北航研究生数理统计第二次大作业-聚类分析
- 格式:pdf
- 大小:730.13 KB
- 文档页数:16
聚类分析基本原理及其案例一、相似度的测量聚类分析是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为Q 型聚类和R 型聚类。
Q 型聚类是对样品进行分类处理,R 型聚类是对变量进行分类处理。
1.1 样品相似性的度量在聚类分析之前,首先要分析样品间的相似性。
Q 型聚类分析,常用距离来测度样品之间的相似程度。
每个样品有p 个指标(变量)从不同方面描述其性质,形成一个p 维的向量。
如果把这n 个样品看成p 维空间中的n 个点,则两个样品间的相似程度就可用p 维空间中的亮点距离公式来度量。
两点距离公式可以从不同角度进行定义,令ij d 表示样品i X 与j X 的距离,存在以下的距离公式。
1.1.1 闵科夫斯基距离1/1()(||)pq q ij ik jk k d q X X ==-∑闵科夫斯基距离又称闵氏距离,按q 值的不同又可分成 1)绝对距离(1q =)1(1)||pij ik jk k d X X ==-∑2)欧几里得距离(2q =)21/21(2)(||)pij ik jk k d X X ==-∑3)切比雪夫距离(q =∞)1()max ||ij ik jk k pd X X ≤≤∞=-欧几里得距离较为常用,但在解决多元数据的分析问题时,他就显得不足。
一是他没有考虑到总体变异对“距离”远近的影响,显然一个变异程度大的总体可能与更多样品近些,即使他们的欧几里得距离不一定最近;另外,欧几里得距离收到变量的量纲影响,这对多元数据的处理时不利的。
为了克服这方面的不足,可用“马氏距离“的概念。
1.1.2 马氏距离设i X 与j X 是来自均值向量为μ,协方差为Σ(>0)的总体G 中的p 维样品,则两个样品间的马氏距离为21()()'()ij i j i j d M -=--X X ΣX X马氏距离又称为广义欧几里得距离。
显然,马氏距离与上述各种距离的主要不同时它考虑了观测变量之间的关联性。
应用数理统计作业二学号:姓名:电话:二〇一四年十二月对NBA球队的聚类分析和判别分析摘要:NBA联盟作为篮球的最高殿堂深受广大球迷的喜爱,联盟的30支球队大家也耳熟能详,本文选取NBA联盟30支球队2013-2014常规赛赛季场均数据。
利用spss软件通过聚类分析对27个地区进行实力类型分类,并利用判断分析对其余3支球队对分类结果进行验证。
可以看出各球队实力类型与赛季实际结果相吻合。
关键词:聚类分析,判别分析,NBA目录1. 引言 (4)2、相关统计基础理论 (5)2.1、聚类分析 (5)2.2,判别分析 (6)3.聚类分析 (7)3.1数据文件 (7)3.2聚类分析过程 (9)3.3 聚类结果分析 (11)4、判别分析 (12)4.1 判别分析过程 (12)4.2判别检验 (17)5、结论 (20)参考文献 (21)致谢 (22)1. 引言1896年,美国第一个篮球组织"全国篮球联盟(简称NBL)"成立,但当时篮球规则还不完善,组织机构也不健全,经过几个赛季后,该组织就名存实亡了。
1946年4月6日,由美国波士顿花园老板沃尔特.阿.布朗发起成立了“美国篮球协会”(简称BAA)。
1949年在布朗的努力下,美国两大篮球组织BAA和NBL合并为“全国篮球协会”(简称NBA)。
NBA季前赛是 NBA各支队伍的热身赛,因为在每个赛季结束后,每支球队在阵容上都有相当大的变化,为了让各队磨合阵容,熟悉各自球队的打法,确定各队新赛季的比赛阵容、同时也能增进队员、教练员之间的沟通,所以在每个赛季开始之前,NBA就举办若干场季前赛,使他们能以比较好的状态投入到漫长的常规赛的比赛当中。
为了扩大NBA在全球的影响,季前赛有约三分之一的球队在美国以外的国家举办。
从总体上看,NBA的赛程安排分为常规赛、季后赛和总决赛。
常规赛采用主客场制,季后赛和总决赛采用七场四胜制的淘汰制。
[31]NBA常规赛从每年的11月的第一个星期二开罗,到次年的4月20日左右结束。
实验二聚类分析
聚类分析原理简介:聚类分析又称群分析,是一种数学分类的方法。
其基本思想如下首先认为所研究的对象存在不同的相似性,根据各种观测指标,找出一些能够度量样品之间相识程度的统计量,以此为依据,把一些相识程度大的聚为一类,关系疏远的聚合到更大的一个分类单位,直到所有的样品聚合完毕。
形成一个有小到大的分类系统,最后把分类系统用图形表示出来即是谱系图。
根据分类对象的不同又可以分为两类R型聚类和Q型聚类。
Case Processing Summary(a,b)
a Squared Euclidean Distance used
b Average Linkage (Between Groups)
Agglomeration Schedule
第一列表示聚类分析的第几步,第二三列表示聚成一类的样本,第七列表示结果要到第几部用到。
Vertical Icicle
样品分类冰柱图
Dendrogram
样品分类谱系图
可知样品分为三类,3、4为第一类,1、2为第二大类,5为孤立元素。
应用数理统计聚类分析与判别分析(第二次作业)学院:姓名:学号:2015年12月目录我国部分城市经济发展水平的聚类分析和判别分析................................. - 1 - 摘要:................................................................... - 1 -1. 引言 ................................................................ - 1 -2. 相关统计基础理论 .................................................... - 1 -2.1 聚类分析......................................................... - 1 -2.2 判别分析......................................................... - 2 -3. 模型建立 ............................................................ - 3 -3.1 设置变量......................................................... - 3 -3.2 数据收集和整理................................................... - 3 -4. 数据结果及分析 ...................................................... - 5 -4.1 聚类分析......................................................... - 5 -4.2 判别分析......................................................... - 7 -5. 结论 ............................................................... - 11 -参考文献................................................................ - 12 -我国部分城市经济发展水平的聚类分析和判别分析摘要:本文基于《中国统计年鉴》(2014年版)统计数据,统计全国各省市居民消费情况,包括各地区农村居民人均纯收入、农村居民人均现金消费、城镇居民人均可支配收入、城镇居民人均现金消费情况共4个指标,利用统计软件SPSS综合考虑各指标,对所选地区进行K-Means 聚类分析,利用Fisher 线性判别待判地区类型,进一步验证所建模型的有效性。
数理统计大作业(2)全国各省、市及自治区产业类型聚类分析和判别分析院(系)名称航空科学与工程学院专业名称飞行器设计与工程学生姓名熊蕾学号ZY15054022015年12月全国各省、市及自治区产业类型聚类分析和判别分析ZY1505402 熊蕾摘要本文从中国统计年鉴(2014)中获得了2013年按三次产业分地区生产总值的数据,按各省的第一产业、第二产业和第三产业产值所占地区生产总值的比值不同,对全国23个省、4个直辖市和5个少数民族自治区进行聚类分析和判别分析。
关键词经济类型聚类分析判别分析一、引言产业是指具有某种同类属性的经济活动的集合或系统,是经济社会的物质生产部门。
世界各国把各种产业划分为三大类:第一产业、第二产业和第三产业。
第一产业是指提供生产资料的产业,包括种植业、林业、畜牧业、水产养殖业等直接以自然物为对象的生产部门。
第二产业是指加工产业,利用基本的生产资料进行加工并出售,包括采矿业、制造业、电力、燃气和水的生产和供应业和建筑业。
第三产业又称服务业,它是指第一、第二产业以外的其他行业。
第三产业行业广泛。
包括交通运输业、通讯业、商业、餐饮业、金融保险业、行政、家庭服务等非物质生产部门。
我国区域经济发展不平衡,各地区的产业类型和产业结构不尽相同,因此可以以各省的第一产业、第二产业和第三产业产值所占地区生产总值的比值对全国的23个省、4个直辖市和5个少数民族自治区进行分类。
二、聚类分析2.1数据输入从中国统计年鉴中得到了2013年按三次产业分地区生产总值的数据,如下表所示,产值单位均为亿元,由于各省经济发展程度不同,地区生产总值有较大的差别,因此要算出各地区三大产业所占的比值来进行聚类和判别分析。
表 1 原始数据2.2聚类分析从表1中选出湖南、安徽和西藏三个地区的数据以待判别,对其余地区的数据进行聚类分析。
表 2 聚类分析数据将表2数据导入SPSS,进行系统聚类分析,得到以下结果:表 3 聚类表阶群集组合系数首次出现阶群集下一阶群集 1 群集 2 群集 1 群集 21 7 13 .052 0 0 92 6 12 .109 0 0 133 14 20 .174 0 0 54 3 21 .244 0 0 95 14 27 .336 3 0 166 5 24 .465 0 0 127 8 23 .602 0 0 198 11 17 .742 0 0 109 3 7 .952 4 1 1510 10 11 1.163 0 8 1711 18 28 1.381 0 0 1812 5 26 1.641 6 0 2013 4 6 1.977 0 2 1614 16 25 2.315 0 0 1815 3 15 2.673 9 0 2016 4 14 3.149 13 5 2317 2 10 3.678 0 10 2318 16 18 4.238 14 11 2119 8 22 4.814 7 0 2120 3 5 5.523 15 12 2521 8 16 6.429 19 18 2422 1 9 7.640 0 0 2623 2 4 9.318 17 16 2524 8 19 11.431 21 0 2625 2 3 14.946 23 20 2726 1 8 20.495 22 24 2727 1 2 26.551 26 25 0表4 群集成员案例8 群集7 群集 6 群集 5 群集 4 群集 3 群集1:北京 1 1 1 1 1 1 2:天津 2 2 2 2 2 2 3:河北 3 3 3 3 3 2 4:山西 4 4 4 2 2 2 5:内蒙古 3 3 3 3 3 2 6:辽宁 4 4 4 2 2 2 7:吉林 3 3 3 3 3 2 8:黑龙江 5 5 5 4 4 3 9:上海 6 6 1 1 1 1 10:江苏 2 2 2 2 2 2 11:浙江 2 2 2 2 2 2 12:福建 4 4 4 2 2 2 13:江西 3 3 3 3 3 2 14:山东 4 4 4 2 2 2 15:河南 3 3 3 3 3 2 16:湖北7 5 5 4 4 3 17:广东 2 2 2 2 2 2 18:广西7 5 5 4 4 3 19:海南8 7 6 5 4 3 20:重庆 4 4 4 2 2 2 21:四川 3 3 3 3 3 2 22:贵州 5 5 5 4 4 3 23:云南 5 5 5 4 4 3 24:陕西 3 3 3 3 3 2 25:甘肃7 5 5 4 4 3 26:青海 3 3 3 3 3 2 27:宁夏 4 4 4 2 2 2 28:新疆7 5 5 4 4 3图1聚类分析树状图从树状图中,我们定下聚类分析最终得到四个组别:1为北京和上海,可以看出这两个直辖市的总产值中,第三产业也就是服务业占有绝对优势,因此可将第一组作为第三产业为主的地区;2为天津、山西、江苏、广东等10个省份,这些省份的第二产业占有较多的比重,而第一产业仅占极少的比重,说明第2组以第二、三产业为主;第三组包括河北、河南、吉林、江西等省份,这些省份虽然也是第二产业占有的比重最大,但它们的第一产业的比重与第1、2组相比更多;第四组的各个地区是传统的鱼米之乡,可以看到它们的第一产业的比重大于其他各组。
数理统计大作业(二)全国各省发展程度的聚类分析及判别分析指导教师院系名称材料科学与工程院学号学生姓名2015 年 12 月21 日目录全国各省发展程度的聚类分析及判别分析 (1)摘要: (1)引言 (1)1实验方案 (2)1.1数据统计 (2)1.2聚类分析 (3)1.3判别分析 (4)2结果分析与讨论 (5)2.1聚类分析结果 (5)2.2聚类分析结果分析: (8)2.3判别分析结果 (9)2.4 Fisher判别结果分析: (11)参考文献: (16)全国各省发展程度的聚类分析及判别分析摘要:利用SPSS软件对全国31个省、直辖市、自治区(浙江、安徽、甘肃除外)的主要经济指标进行多种聚类分析,分析选择最佳聚类类数,并对浙江、湖南、甘肃进行类型判别分析。
通过这两个方法对全国各省进行发展分类。
本文选取了7项社会发展指标作为决定发展程度的影响因素,其中经济因素为主要因素,同时评估城镇化率和人口素质因素。
各项数据均来自2014年国家统计年鉴。
分析结果表明:北京市和上海市和天津市为同一类;江苏省和山东省和广东省为同一类型;河北、湖北、河南、湖南、四川、辽宁为同一类;其余的为另一类。
关键词:聚类分析、判别分析、发展引言聚类分析是根据研究对象的特征对研究对象进行分类的多元统计分析技术的总称。
它直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类。
系统聚类分析又称集群分析,是聚类分析中应用最广的一种方法,它根据样本的多指标(变量)、多个观察数据,定量地确定样品、指标之间存在的相似性或亲疏关系,并据此连结这些样品或指标,归成大小类群,构成分类树状图或冰柱图。
判别分析是根据多种因素(指标)对事物的影响来实现对事物的分类,从而对事物进行判别分类的统计方法。
判别分析适用于已经掌握了历史上分类的每一个类别的若干样品,希望根据这些历史的经验(样品),总结出分类的规律性(判别函数)来指导未来的分类。