(0,-8),∴OA =4,OB =8.由题意,得OP =-k ,∴PB =PA =8+k.在Rt △AOP 中,k 2+42=(8+k)2,∴k =-3,∴OP 等于⊙P 的半径,∴⊙P 与x 轴相切;(2)设⊙P 1与直线l 交于C ,D ,连接P 1C ,P 1D.当圆心P 在线段OB 上时,作PE ⊥CD 于E.∵△P 1CD 为正三角形,∴DE =12CD =32,P 1D =3,∴P 1E =332. ∵∠AOB =∠P 1EB =90°,∠ABO =∠P 1BE ,△AOB ∽△P 1EB ,∴AO AB =P 1E P 1B ,即445=332P 1B, ∴P 1B =3152,∴P 1O =BO -B 1P =8-3152, ∴P 1⎝⎛⎭⎫0,3152-8,∴k =3152-8; 当圆心P 2在线段OB 延长线上时,同理可得P 2⎝⎛⎭⎫0,-3152-8,∴k =-3152-8, ∴当k =3152-8或-3152-8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.。
2020-2021中考数学专题复习分类练习圆的综合综合解答题含答案解析一、圆的综合1.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E ,OE=BE ,∴DO=DE+OE=(A′E+BE )=AB=OA ,∴A′C 与半圆O 相切;(2)当BA′与半圆O 相切时,则OB ⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB ,∴∠O′AB=30°,∴∠AB O′=60°,∴α=30°,(3)∵点P ,A 不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B ;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B .当α继续增大时,点P 逐渐靠近点B ,但是点P ,B 不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B .综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.2.已知O e 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______o ;()2如图②,若m 6=.①求C ∠的正切值;②若ABC V 为等腰三角形,求ABC V 面积.【答案】()130;()2C ∠①的正切值为34;ABC S 27=V ②或43225. 【解析】【分析】 ()1连接OA ,OB ,判断出AOB V 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==,AB m 5==Q ,OB OC AB ∴==,AOB ∴V 是等边三角形,AOB 60∠∴=o ,1ACB AOB 302∠∠∴==o , 故答案为30;()2①如图2,连接AO 并延长交O e 于D ,连接BD ,AD Q 为O e 的直径,AD 10∴=,ABD 90∠=o ,在Rt ABD V 中,AB m 6==,根据勾股定理得,BD 8=, AB 3tan ADB BD 4∠∴==, C ADB ∠∠=Q ,C ∠∴的正切值为34; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =Q ,AO BO =,CE ∴为AB 的垂直平分线,AE BE 3∴==,在Rt AEO V 中,OA 5=,根据勾股定理得,OE 4=,CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=V ; Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =Q ,OC OB =,AO ∴是BC 的垂直平分线,过点O 作OG AB ⊥于G , 1AOG AOB 2∠∠∴=,1AG AB 32==, AOB 2ACB ∠∠=Q ,ACF AOG ∠∠∴=,在Rt AOG V 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=, 在Rt ACF V 中,3sin ACF 5∠=, 318AF AC 55∴==, 24CF 5∴=, ABC 111824432S AF BC 225525∴=⨯=⨯⨯=V ; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432S 25=V .【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.3.如图,PA 、PB 是⊙O 的切线,A ,B 为切点,∠APB=60°,连接PO 并延长与⊙O 交于C 点,连接AC 、BC .(Ⅰ)求∠ACB 的大小;(Ⅱ)若⊙O 半径为1,求四边形ACBP 的面积.【答案】(Ⅰ)60°;(Ⅱ)33【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∴∠APO=12∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=12AOP=30°,同理可得∠BCP=30°,∴∠ACB=60°;(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴33,OP=2OA=2,∴OP=2OC,而S△OPA=123∴S△AOC=12S△PAO=34,∴S△ACP=33,4∴四边形ACBP的面积=2S△ACP=33.点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.4.已知:如图,△ABC中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.5.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
2020-2021中考数学圆的综合的综合复习含详细答案一、圆的综合1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.【答案】(1)4;(2)35;(3)点E的坐标为(1,2)、(53,103)、(4,2).【解析】分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH=BHHA=1,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).由(1)得:OH=2,BH=4.∵OC与⊙M相切于N,∴MN⊥OC.设圆的半径为r,则MN=MB=MD=r.∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .∵BM =DM ,∴CN =ON ,∴MN =12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12BD =2,∴OF =4,∴OG同理可得:OB AB ,∴BG =12AB .设OR =x ,则RG x .∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=()2﹣(x )2.解得:x ,∴BR 2=OB 2﹣OR 2=(2)2=365,∴BR在Rt △ORB 中,sin ∠BOR =BR OB35. 故答案为35. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.解得:t =1.则OP =CD =DB =1.∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2).②当∠BED =90°时,如图3.∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,∴BEBC =2DB BE OB ∴,∴BE . ∵PE ∥OC ,∴∠OEP =∠BOC .∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO , ∴OEOB =OP BC,2t ,∴OE .∵OE+BE=OB=255,∴t+55t=25.解得:t=53,∴OP=53,OE=55,∴PE=22OE OP-=103,∴点E的坐标为(51033,).③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA=22PE PA+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=22,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.3.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求»AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.4.定义:有一个角是其邻角一半的圆内接四边形叫做圆内倍角四边形.(1)如图1,四边形ABCD内接于⊙O,∠DCB﹣∠ADC=∠A,求证:四边形ABCD为圆内接倍角四边形;(2)在(1)的条件下,⊙O半径为5.①若AD为直径,且sinA=45,求BC的长;②若四边形ABCD中有一个角为60°,且BC=CD,则四边形ABCD的面积是;(3)在(1)的条件下,记AB=a,BC=b,CD=c,AD=d,求证:d2﹣b2=ab+cd.【答案】(1)见解析;(2)①BC=6,②7534或754;(3)见解析【解析】【分析】(1)先判断出∠ADC=180°﹣2∠A.进而判断出∠ABC=2∠A,即可得出结论;(2)①先用锐角三角函数求出BD,进而得出AB,由(1)得出∠ADB=∠BDC,即可得出结论;②分两种情况:利用面积和差即可得出结论;(3)先得出BE=BC=b,DE=DA=b,进而得出CE=d﹣c,再判断出△EBC∽△EDA,即可得出结论.【详解】(1)设∠A=α,则∠DCB=180°﹣α.∵∠DCB﹣∠ADC=∠A,∴∠ADC=∠DCB﹣∠A=180°﹣α﹣α=180°﹣2α,∴∠ABC=180°﹣∠ADC=2α=2∠A,∴四边形ABCD是⊙O内接倍角四边形;(2)①连接BD.∵AD是⊙O的直径,∴∠ABD=90°.在Rt△ABD中,AD=2×5=10,sin∠A=45,∴BD=8,根据勾股定理得:AB=6,设∠A=α,∴∠ADB=90°﹣α.由(1)知,∠ADC=180°﹣2α,∴∠BDC=90°﹣α,∴∠ADB=∠BDC,∴BC=AB=6;②若∠ADC=60°时.∵四边形ABCD是圆内接倍角四边形,∴∠BCD=120°或∠BAD=30°.Ⅰ、当∠BCD=120°时,如图3,连接OA,OB,OC,OD.∵BC=CD,∴∠BOC=∠COD,∴∠OCD=∠OCB=12∠BCD=60°,∴∠CDO=60°,∴AD是⊙O 的直径,(为了说明AD是直径,点O没有画在AD上)∴∠ADC+∠BCD=180°,∴BC∥AD,∴AB=CD.∵BC=CD,∴AB=BC=CD,∴△OAB,△BOC,△COD是全等的等边三角形,∴S四边形ABCD=3S△AOB 32753.Ⅱ、当∠BAD=30°时,如图4,连接OA,OB,OC,OD.∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠BAD=150°.∵BC =CD ,∴∠BOC =∠COD ,∴∠BCO =∠DCO =12∠BCD =75°,∴∠BOC =∠DOC =30°,∴∠OBA =45°,∴∠AOB =90°.连接AC ,∴∠DAC =12∠BAD =15°. ∵∠ADO =∠OAB ﹣∠BAD =15°,∴∠DAC =∠ADO ,∴OD ∥AC ,∴S △OAD =S △OCD . 过点C 作CH ⊥OB 于H .在Rt △OCH 中,CH =12OC =52,∴S 四边形ABCD =S △COD +S △BOC +S △AOB ﹣S △AOD =S △BOC +S △AOB =1522⨯×5+12×5×5=754. 故答案为:7534或754;(3)延长DC ,AB 交于点E .∵四边形ABCD 是⊙O 的内接四边形,∴∠BCE =∠A =12∠ABC . ∵∠ABC =∠BCE +∠A ,∴∠E =∠BCE =∠A ,∴BE =BC =b ,DE =DA =b ,∴CE =d ﹣c . ∵∠BCE =∠A ,∠E =∠E ,∴△EBC ∽△EDA ,∴CE BC AE AD =,∴d c b a b d-=+,∴d 2﹣b 2=ab +cd .【点睛】本题是圆的综合题,主要考查了圆的内接四边形的性质,新定义,相似三角形的判定和性质,等边三角形的判定和性质,正确作出辅助线是解答本题的关键.5.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=65时,试探究△APM与△PCN是否相似,并说明理由.【答案】(1)半径为35;(2)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P与边AC相切,∴BD就是⊙P的半径,在Rt△ABD中,tanA= 1BD2AD ,设BD=x,则AD=2x,∴x2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,∴PH垂直平分MN,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(65)2解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中,MH=()22356-=3,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5,∴3535AM MP ==,35PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.6.如图,已知四边形ABCD 是矩形,点P 在BC 边的延长线上,且PD=BC ,⊙A 经过点B ,与AD 边交于点E ,连接CE .(1)求证:直线PD 是⊙A 的切线;(2)若5sin ∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.7.如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).3831343n 【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭ . ∵h =32a 2,∴1=32-1)2+14a 22, 解得a 2=8313. (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2, 即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭. ∵h 3a n ,∴1=14a n 2+2312n na ⎛⎫- ⎪ ⎪⎝⎭ ,解得a n =24331n n + .8.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线;(2)若AE =4,tan ∠ACD =3,求FC 的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案; (2)根据正切的性质求出EC 的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OCB +∠ACO =90°.∵OB =OC ,∴∠B =∠OCB.又∵∠FCA =∠B ,∴∠FCA =∠OCB ,∴∠FCA +∠ACO =90°,即∠FCO =90°,∴FC ⊥OC ,∴FC 是⊙O 切线.(2)解:∵AB ⊥CD ,∴∠AEC =90°,∴EC=AE 43tan ACE 3∠== 设OA =OC =r ,则OE =OA -AE =r -4.在Rt △OEC 中,OC 2=OE 2+CE 2,即r 2=(r -4)2+32,解得r =8.∴OE =r -4=4=AE.∵CE ⊥OA ,∴CA =CO =8,∴△AOC 是等边三角形,∴∠FOC =60°,∴∠F =30°.在Rt △FOC 中,∵∠OCF =90°,OC =8,∠F =30°,∴OF =2OC =16,∴FC 22OF OC 83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.9.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 53,EG=2,求AE的长.【答案】(1)见解析;(2)60°;(3)7.【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=3m,可得AN=11m,利用直角n AGM,n AEM,勾股定理可以算出m的值并求出AE长.试题解析:(1)解:证明:∵四边形ABCD内接于⊙O.∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°,∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,∵∠ACD=2∠BAC,∴∠BAC=30°+α,∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)解:连接AG,作GN⊥AC,AM⊥EG,∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,∴∠AEG=∠AGE,∴AE=AG,∴EM=MG=1EG=1,2∴∠EAG=∠ECD=2α,∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,∵tan ∠BAC =5311, ∴设NG=53m ,可得AN =11m ,AG =22AG AM -=14m , ∵∠ACG =60°,∴CN=5m ,AM =83m ,MG =22AG AM -=2m =1, ∴m =12, ∴CE=CD =CG ﹣EG =10m ﹣2=3, ∴AE =22AM EM +=221+43()=7.10.已知:如图1,∠ACG=90°,AC=2,点B 为CG 边上的一个动点,连接AB ,将△ACB 沿AB 边所在的直线翻折得到△ADB ,过点D 作DF ⊥CG 于点F .(1)当BC=23 时,判断直线FD 与以AB 为直径的⊙O 的位置关系,并加以证明; (2)如图2,点B 在CG 上向点C 运动,直线FD 与以AB 为直径的⊙O 交于D 、H 两点,连接AH ,当∠CAB=∠BAD=∠DAH 时,求BC 的长.【答案】(1)直线FD 与以AB 为直径的⊙O 相切,理由见解析;(2)22 .【解析】试题分析:(1)根据已知及切线的判定证明得,直线FD 与以AB 为直径的⊙O 相切; (2)根据圆内接四边形的性质及直角三角形的性质进行分析,从而求得BC 的长. 试题解析:(1)判断:直线FD 与以AB 为直径的⊙O 相切.证明:如图,作以AB 为直径的⊙O ;∵△ADB 是将△ACB 沿AB 边所在的直线翻折得到的,∴△ADB ≌△ACB ,∴∠ADB=∠ACB=90°.∵O 为AB 的中点,连接DO ,∴OD=OB=AB,∴点D在⊙O上.在Rt△ACB中,BC=,AC=2;∴tan∠CAB==,∴∠CAB=∠BAD=30°,∴∠ABC=∠ABD=60°,∴△BOD是等边三角形.∴∠BOD=60°.∴∠ABC=∠BOD,∴FC∥DO.∵DF⊥CG,∴∠ODF=∠BFD=90°,∴OD⊥FD,∴FD为⊙O的切线.(2)延长AD交CG于点E,同(1)中的方法,可证点C在⊙O上;∴四边形ADBC是圆内接四边形.∴∠FBD=∠1+∠2.同理∠FDB=∠2+∠3.∵∠1=∠2=∠3,∴∠FBD=∠FDB,又∠DFB=90°.∴EC=AC=2.设BC=x,则BD=BC=x,∵∠EDB=90°,∴EB=x.∵EB+BC=EC,∴x+x=2,解得x=2﹣2,∴BC=2﹣2.11.如图所示,AB 是半圆O 的直径,AC 是弦,点P 沿BA 方向,从点B 运动到点A ,速度为1cm/s ,若10AB cm ,点O 到AC 的距离为4cm .(1)求弦AC 的长;(2)问经过多长时间后,△APC 是等腰三角形.【答案】(1)AC=6;(2)t=4或5或145s 时,△APC 是等腰三角形; 【解析】 【分析】(1)过O 作OD ⊥AC 于D ,根据勾股定理求得AD 的长,再利用垂径定理即可求得AC 的长;(2)分AC=PC 、AP=AC 、AP=CP 三种情况求t 值即可.【详解】(1)如图1,过O 作OD ⊥AC 于D ,易知AO=5,OD=4,从而AD==3,∴AC=2AD=6;(2)设经过t 秒△APC 是等腰三角形,则AP=10﹣t①如图2,若AC=PC ,过点C 作CH ⊥AB 于H ,∵∠A=∠A ,∠AHC=∠ODA=90°,∴△AHC ∽△ADO ,∴AC :AH=OA :AD ,即AC :=5:3,解得t=s , ∴经过s 后△APC 是等腰三角形; ②如图3,若AP=AC ,由PB=x ,AB=10,得到AP=10﹣x ,又∵AC=6,则10﹣t=6,解得t=4s ,∴经过4s 后△APC 是等腰三角形;③如图4,若AP=CP ,P 与O 重合,则AP=BP=5,∴经过5s 后△APC 是等腰三角形.综上可知当t=4或5或s 时,△APC 是等腰三角形.【点睛】本题是圆的综合题,解决问题利用了垂径定理,勾股定理等知识点,解题时要注意当△BPC 是等腰三角形时,点P 的位置有三种情况.12.如图所示,ABC ∆内接于圆O ,CD AB ⊥于D ;(1)如图1,当AB 为直径,求证:OBC ACD ∠=∠;(2)如图2,当AB 为非直径的弦,连接OB ,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作AE BC ⊥于E ,交CD 于点F ,连接ED ,且2AD BD ED =+,若3DE =,5OB =,求CF 的长度.【答案】(1)见解析;(2)成立;(3)145【解析】【分析】 (1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠BOC=2∠A ,求出∠OBC=90°-∠A 和∠ACD=90°-∠A 即可; (3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,在AD 上取DG=BD ,延长CG 交AK 于M ,延长KO 交⊙O 于N ,连接CN 、AN ,求出关于a 的方程,再求出a 即可.【详解】(1)证明:∵AB 为直径,∴ACB 90∠=︒, ∵CD AB ⊥于D , ∴ADC 90∠=︒,∴OBC A 90∠∠+=︒,A ACD 90∠∠+=︒,∴OBC ACD ∠∠=;(2)成立,证明:连接OC ,由圆周角定理得:BOC 2A ∠∠=,∵OC OB =,∴()()11OBC 180BOC 1802A 90A 22∠∠∠∠=︒-=︒-=︒-, ∵ADC 90∠=︒,∴ACD 90A ∠∠=︒-,∴OBC ACD ∠∠=;(3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,∵AE BC ⊥,CD BA ⊥,∴AEC ADC 90∠∠==︒,∴BCD CFE 90∠∠+=︒,BAH DFA 90∠∠+=︒,∵CFE DFA ∠∠=,∴BCD BAH ∠∠=,∵根据圆周角定理得:BAH BCH ∠∠=,∴BCD BAH BCH ∠∠∠==,∴由三角形内角和定理得:CHE CFE ∠∠=, ∴CH CF =,∴EH EF =,同理DF DK =,∵DE 3=,∴HK 2DE 6==,在AD 上取DG BD =,延长CG 交AK 于M ,则AG AD BD 2DE 6=-==,BC GC =,∴MCK BCK BAK ∠∠∠==,∴CMK 90∠=︒,延长KO 交⊙O 于N ,连接CN 、AN ,则NAK 90CMK ∠∠=︒=,∴CM //AN ,∵NCK ADK 90∠∠==︒,∴CN //AG ,∴四边形CGAN 是平行四边形,∴AG CN 6==,作OT CK ⊥于T ,则T 为CK 的中点,∵O 为KN 的中点, ∴1OT CN 32==, ∵OTC 90∠=︒,OC 5=,∴由勾股定理得:CT 4=,∴CK 2CT 8==,作直径HS ,连接KS ,∵HK 6=,HS 10=,∴由勾股定理得:KS 8=, ∴3tan HSK tan HAK 4∠∠==, ∴1tan EAB tan BCD 3∠∠==, 设BD a =,CD 3a =, ∴AD BD 2ED a 6=+=+,11DK AD a 233==+, ∵CD DK CK +=, ∴13a a 283++=, 解得:9a 5=, ∴113DK a 235=+=, ∴2614CF CK 2DK 855=-=-=. 【点睛】本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.13.如图,AB 是O e 的直径,DF 切O e 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交BD 的延长线于点C .(1)求证:ABC C ∠∠=;(2)设CA 的延长线交O e 于E BF ,交O e 于G ,若¼DG的度数等于60o ,试简要说明点D 和点E 关于直线AB 对称的理由.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)作辅助线,连接OD,由DF为⊙O的切线,可得OD⊥DF,又BF⊥DF,AC∥BF,所以OD∥AC,∠ODB=∠C,由OB=OD得∠ABD=∠ODB,从而可证∠ABC=∠C;(2)连接OG,OD,AD,由BF∥OD,»GD=60°,可求证»BG=»»==60°,由平行线GD AD的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.【详解】(1)连接OD,∵DF为⊙O的切线,∴OD⊥DF.∵BF⊥DF,AC∥BF,∴OD∥AC∥BF.∴∠ODB=∠C.∵OB=OD,∴∠ABD=∠ODB.∴∠ABC=∠C.(2)连接OG,OD,AD,DE,DE交AB于H,∵BF∥OD,∴∠OBG=∠AOD,∠OGB=∠DOG,∴»»GD AD==»BG.∵»GD=60°,∴»BG=»»GD AD==60°,∴∠ABC=∠C=∠E=30°,∵OD//CE∴∠ODE=∠E=30°.在△ODH 中,∠ODE=30°,∠AOD=60°,∴∠OHD=90°,∴AB ⊥DE .∴点D 和点E 关于直线AB 对称.【点睛】本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.14.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于C 点,AC 平分∠DAB . (1)求证:AD ⊥CD ;(2)若AD =2,AC=6,求⊙O 的半径R 的长.【答案】(1)证明见解析(2)32【解析】试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则∠1=∠2=12∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则2AD AC AC R ,从而求得R . 试题解析:(1)证明:连接OC ,∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径,∴OC ⊥CD .又∵AC 平分∠DAB ,∴∠1=∠2=12∠DAB . 又∠COB =2∠1=∠DAB ,∴AD ∥OC ,∴AD ⊥CD .(2)连接BC ,则∠ACB =90°,在△ADC 和△ACB 中∵∠1=∠2,∠3=∠ACB =90°,∴△ADC ∽△ACB .∴2AD AC AC R= ∴R =2322AC AD = 15.如图,已知四边形ABCD 内接于⊙O ,点E 在CB 的延长线上,连结AC 、AE ,∠ACB =∠BAE =45°.(1)求证:AE 是⊙O 的切线;(2)若AB=AD ,AC =32,tan ∠ADC=3,求BE 的长.【答案】(1)证明见解析;(2)52BE = 【解析】试题分析:(1)连接OA 、OB ,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A 作AF ⊥CD 于点F,由AB=AD ,得到∠ACD =∠ACB =45°,在Rt △AFC 中可求得AF =3,在Rt △AFD 中求得DF =1,所以AB =AD =10 ,CD = CF +DF =4,再证明△ABE ∽△CDA ,得出BE AB DA CD=,即可求出BE 的长度; 试题解析: (1)证明:连结OA ,OB ,∵∠ACB =45°,∴∠AOB =2∠ACB = 90°,∵OA=OB ,∴∠OAB =∠OBA =45°,∵∠BAE =45°,∴∠OAE =∠OAB +∠BAE =90°,∴OA ⊥AE .∵点A 在⊙O 上,∴AE 是⊙O 的切线.(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°. ∵AB=AD , ∴AB u u u r =AD u u u r∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =∠ACF =45°,∴AF=CF=AC ·sin ∠ACF =3,∵在Rt △AFD 中, tan ∠ADC=3AF DF =, ∴DF =1,∴AB AD ==且CD = CF +DF =4,∵四边形ABCD 内接于⊙O ,∴∠ABE =∠CDA ,∵∠BAE =∠DCA ,∴△ABE ∽△CDA , ∴BE AB DA CD =,∴=∴5 BE .2。
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:2021年 中考数学 专题复习:圆一、选择题(本大题共10道小题)1. 如图,圆锥的底面半径r =6,高h =8,则圆锥的侧面积是( )A .15πB .30πC .45πD .60π2. (2019•广元)如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .5B .4C .13D .4.83. 如图,在△MBC 中,∠MBC =90°,∠C =60°,MB =2 3,点A 在MB上,以AB 为直径作⊙O 与MC 相切于点D ,则CD 的长为( )A. 2B. 3C .2D .34.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC 与∠BOC互补,则弦BC的长为( )A. 33B. 43C. 53D. 635. 如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACFC.△ABD D.△ADE6.如图,在Rt△ABC中,∠ACB=90°,AC=23,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是( )A. 23-23πB. 43-23πC. 23-43πD.23π7. 如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm.若不计容器壁厚度,则球的半径为( )A .5 cmB .6 cmC .7 cmD .8 cm8. 2019·宁波 如图所示,在矩形纸片ABCD 中,AD =6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形BAF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( )A .3.5 cmB .4 cmC .4.5 cmD .5 cm9. 如图,C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在AB︵上的点D 处,且BD ︵l ∶AD ︵l =1∶3(BD ︵l 表示BD︵的长).若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1∶3B .1∶πC .1∶4D .2∶910. 2017·衢州运用图变化的方法研究下列问题:如图AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB =10,CD =6,EF =8,则图阴影部分的面积是( )图A.252πB .10πC .24+4πD .24+5π二、填空题(本大题共7道小题)11. 如图,在平面直角坐标系中,已知C(3,4),以点C 为圆心的圆与y 轴相切.点A ,B 在x 轴上,且OA =OB.P 为⊙C 上的动点,∠APB =90°,则AB 长的最大值为________.12. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.13. (2019•海南)如图,O 与正五边形ABCDE 的边AB 、DE 分别相切于点B 、D ,则劣弧BD 所对的圆心角BOD 的大小为__________度.14. 如图,AB ,CD是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是⊙O的直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值为________.15. 如图,⊙M 的圆心为M (-2,2),半径为2,直线AB 过点A (0,-2),B (2,0),则⊙M 关于y 轴对称的⊙M ′与直线AB 的位置关系是________.16. 如图,已知A ,B ,C 为⊙O 上的三个点,且AC =BC =2,∠ACB =120°,点P 从点A 出发,沿AMB ︵向点B 运动,连接CP 与弦AB 相交于点D ,当△ACD 为直角三角形时,AMP ︵的长为________.17. 如图,AB ,AC 分别为⊙O 的内接正四边形与内接正三角形的一边,而BC 恰好是⊙O 内接正n 边形的一边,则n 等于________.三、解答题(本大题共4道小题)18. 如图,AB 是⊙O 的直径,C 为BD ︵的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF. (1)求证:△BFG ≌△CDG ; (2)若AD =BE =2,求BF 的长.19.如图,△ABC 内接于⊙O ,∠B =60°,CD 是⊙O 的直径,P 是CD 的延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD=5,求⊙O的直径.20. 如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.求证:直线DM是⊙O的切线.21. 如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠CDF=∠EDC;(3)若DE =10,DF =8,求CD 的长.2021年 中考数学 专题复习:圆-答案一、选择题(本大题共10道小题)1. 【答案】D[解析] 圆锥的高、母线和底面半径构成直角三角形,其中r =6,h=8,所以母线长为10,所以圆锥的侧面积=πrl =π×6×10=60π.故选D.2. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴6BC ===, ∵OD AC ⊥,∴142CD AD AC ===,在Rt CBD △中,BD ==C .3. 【答案】C[解析] 在Rt △BCM 中,∠MBC =90°,∠C =60°,∴∠BMC =30°,∴BC =12MC ,即MC =2BC.由勾股定理,得MC2=BC2+MB2.∵MB =2 3,∴(2BC)2=BC2+12,∴BC =2.∵AB 为⊙O 的直径,且AB ⊥BC ,∴BC 为⊙O的切线.又∵CD也为⊙O的切线,∴CD=BC=2.4. 【答案】B 【解析】如解图,延长CO交⊙O于点A′,连接A′B.设∠BAC=α,则∠BOC=2∠BAC=2α,∵∠BAC+∠BOC=180°,∴α+2α=180°,∴α=60°.∴∠BA′C=∠BAC =60°,∵CA′为直径,∴∠A′BC=90°,则在Rt△A′BC中,BC=A′C·sin∠BA′C=2×4×32=43.5. 【答案】B6. 【答案】A【解析】设BC=x,∵D为AB的中点,∴AB=2BC=2x,∴在Rt△ABC中,由勾股定理有(2x)2-x2=(23)2,解得x=2,又∵sin A=BC AB=12,∴∠A=30°,∠B=60°,∴S阴影=S△ABC-S扇形BCD=12×2×23-60×π×22360=23-23π.7. 【答案】A[解析] 作出该球轴截面的示意图如图所示.依题意,得BE=2 cm,AE=CE=4 cm.设OE=x cm,则OA=(2+x)cm.∵OA2=AE2+OE2,∴(2+x)2=42+x2,解得x=3,故该球的半径为5 cm.8. 【答案】B9. 【答案】D10. 【答案】A [解析] 如图作直径CG ,连接OD ,OE ,OF ,DG .∵CG 是⊙O 的直径,∴∠CDG =90°,则DG =CG2-CD2=8.又∵EF =8,∴DG =EF ,∴DG ︵=EF ︵,∴S 扇形ODG =S 扇形OEF .∵AB ∥CD ∥EF ,∴S △OCD =S △ACD ,S △OEF =S △AEF ,∴S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OCD +S 扇形ODG =S 半圆=12π×52=252π.二、填空题(本大题共7道小题)11. 【答案】1612. 【答案】40°13. 【答案】144【解析】五边形ABCDE 是正五边形,∴(52)1801085E A -⨯︒∠=∠==︒.∵AB 、DE 与O 相切,∴90OBA ODE ∠=∠=︒,∴(52)1809010810890144BOD ∠=-⨯----=︒︒︒︒︒︒,故答案为:144.14. 【答案】7 2 [解析] 如图,连接OB ,OC ,BC ,则BC 的长即为P A +PC 的最小值.过点C 作CH ⊥AB 于点H ,则四边形EFCH 为矩形,∴CH =EF ,EH =CF .根据垂径定理,得BE =12AB =4,CF =12CD =3,∴OE =OB2-BE2=52-42=3,OF =OC2-CF2=52-32=4, ∴CH =EF =OE +OF =3+4=7,BH =BE +EH =BE +CF =4+3=7.在Rt △BCH 中,由勾股定理,得BC =7 2,则P A +PC 的最小值为7 2.15. 【答案】相交 [解析] ∵⊙M 的圆心为M (-2,2),则⊙M 关于y 轴对称的⊙M ′的圆心为M ′(2,2).因为M ′B =2>点M ′到直线AB 的距离,所以直线AB 与⊙M ′相交.16. 【答案】43π或2π [解析] 易得⊙O 的半径为2,∠A =30°.要使△ACD 为直角三角形,分两种情况:①当点P 位于AMB ︵的中点时,∠ADC =90°,△ACD 为直角三角形,此时∠ACP =60°,可得∠AOP =120°,所以AMP ︵的长为120π×2180=43π;②当∠ACP =90°时,△ACD 为直角三角形,此时∠AOP =180°,所以AMP ︵的长为180π×2180=2π.综上可得,AMP ︵的长为43π或2π.17. 【答案】12 [解析] 连接OA ,OB ,OC ,如图.∵AB ,AC 分别为⊙O 的内接正四边形与内接正三角形的一边,∴∠AOB =90°,∠AOC =120°,∴∠BOC =∠AOC -∠AOB =30°,∴n =360°30°=12,即BC 恰好是⊙O 内接正十二边形的一边.三、解答题(本大题共4道小题)18. 【答案】解:(1)证明:∵C 为BD ︵的中点,∴CD ︵=BC ︵.∵AB 是⊙O 的直径,且CF ⊥AB ,∴BC ︵=BF ︵,∴CD ︵=BF ︵,∴CD =BF.在△BFG 和△CDG 中,⎩⎨⎧∠F =∠CDG ,∠FGB =∠DGC ,BF =CD ,∴△BFG ≌△CDG(AAS).(2)解法一:如图①,连接OF.设⊙O 的半径为r.∵AB 是⊙O 的直径,∴∠ADB =90°.在Rt △ADB 中,BD2=AB2-AD2,即BD2=(2r)2-22.在Rt △OEF 中,OF2=OE2+EF2,即EF2=r2-(r -2)2.由(1)知CD ︵=BC ︵=BF ︵,∴BD ︵=CF ︵,∴BD =CF ,∴BD2=CF2=(2EF)2=4EF2,即(2r)2-22=4[r2-(r -2)2],解得r =1(不合题意,舍去)或r =3,∴BF2=EF2+BE2=32-(3-2)2+22=12,∴BF =2 3.解法二:如图②,连接OC ,交BD 于点H.∵C 是BD ︵的中点,∴OC ⊥BD ,∴DH =BH.∵OA =OB ,∴OH =12AD =1.∵∠COE =∠BOH ,∠OEC =∠OHB =90°,OC =OB , ∴△COE ≌△BOH(AAS),∴OE =OH =1,∴OC =OB =OE +BE =3.∵CF ⊥AB ,∴CE =EF =OC2-OE2=32-12=2 2,∴BF =BE2+EF2=22+(2 2)2=2 3.19. 【答案】解:(1)证明:如图,连接OA .∵∠B =60°,∴∠AOC =2∠B =120°.又∵OA =OC ,∴∠OAC=∠OCA=30°.又∵AP=AC,∴∠P=∠OCA=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥P A.又∵OA是⊙O的半径,∴P A是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OD=OA.∵PD=5,∴2OA=2PD=2 5,∴⊙O的直径为2 5.20. 【答案】证明:如图,作直径DG,连接BG.∵点E是△ABC的内心,∴AD平分∠BAC,∴∠BAD=∠DAC.∵∠G=∠BAD,∠BDM=∠DAC,∴∠BDM=∠G.∵DG为⊙O的直径,∴∠GBD=90°,∴∠G+∠BDG=90°,∴∠BDM+∠BDG=90°,即∠MDG=90°.又∵OD是⊙O的半径,∴直线DM是⊙O的切线.21. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M.∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.。
浙江省2018年中考数学总复习阶段检测7 圆试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学总复习阶段检测7 圆试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学总复习阶段检测7圆试题的全部内容。
阶段检测7 圆一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为( )A.E、F、G B.F、G、H C.G、H、E D.H、E、F第1题图第2题图第4题图第5题图第6题图2.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连结BD,AD。
若∠ACD=30°,则∠DBA的大小是( )A.15° B.30° C.60°D.75°3.已知正六边形的边长为2,则它的内切圆的半径为( )A.1 B。
错误! C.2 D.2错误!4.如图,圆O通过五边形OABCD的四个顶点.若错误!=150°,∠A=65°,∠D=60°,则错误!的度数为何?( )A.25°B.40° C.50° D.55°5.如图,有一圆O通过△ABC的三个顶点.若∠B=75°,∠C=60°,且错误!的长度为4π,则BC的长度为何?( )A.8 B.8错误! C.16 D.16错误!6.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠BOC的度数为( )A.18° B.36° C.60° D.72°7.如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连结BI、BD、DC。
2020-2021中考数学圆的综合的综合复习含答案解析一、圆的综合1.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形(性质探究)如图1,试探究圆外切四边形的ABCD两组对边AB,CD与BC,AD之间的数量关系猜想结论:(要求用文字语言叙述)写出证明过程(利用图1,写出已知、求证、证明)(性质应用)①初中学过的下列四边形中哪些是圆外切四边形(填序号)A:平行四边形:B:菱形:C:矩形;D:正方形②如图2,圆外切四边形ABCD,且AB=12,CD=8,则四边形的周长是.③圆外切四边形的周长为48cm,相邻的三条边的比为5:4:7,求四边形各边的长.【答案】见解析.【解析】【分析】(1)根据切线长定理即可得出结论;(2)①圆外切四边形是内心到四边的距离相等,即可得出结论;②根据圆外切四边形的对边和相等,即可求出结论;③根据圆外切四边形的性质求出第四边,利用周长建立方程求解即可得出结论.【详解】性质探讨:圆外切四边形的对边和相等,理由:如图1,已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H.求证:AD+BC=AB+CD.证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等.故答案为:圆外切四边形的对边和相等;性质应用:①∵根据圆外切四边形的定义得:圆心到四边的距离相等.∵平行四边形和矩形不存在一点到四边的距离相等,而菱形和正方形对角线的交点到四边的距离相等.故答案为:B,D;②∵圆外切四边形ABCD ,∴AB +CD =AD +BC .∵AB =12,CD =8,∴AD +BC =12+8=20,∴四边形的周长是AB +CD +AD +BC =20+20=40. 故答案为:40;③∵相邻的三条边的比为5:4:7,∴设此三边为5x ,4x ,7x ,根据圆外切四边形的性质得:第四边为5x +7x ﹣4x =8x .∵圆外切四边形的周长为48cm ,∴4x +5x +7x +8x =24x =48,∴x =2,∴此四边形的四边为4x =8cm ,5x =10cm ,7x =14cm ,8x =16cm .【点睛】本题是圆的综合题,主要考查了新定义圆的外切的性质,四边形的周长,平行四边形,矩形,菱形,正方形的性质,切线长定理,理解和掌握圆外切四边形的定义是解答本题的关键.2.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC (1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30. 【解析】 【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案. 【详解】(1)证明:∵CD 与⊙O 相切于点E , ∴OE CD ⊥,∴90CEO ∠=︒, 又∵OC BE P ,∴COE OEB ∠=∠,∠OBE=∠COA ∵OE=OB ,∴OEB OBE ∠=∠, ∴COE COA ∠=∠, 又∵OC=OC ,OA=OE , ∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒, 又∵AB 为⊙O 的直径, ∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形, ∴OF=OB=BF=EF , ∴OE=OB=BE ,∴OBE ∆为等边三角形, ∴60BOE ∠=︒, 而OE CD ⊥, ∴30D ∠=︒. 故答案为30. 【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.3.如图,在平面直角坐标系xoy 中,E (8,0),F(0 , 6). (1)当G(4,8)时,则∠FGE= °(2)在图中的网格区域内找一点P ,使∠FPE=90°且四边形OEPF 被过P 点的一条直线分割成两部分后,可以拼成一个正方形.要求:写出点P 点坐标,画出过P 点的分割线并指出分割线(不必说明理由,不写画法).【答案】(1)90;(2)作图见解析,P (7,7),PH 是分割线. 【解析】试题分析:(1)根据勾股定理求出△FEG 的三边长,根据勾股定理逆定理可判定△FEG 是直角三角形,且∠FGE="90" °.(2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P在以EF为直径的圆上;另一方面,由于四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,从而OP是正方形的对角线,即点P在∠FOE的角平分线上,因此可得P(7,7),PH是分割线.试题解析:(1)连接FE,∵E(8,0),F(0 , 6),G(4,8),∴根据勾股定理,得FG=,EG=,FE=10.∵,即.∴△FEG是直角三角形,且∠FGE=90 °.(2)作图如下:P(7,7),PH是分割线.考点:1.网格问题;2.勾股定理和逆定理;3.作图(设计);4.圆周角定理.4.如图,在锐角△ABC中,AC是最短边.以AC为直径的⊙O,交BC于D,过O作OE∥BC,交OD于E,连接AD、AE、CE.(1)求证:∠ACE=∠DCE;(2)若∠B=45°,∠BAE=15°,求∠EAO的度数;(3)若AC=4,23CDFCOESS∆∆=,求CF的长.【答案】(1)证明见解析,(2)60°;(3)43【解析】 【分析】(1)易证∠OEC =∠OCE ,∠OEC =∠ECD ,从而可知∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G ,易证∠AGC =∠B +∠BAG =60°,由于OE ∥BC ,所以∠AEO =∠AGC =60°,所以∠EAO =∠AEO =60°; (3)易证12COE CAE S S =V V ,由于23CDF COE S S =V V ,所以CDF CAE S S V V =13,由圆周角定理可知∠AEC =∠FDC =90°,从而可证明△CDF ∽△CEA ,利用三角形相似的性质即可求出答案. 【详解】(1)∵OC =OE ,∴∠OEC =∠OCE .∵OE ∥BC ,∴∠OEC =∠ECD ,∴∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G .∵∠AGC 是△ABG 的外角,∴∠AGC =∠B +∠BAG =60°. ∵OE ∥BC ,∴∠AEO =∠AGC =60°. ∵OA =OE ,∴∠EAO =∠AEO =60°.(3)∵O 是AC 中点,∴12COE CAE S S =V V . 23CDF COE S S =V V Q,∴CDF CAE SS V V =13. ∵AC 是直径,∴∠AEC =∠FDC =90°. ∵∠ACE =∠FCD ,∴△CDF ∽△CEA ,∴CF CA =3,∴CF =3CA =43.【点睛】本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识.5.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O经过D、A、B三点,OD∥BC.(1)求证:BC与⊙O相切;(2)若OD=15,AE=7,求BE的长.【答案】(1)见解析;(2)18.【解析】分析:(1)连接OB,求出∠DOB度数,根据平行线性质求出∠CBO=90°,根据切线判定得出即可;(2)延长BO交⊙O于点F,连接AF,求出∠ABF,解直角三角形求出BE.详解:(1)证明:连接OB.∵∠A=45°,∴∠DOB=90°.∵OD∥BC,∴∠DOB+∠CBO=180°.∴∠CBO=90°.∴直线BC是⊙O的切线.(2)解:连接BD.则△ODB是等腰直角三角形,∴∠ODB=45°,BD=OD=15,∵∠ODB=∠A,∠DBE=∠DBA,∴△DBE∽△ABD,∴BD2=BE•BA,∴(15)2=(7+BE)BE,∴BE=18或﹣25(舍弃),∴BE=18.点睛:本题考查了切线的判定,圆周角定理,解直角三角形等知识点,能综合运用定理进行推理和计算是解此题的关键,题目综合性比较强,难度偏大.6.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
2021中考数学考点综合复习专题【圆】解答题考点专项巩固复习(含解析)1.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC 交于点M、N.(1)过点N作NE⊥AB于点E,求证:NE是⊙O的切线;(2)连接MD,若MD=5,BE=4,求DE的长.2.如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE∥AC交CB 的延长线于E.(1)求证:DE是⊙O的切线;(2)若∠A=30°,BD=3,求BC的长.3.如图,AB是⊙O的弦,点C为半径OA上的一点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.(1)判断BD与⊙O的位置关系,并说明理由.(2)若CD=15,BE=10,tan A=,求⊙O的直径.4.如图,AB是⊙O的直径,AC是⊙O的弦,D是的中点,BD交AC于点E,F是AC延长线一点,且FE=FB.(1)求证:FB是⊙O的切线;(2)已知AB=2,AD=2,求FB的长.5.如图,AC为⊙O的直径,B为AC延长线上一点,且∠BAD=∠ABD=30°,BC=1,AD为⊙O 的弦,连接BD,连接DO并延长交⊙O于点E,连接BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.6.如图,AB是⊙O的直径,AC⊥AB,E为⊙O上的一点,AC=EC,延长CE交AB的延长线于点D.(1)求证:CE为⊙O的切线;(2)若OF⊥AE,OF=1,∠OAF=30°,求图中阴影部分的面积.(结果保留π)7.如图是输水管的切面,阴影部分是有水部分,其中水面AB宽10cm,水最深3cm,求输水管的半径.8.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作直线l交CA的延长线于点P,且∠ADP=∠BCD,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)求证:PD是⊙O的切线;(3)若AC=6,BC=8,求线段PD的长.9.如图,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的半径.10.如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD∥OC交⊙O于点D,连接CD.(1)求证:CD是⊙O的切线.(2)若AD=4,直径AB=12,求线段BC的长.参考答案1.(1)证明:连接ON,如图1所示:则ON=OC,∴∠OCN=∠ONC,∵CD是斜边AB上的中线,∴CD=BD=AB,∴∠OCN=∠B,∴∠ONC=∠B,∴ON∥AB,∵NE⊥AB,∴NE⊥ON,∴NE是⊙O的切线;(2)解:连接ND,如图2所示:∵CD为⊙O的直径,∴∠CND=∠CMD=90°,∵∠ACB=90°,∴四边形MDNC为矩形,∴MD=NC=5,∵∠CD=BD,∠CND=90°,∴BN=NC=5,NE===3,∵∠DNB=∠NEB=90°,∠B=∠B,∴△DNB∽△NEB,∴=,即=,∴BD=,∴DE=BD﹣BE=﹣4=.2.解:(1)如图1,连接OD,∵OB=OD,∴∠ODB=∠OBD.∵BD是△ABC的外角平分线,∴∠DBE=∠OBD.∴∠DBE=∠ODB,∴BE∥OD,∵AB是⊙O的直径,∴∠C=90°,∵DE∥AC,∴∠DEB=90°,∴OD⊥DE且点D在⊙O上.∴直线DE与⊙O相切;(2)如图1,连接OC,∵∠A=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形.∴∠OBC=60°,∵BE∥OD,∴∠DOB=60°,∴∠DOB=∠BOC,∴BD=BC=3.3.解:(1)BD是⊙O的切线.理由如下:连接OB,∵OB=OA,DE=DB,∴∠A=∠OBA,∠DEB=∠ABD,又∵CD⊥OA,∴∠A+∠AEC=∠A+∠DEB=90°,∴∠OBA+∠ABD=90°,∴OB⊥BD,∴BD是⊙O的切线.(2)如图,过点D作DG⊥BE于点G,∵DE=DB,∴EG=BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED,∴∠GDE=∠A,∴△ACE∽△DGE,∴tan∠EDG=tan A=,即DG=12,在Rt△EDG中,∵DG==12,∴DE=13,∵CD=15,∴CE=2,∵=,∴AC=,AE==,∴AB=BE+AE=,∵OF⊥AB,∴AF=FB=,∵△ACE∽△AOF∴=,∴=,∴AO=∴⊙O的直径为2OA=.4.(1)证明:∵AB是⊙O的直径,∴∠D=90°,∵,∴∠ABD=∠DAC,∵FB=FE,∴∠FBE=∠FEB,又∴∠FEB=∠AED,∴∠FBE+∠ABD=∠AED+∠ADC=90°,∴FB⊥OB,∴FB是⊙O的切线;(2)解:在Rt△ABD中,由勾股定理得:BD=,∵∠ABD=∠DAC,∠D=∠D,∴△ADB∽△EDA,∴,∴,∴DE=1,在Rt△AED中,由勾股定理得,AE==,设FB=FE=x,在Rt△ABF中,由勾股定理得:,解得:x=.即FB的长为.5.解:(1)证明:∵OA=OD,∠BAD=∠ABD=30°,∴∠BAD=∠ADO=30°,∴∠DOB=∠BAD+∠ADO=60°,∴∠ODB=∠180°﹣∠DOB﹣∠ABD=90°,∵OD为⊙O的半径,∴直线BD是⊙O的切线;(2)∵∠ODB=90°,∠ABD=30°,∴OD=OB,∵OC=OD,∴BC=OC=1,∴⊙O的半径OD的长为1;(3)∵OD=1,∴DE=2,BD=,∴BE==,如图,连接DM,∵DE为⊙O的直径,∴∠DME=90°,∴∠DMB=90°,∵∠EDB=90°,∴∠EDB=∠DME,又∵∠DBM=∠EBD,∴△BMD∽△BDE,∴=,∴BM===.∴线段BM的长为.6.(1)证明:连接OE,∵AC=EC,OA=OE,∴∠CAE=∠CEA,∠FAO=∠FEO,∵AC⊥AB,∴∠CAD=90°,∴∠CAE+∠EAO=90°,∴∠CEA+∠AEO=90°,即∠CEO=90°,∴OE⊥CD,∴CE为⊙O的切线;(2)解:∵∠OAF=30°,OF=1∴AO=2;∴AF=即AE=;∴;∵∠AOE=120°,AO=2;∴;=.∴S阴影7.解:设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,则AD=BD=AB=×10=5cm,∵最深地方的高度是3cm,∴OD=r﹣3,在Rt△OBD中,OB2=BD2+OD2,即r2=52+(r﹣3)2,解得r=(cm),∴输水管的半径为cm.8.(1)证明:∵∠ADP=∠BCD,∠BCD=∠BAD,∴∠ADP=∠BAD,∴DP∥AB;(2)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ACB=90°,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°,∴∠DAB=∠ABD=45°,∴△DAB是等腰直角三角形,∵OA=OB,∴OD⊥AB,∵DP∥AB,∴OD⊥PD,∴PD是⊙O的切线;(3)解:在Rt△ACB中,AB===10,∵△DAB为等腰直角三角形,∴AD=AB=5,∵AE⊥CD,∴△ACE为等腰直角三角形,∴AE=CE=AC=3,在Rt△AED中,DE===4,∴CD=CE+DE=3+4=7,∵∠PDA=∠PCD,∠P=∠P,∴△PDA∽△PCD,∴====,∴PA=PD,PC=PD,∵PC=PA+AC,∴PD+6=PD,解得:PD=.9.证明:(1)∵AB为⊙O的直径,∴∠ACB=90°,∠BCD与∠ACE互余,又∠ACE与∠CAE互余,∴∠BCD=∠BAC.∵OA=OC,∴∠OAC=∠OCA.∴∠ACO=∠BCD;(2)设⊙O的半径为Rcm,则OE=OB﹣EB=(R﹣8)cm,CE=CD=×24=12cm,在Rt△CEO中,由勾股定理可得:OC2=OE2+CE2,即R2=(R﹣8)2+122,解得R=13.答:⊙O的半径为13cm.10.(1)证明:连接OD,如图所示:∵OA=OD,∴∠ODA=∠OAD.∵AD∥CO,∴∠COD=∠ODA,∠COB=∠OAD.∴∠COD=∠COB.∵OD=OB,OC=OC,∴△ODC≌△OBC(SAS).∴∠ODC=∠OBC.∵CB是圆O的切线且OB为半径,∴∠CBO=90°.∴∠CDO=90°.∴OD⊥CD.又∵CD经过半径OD的外端点D,∴CD为圆O的切线.(2)解:连接BD,∵AB是直径,∴∠ADB=90°.在直角△ADB中,BD===8,∵∠ADB=∠OBC=90°,且∠COB=∠BAD,∴△ADB∽△OBC.∴=,即=.∴BC=12.。
2021届中考数学总复习 阶段检测7 圆一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.在公园的O 处附近有E 、F 、G 、H 四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O 为圆心,OA 为半径的圆形水池,要求池中不留树木,则E 、F 、G 、H 四棵树中需要被移除的为( )A .E 、F 、GB .F 、G 、HC .G 、H 、ED .H 、E 、F第1题图 第2题图 第4题图 第5题图 第6题图 2.如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA ,CD 是⊙O 的切线,A ,D 为切点,连结BD ,AD.若∠ACD =30°,则∠DBA 的大小是( )A .15°B .30°C .60°D .75° 3.已知正六边形的边长为2,则它的内切圆的半径为( ) A .1 B. 3 C .2 D .234.如图,圆O 通过五边形OABCD 的四个顶点.若ABD ︵=150°,∠A =65°,∠D =60°,则BC ︵的度数为何?( )A .25°B .40°C .50°D .55°5.如图,有一圆O 通过△ABC 的三个顶点.若∠B =75°,∠C =60°,且BC ︵的长度为4π,则BC 的长度为何?( )A.8 B.8 2 C.16 D.1626.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠BOC的度数为( )A.18° B.36° C.60° D.72°7.如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连结BI、BD、DC.下列说法中错误的一项是( )第7题图A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合8.已知∠BAC=90°,半径为r的圆O与两条直角边AB,AC都相切,设AB=a(a>r),BE与圆O相切于点E.现给出下列命题:①当∠ABE=60°时,BE=3r;②当∠ABE=90°时,BE=r;则下列判断正确的是( )A.命题①是真命题,命题②是假命题 B.命题①②都是真命题C.命题①是假命题,命题②是真命题 D.命题①②都是假命题9.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?( )第9题图A.1 B.2 C.23-2 D.4-2310.如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:第10题图①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )A.②④⑤⑥ B.①③⑤⑥C.②③④⑥ D.①③④⑤二、填空题(本大题有6小题,每小题5分,共30分)11.如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为____________________.第11题图第12题图第13题图12.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB 的大小为 度.13.如图,正方形ABCD 内接于半径为2的⊙O ,则图中阴影部分的面积为___________. 14.如图,在Rt △ABC 中,∠A =90°,BC =2 2.以BC 的中点O 为圆心的圆分别与AB 、AC 相切于D 、E 两点,则DE ︵的长为____________________.第14题图 第15题图 第16题图15.如图,菱形ABCD ,∠A =60°,AB =4,以点B 为圆心的扇形与边CD 相切于点E ,扇形的圆心角为60°,点E 是CD 的中点,图中两块阴影部分的面积分别为S 1,S 2,则S 2-S 1=________.16.如图,直线l :y =-12x +1与坐标轴交于A ,B 两点,点M (m ,0)是x 轴上一动点,以点M 为圆心,2个单位长度为半径作⊙M ,当⊙M 与直线l 相切时,则m 的值为 .三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠C =45°.第17题图(1)求∠ABD 的度数;(2)若∠CDB =30°,BC =3,求⊙O 的半径.18.如图,已知△ABC,∠B=40°.第18题图(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连结EF,DF,求∠EFD的度数.19.已知△ABC,以AB为直径的⊙O分别交AC于D,交BC于E,连结ED,若ED=EC.第19题图(1)求证:AB=AC;(2)若AB=4,BC=23,求CD的长.20.如图,在⊙O 中,半径OA⊥OB ,过OA 的中点C 作FD∥OB ,交⊙O 于D 、F 两点,且CD =3,以O 为圆心,OC 为半径作CE ︵,交OB 于E 点.第20题图(1)求⊙O 的半径OA 的长; (2)计算阴影部分的面积.21.已知AB 是半圆O 的直径,点C 是半圆O 上的动点,点D 是线段AB 延长线上的动点,在运动过程中,保持CD =OA.(1)当直线CD 与半圆O 相切时(如图1),求∠ODC 的度数;(2)当直线CD 与半圆O 相交时(如图2),设另一交点为E ,连结AE ,若AE∥OC ,求∠ODC 的度数.第21题图22.如图,已知AB 是⊙O 的直径,AC 是⊙O 的弦,过点C 作⊙O 的切线交BA 的延长线于点P ,连结BC.(1)求证:∠PCA =∠B ;(2)已知∠P =40°,AB =12cm ,点Q 在优弧ABC 上,从点A 开始逆时针运动到点C 停止(点Q 与点C 不重合),当△ABQ 与△ABC 的面积相等时,求动点Q 所经过的弧长.第22题图23.如图,AB 为⊙O 的直径,点E 在⊙O 上,C 为BE ︵的中点,过点C 作直线CD⊥AE 于D ,连结AC 、BC.第23题图(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若AD=2,AC=6,求AB的长.24.定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,点D、B分别在x轴和y轴上,且D(8,0),B(0,6),点A在BD边上,且AB=2.试在x轴上找一点C,使ABOC是对等四边形,请直接写出所有满足条件的C点坐标.第24题图参考答案 阶段检测7 圆一、1—5.ADBBB 6—10.DDBCD二、11.50° 12.25 13.π-2 14.π2 15.23-π 16.2-25或2+2 5三、17.(1)∵∠C=45°,∴∠A =∠C=45°,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠ABD =45°; (2)连结AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠CAB =∠CDB=30°,BC =3,∴AB =6,∴⊙O 的半径为3.第17题图 第18题图18.(1)如图,圆O 即为所求. (2)连结OD ,OE ,则OD⊥AB,OE ⊥BC ,所以∠ODB=∠OEB =90°,又因为∠B=40°,所以∠DOE=140°,所以∠EFD=70°.19.(1)证明:∵ED=EC ,∴∠EDC =∠C,∵∠EDC =∠B,∴∠B =∠C,∴AB =AC ; (2)连结AE ,∵AB 为直径,∴AE ⊥BC ,由(1)知AB =AC ,∴BE =CE =12BC =3,∵CE ·CB =CD·CA,AC =AB =4,∴3·23=4CD ,∴CD =32.第19题图20(1) 连结OD ,∵OA ⊥OB ,∴∠AOB =90°,∵CD ∥OB ,∴∠OCD =90°,在Rt △OCD 中,∵C 是AO 中点,CD =3,∴OD =2CO ,设OC =x ,∴x 2+(3)2=(2x)2,∴x =1,∴OD =2,∴⊙O 的半径为2. (2)∵sin ∠CDO =CO OD =12,∴∠CDO =30°,∵FD ∥OB ,∴∠DOB =∠ODC =30°,∴S 阴=S △CDO +S 扇形OBD -S 扇形OCE =12×1×3+30π×22360-90π·12360=32+π12.第20题图21.(1)如图1,连结OC ,∵OC =OA ,CD =OA ,∴OC =CD ,∴∠ODC =∠COD,∵CD 是⊙O 的切线,∴∠OCD =90°,∴∠ODC =45°; (2)如图2,连结OE.∵CD=OA ,∴CD =OC =OE =OA ,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x ,则∠2=∠3=∠4=x.∴∠AOE =∠OCD =180°-2x.∵∠6=∠1+∠2=2x.∵OE =OC ,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即:x +2x +2x =180°,∴x =36°.∴∠ODC =36°.第21题图 22.(1)如图1:连结OC ,∵PC 是⊙O 的切线,∴∠PCO =90°,∴∠1+∠PCA=90°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠2+∠B=90°,∵OC =OA ,∴∠1=∠2,∴∠PCA =∠B; (2)∵∠P=40°,∴∠AOC =50°,∵AB =12,∴AO =6,当∠AOQ=∠AOC=50°时,△ABQ 与△ABC 的面积相等,∴点Q 所经过的弧长=50π×6180=5π3,当Q 在AB 下方,∠BOQ =∠AOC=50°时,即∠AOQ=130°时,△ABQ 与△ABC 的面积相等,∴点Q 所经过的弧长=130π·6180=13π3,当Q 在AB 上方,∠BOQ =50°时,即∠AOQ=230°时,△ABQ 与△ABC 的面积相等,∴点Q 所经过的弧长=230π·6180=23π3,∴当△ABQ 与△ABC 的面积相等时,动点Q 所经过的弧长为5π3或13π3或23π3.第22题图23.(1)相切,连结OC ,∵C 为BE ︵的中点,∴∠1=∠2,∵OA =OC ,∴∠1=∠ACO,∴∠2=∠ACO,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切; (2)方法1:连结CE ,∵AD =2,AC =6,∠ADC =90°,∴CD =AC 2-AD 2=2,∵CD 是⊙O 的切线,∴CD 2=AD·DE,∴DE =1,∴CE =CD 2+DE 2=3,∵C 为BE ︵的中点,∴BC =CE =3,∵AB 为⊙O的直径,∴∠ACB =90°,∴AB =AC 2+BC 2=3.方法2:∵∠DCA=∠B,易得△ADC∽△ACB,∴AD AC =AC AB,∴AB =3.第23题图24.(1)如图1:四边形ABCD 为对等四边形; (2)证明:∵AB 是⊙O 的直径,∴∠ADB=90°,∠ACB =90°,在Rt △ADB 和Rt △BCA 中,⎩⎪⎨⎪⎧BD =AC ,BA =AB ,∴Rt △ADB ≌Rt △BCA ,∴AD =BC ,又∵AB 是⊙O 的直径,∴AB ≠CD ,∴四边形ABCD 是对等四边形; (3)∵D(8,0),B(0,6),∴OD =8,OB =6,∴BD =OB 2+OD 2=10,∵AB =2,∴AD =8,如图3,当OC =AB时,C 点坐标为(2,0),如图4,当AC =OB 时,AC =6,作AE⊥OD 于E ,则AE∥OB,∴AE OB=DE DO =DA DB ,即AE 6=DE 8=810,解得AE =245,DE =325,∴EC =AC 2-AE 2=185,OE =OD -DE =85,则OC =OE +EC =265,∴C 点坐标为⎝ ⎛⎭⎪⎫265,0,∴四边形ABOC 为对等四边形时,C 点坐标为(2,0)或⎝ ⎛⎭⎪⎫265,0.第24题图。