有心力场中的运动.ppt
- 格式:ppt
- 大小:719.01 KB
- 文档页数:25
§1、8有心力1、有心力的基本性质(有心运动的特点)有心力 质点所受力的作用线始终通过定点,定点为力心;有心运动 质点在有心力作用下的运动⇒有心运动 这时)(r F F =方向沿质点与力心联线, 又分引力,斥力;有心运动在物理学中占有极其重要的地位;有心运动求解方法:运动微分方程;三个基本定理。
(1)有心运动⇒动量矩守恒⇒质点作平面曲线运动选力心为原点 0=M c J=∴ 质点作平面曲线运动 运动平面垂直于J选用极坐标系 θθv r m v m v m r P r J r⨯=+⨯=⨯=)( mh mr mrv J ===θθ 2θ 2r h =⇒ (1) h 由初始条件确定(2)有心力为保守力,质点作有心运动时机械能守恒在极坐标系下,00)(r F r r F F r== 00θθ rd r dr r d +=则)()(12V V Vdr dr r F rd F dr F r d F W BABABABAr --=∇-==+=⋅=⎰⎰⎰⎰θθ这时 E V T =+ E r V r rm =++)()(21222θ (2) ⎪⎩⎪⎨⎧=++=⇒E r V r rm h r )()(212222θθ 两个运动积分(关于θ,r 的一阶微分方程组)2、轨道微分方程⎪⎩⎪⎨⎧=++=)2()()(21)1(2222E r V r rm h r θθ 由(1)⇒)(r θ ,代入(2))()(t r r r r=⇒⇒ 代入(1))()()()(θθθθθr r t t r r t =⇒⎩⎨⎧==⇒=⇒运动方程 轨道方程亦可由)(),(r r rθ 消去时间t 得22222)(2rmh r V E rmhd dr --±=θ⇒积分)(θr r =⇒现导出比耐(Binet )公式0=θF )()(2r F r r m =-∴θ取 ru 1= 则2hu =θ又 θθθθθd du h d du uhu ud dhud dr r-=⋅-===2221)1(2222)()(θθθθθd u d uh d du d d hd dudt dh r -=-=-=mu F u d u d u h )()(2222-=+∴θ轨道微分方程 又称比耐(Binet )公式其中⎩⎨⎧〉〈=) 0 0)(质点散射斥力(引力(万有引力)αr F u F 有心力⇔运动轨道 联系在一起3、平方反比引力—行星的运动 sun M; planet m 222umk rMm GF -=-= 其中GM k =2与行星质量无关,称为太阳的高斯常数, 代入Binet 公式得2222hk u d u d =+θ令22h k u -=ξ则022=+ξθξd d 其解为 )cos(0θθξ-=A 则220)cos(hk A u +-=θθ)cos(1/102222θθ-+==∴kh Ak h ur 其中0,θA 为积分常数,通过坐标变换(极轴转过一角度),使得00=θ 则得轨道方程 θcos 1e p r +=(圆锥曲线,力心在其焦点处)半正焦弦 22kh p =偏心率 Ap e =当0=θ时,ep r +=1 极小 对应近日点;由解析几何知,e 是几何常数1<e 椭圆 1=e 抛物线 1>e 双曲线※由动力学常数h E ,确定e ,既由E 判定轨道类别,e 与E 的关系?drdV rm k F -=-=22rm k r V 2)(-=, rm k r rm E 2222)(21-+=θ对近日点 0=r ep r +=1 222)1(e ph rh +==θ 代入上式得pe m k e ph e pmE )1()1()1(21244222+-++=)1(2)1(22222e k e h pmE +-+=⇒422111mkEh e +±=+∴ 22)(21kh mE e +=⇒可见 0<E 1<e 椭圆; 0=E 1=e 抛物线; 0>E 1>e 双曲线。