晶格的对称性
- 格式:pptx
- 大小:1.25 MB
- 文档页数:18
晶体一般特点晶体是由原子、分子或离子按照一定的规则排列而形成的固态物质。
晶体具有一些特点,下面将从多个方面进行描述。
1. 有序性:晶体的原子、分子或离子呈现规则的排列方式,形成有序的晶格结构。
这种有序性使晶体具有规则的外形和内部结构。
2. 高度对称性:晶体的晶格结构具有高度对称性,即晶体中的各个部分呈现出相同的形态和性质。
这种高度对称性使得晶体在三维空间中具有特定的几何形状。
3. 物理性质的各向同性:晶体的物理性质在各个方向上基本相同,即具有各向同性。
例如,晶体的热导率、电导率和光学性质在各个方向上基本相等。
4. 具有周期性:晶体的晶格结构具有周期性,即晶体中的原子、分子或离子在空间中周期性重复出现。
这种周期性使晶体具有特定的晶格常数和晶胞。
5. 明确的熔点:晶体具有明确的熔点,即在一定的温度下,晶体经过熔化转变为液体。
这是因为晶体的有序结构在熔化时被破坏,原子、分子或离子之间的相互作用减弱。
6. 具有特定的光学性质:晶体对入射的光具有特定的反射、折射和吸收特性。
这是由于晶体中的原子、分子或离子的排列方式对光的传播产生特定的影响。
7. 具有特定的电学性质:晶体在外加电场下会表现出特定的电学性质,如电导率、介电常数和压电效应等。
这是由于晶体中的原子、分子或离子之间的电荷分布和相互作用的特点。
8. 具有特定的磁学性质:晶体在外加磁场下会表现出特定的磁学性质,如磁化强度、磁导率和磁各向异性等。
这是由于晶体中的原子、分子或离子之间的磁矩相互作用的特点。
9. 具有特定的力学性质:晶体在外力作用下会表现出特定的力学性质,如弹性、塑性和脆性等。
这是由于晶体中的原子、分子或离子之间的键合强度和排列方式的特点。
晶体具有有序性、高度对称性、各向同性、周期性和特定的物理、光学、电学、磁学和力学性质。
这些特点使晶体成为研究材料科学、凝聚态物理和固体化学等领域的重要对象,也使晶体在生活和工业中有着广泛的应用。
1.2 晶体的对称性一. 对称性的概念二. 晶体中允许的对称操作三. 晶体宏观对称性的表述:点群四. 七个晶系和14种晶体点阵五. 晶体的微观对称性:空间群六. 二维情形七. 点群对称性和晶体的物理性质参考:黄昆书1.5-1.7 节阎守胜书 2.2 节一.对称性的概念:一个物体(或图形)具有对称性,是指该物体(或图形)是由两个或两个以上的部分组成,经过一定的空间操作(线性变换),各部分调换位置之后整个物体(或图形)保持不变的性质。
对称操作:维持整个物体不变而进行的操作称作对称操作。
即:操作前后物体任意两点间的距离保持不变的操作。
点对称操作:在对称操作过程中至少有一点保持不动的操作。
有限大小的物体,只能有点对称操作。
对称元素:对称操作过程中保持不变的几何要素:点,反演中心;线,旋转轴;面,反映面等。
●●如何科学地概括和区别四种图形的对称性?从旋转来看,圆形对绕中心的任何旋转都是不变的;正方形只能旋转才保持不变;后2个图形只有3,,πππ2π以上,考察在一定几何变换之下物体的不变性,使用的几何变换(旋转和反射)都是正交变换——保持两点距离不变的变换:111213212223313233'''x a a a x y a a a y z a a a z ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=∙ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111213212223313233i j a a a A a a a a a a ⎛⎫ ⎪= ⎪⎪⎝⎭ 其中A ij 为正交矩阵从解析几何知道,符合正交变换的是:绕固定轴的转动(Rotation about an axis) 绕z 轴旋转θ角cos sin 0sin cos 0001i j A θθθθ-⎛⎫ ⎪= ⎪ ⎪⎝⎭数学上可以写作:如果,一个物体在某一正交变换下保持不变,我们就称这个变换为物体的一个对称操作。
一个物体可能的对称操作越多,它的对称性就越高。
立方体具有较高的对称性,它有48个对称操作:绕4 条体对角线可以旋转共8个对称操作;绕3 个立方边可以旋转共9个对称操作;绕6 条棱对角线可以转动π,共 6 个对称操作;加上恒等操作共24个。
第一章晶体的对称性§1-1 晶体内部结构的周期性---点阵与晶格大家都知道晶体内部原子(分子、离子和原子团等,以后称质点)的排列是规则的,具有一定的周期性,这是晶体的主要特点。
不同晶体中的质点在空间中的排列规律是不同的,有许多种排列方式。
因此,在对晶体进行研究时,为了归类方便,常将构成晶体的实际质点抽象成纯粹的几何点,并称之为阵点。
这样的阵点在空间中周期性规则排列并有相同的周围环境。
这种阵点的空间排列就称为空间点阵,或晶体点阵,也称布拉法格子,简称点阵或晶格,共有14种。
§1-2 晶体的宏观对称性---点对称操作晶体内部结构不仅具有周期性,还具有比较复杂的对称性。
实际上,晶体宏观性质和外形的对称性都是其内部结构对称性的反映,与其有着密切关系。
应该说,人们最初认识晶体,是从它们丰富多彩又有规则的外部形状开始的,后来才逐步认识到,晶体外形上的规则性及其宏观性质的对称性,是与其内部微观结构的对称性密切相关的。
在本节及以下几节中,通过对晶体的宏观对称性的描述,引进群的初步概念,给出晶体的32个点群,并依据晶体对称性特征,区分晶类和晶系。
1.晶体的宏观对称性。
晶体外形上(宏观上)的规律性,突出表现在晶面的对称排列上。
如:把立方体的岩盐晶体绕其中心轴每转900后,晶体自身就会重合,而把六面柱体的石英晶体绕其柱轴每转600后,晶体亦会自身重合。
这里提到的绕轴转动称旋转操作,是一种点对称操作。
通常把经过某种点对称操作后晶体自身重合的性质称为晶体的宏观对称性。
描述晶体宏观对称性的方法,就是列举使其自身重合的所有点对称操作。
为了明确对称性和对称操作的概念,先给出以下概念:●相等图形。
如花瓣。
●等同图形。
如左右手。
相等图形属于等同图形,但等同图形不一定是相等图形。
●对称图形。
由两个或两个以上的等同图形构成的并在空间有规律排列的图形称对称图形。
2.对称性。
对称图形中各等同部分在空间排列的特殊规律性称对称性。
晶体的结构与性质晶体是由原子、分子或离子结构规则地排列而成的物质。
晶体的结构与性质密切相关,本文将就这两方面进行探讨。
一、晶体的结构晶体的结构由周期性的、有序的结构单元构成。
晶格是指晶体中原子、分子或离子的空间排列方式。
晶格是重复的,且具有平移对称性。
晶体的结构构成有三个要素:结构单元、晶体晶格和晶体对称性。
1.结构单元结构单元是指晶体中以晶格为单位所重复出现的最小结构单元,通常由几个原子、离子或分子构成。
例如,金刚石晶体中的结构单元是一个碳原子与四个相邻的碳原子方向而成的四面体。
2.晶体晶格晶体晶格是指结构单元通过平移而得到的三维有序排列方式。
晶体中的晶格具有特殊的对称性,可以被描述为点阵、面阵或空间群。
点阵是晶体中已知单胞的基本单位,它在三维空间中重复排列构成晶体。
面阵是晶体中由重出现排列的单胞面所构成的排列,通常用于描述平面电声晶体。
空间群则是晶体中单胞的空间重复排列方式,具有丰富的对称性和分子结构信息。
3.晶体对称性晶体对称性包括点群对称性、平面群对称性和空间群对称性。
点群对称性是指晶体中一个晶格单元的一系列对称操作所具有的对称性。
平面群是指晶体中具有一定晶面对称性的平面所对应的对称操作,通常用于描述平面电声晶体。
空间群则是晶体中单胞的空间重复排列方式所具有的对称性。
二、晶体的性质晶体的性质受到晶体结构、原子、分子或离子的排列方式以及化学键的强度等因素的影响。
晶体的性质表现为热学性质、光学性质、电学性质、磁学性质等。
1.热学性质晶体的热学性质随温度变化而变化,包括热膨胀系数、热传导率、热导率、热容等。
晶体的热膨胀系数与晶体的结构紧密相关,晶体结构相对稳定的晶体热膨胀系数较低。
2.光学性质晶体的光学性质是晶体中分子或离子吸收、散射、透过或折射光线的方式和规律。
光学性质包括吸收谱、荧光谱、紫外线谱等。
每一种晶体的光学性质都有独特的特点,其差异体现在某些颜色或光谱信息上。
3.电学性质电学性质与晶体的结构、化学键的特点等密切相关。
晶格与晶胞的名词解释1.引言1.1 概述晶格和晶胞是材料科学中非常重要的概念,用于描述晶体的结构和性质。
晶格是指晶体内部原子、离子或分子排列成有序、重复的结构。
晶胞则是晶格的最小重复单元,它可以完整地再现整个晶格的结构。
在材料科学领域,研究晶格和晶胞的性质是为了理解和解释材料的结构、性能和行为。
晶格的特征决定了晶体的物理、化学和电子性质,包括导电性、热导性、光学性质等。
晶胞的结构决定了晶体的晶体学性质,如晶胞的形状、尺寸和对称性。
通过对晶格和晶胞的研究,科学家能够更好地理解材料的内部结构,并预测和设计新材料的性能。
例如,在固态物理和材料科学中,晶格常常用于描述金属、半导体、陶瓷和晶体材料的结构和性能。
同时,晶格和晶胞的概念也广泛应用于其他领域,如光学、凝聚态物理和无机化学等。
本文将详细介绍晶格和晶胞的定义、特征以及它们之间的关系。
通过深入理解这些概念,我们可以更好地理解材料的微观结构与宏观性质之间的关联,为材料科学和工程领域的研究和应用提供指导。
希望本文可以帮助读者对晶格和晶胞的概念有一个清晰而全面的了解,并对材料世界有更深入的认识。
1.2文章结构文章结构部分的内容可以如下编写:1.2 文章结构本文将按照以下结构进行论述晶格与晶胞的名词解释。
首先,在引言部分,我们将简要概述晶格和晶胞的概念以及它们在材料科学中的重要性。
同时,我们将介绍本文的目的和意义,以便读者能够更好地理解本文所要传达的内容。
接下来,在正文部分,我们将详细解释晶格的定义和特征。
我们会介绍晶格是指由晶体内的原子、离子或分子排列所形成的规则三维结构。
同时,我们还会探讨晶格的一些重要特性,如晶胞的常见形状、晶体的晶型和晶系分类等。
然后,我们将进一步讨论晶胞的定义和构成。
晶胞是指在晶格中所选取的最小重复单元,它由原子、离子或分子构成。
我们将介绍晶胞的几何形状和晶格常量等关键概念,并解释晶胞在描述晶体结构中的重要性。
在结论部分,我们将对晶格和晶胞的理解与应用进行深入讨论。
金属材料中的晶格对称性理论第一章:引言金属材料在现代工业中占据着重要的地位。
然而,作为一种特殊的物质,金属的物理性质和化学性质与其他材料有很大的不同。
晶体学是研究晶体的结构和性质的学科,而金属材料中晶格对称性理论是晶体学中的重要部分。
本文将重点介绍金属材料中的晶格对称性理论。
第二章:晶体对称性晶体对称性是指晶体具有的平移对称性、面对称性和旋转对称性。
晶体可以分为点阵和空间点阵两种,其中点阵是不考虑空间点阵的情况下,只考虑晶胞内的对称性而得到的。
空间点阵则是考虑了空间点阵的情况下,由一定数量的点和所应的对称性组成的。
空间点阵有17种基本种类,分别称作十四种布拉维格点阵和三种分组空间点阵。
这些空间点阵需要满足一些要求,比如点阵中任意点的环境必须是关于一个点群的元素的作用下保持不变的。
第三章:晶格对称性晶格对称性是指晶体的晶格点阵所具有的对称性。
晶格点阵是指由平移矢量和称为基本晶胞的实体所构成的几何图形。
一个晶体的晶格对称性可以通过对称元素来描述,对称元素包括平移、旋转、反演和镜面反射等。
对称元素可以用在晶格点上或者基本晶胞内的原子上。
具有晶格对称性的晶体,可以保持其对称性不变地进行一系列运动,比如旋转、反演和镜面反射。
第四章:晶格点群和晶系晶格点群是指一定数量的对称元素所组成的群。
晶格点群可以通过晶格对称性的表现来定义,它包括晶格的点群和平移群。
点群是指在特殊情况下,只考虑晶格点上的对称性所得到的对称群。
平移群则是指在任意情况下都考虑晶格点和晶格平移所得到的对称群。
根据晶格点群的不同,可以将晶体分为不同的晶系,包括三角晶系、四方晶系、正交晶系、单斜晶系、菱形晶系、正棱柱晶系和三斜晶系等。
第五章:晶格参数和晶面指数晶格参数是指晶体晶胞的基本参数,包括晶格常数、晶胞长度和晶胞角度等。
晶胞长度的单位是晶格常数,而角度则是晶体中不同面的夹角。
晶面指数是指晶体表面的投影坐标。
晶面指数可以表征晶体的表面形态和晶面的间隔。
固体物理七大晶系
固体物理是研究固体材料结构、性质以及它们与其他物质相互作用的学科。
其中,晶体学是固体物理的重要分支之一,它研究的是晶体的结构和性质。
在晶体学中,有七种常见的晶体结构,被称为“七大晶系”。
这七大晶系分别是立方晶系、四方晶系、正交晶系、单斜晶系、三斜晶系、菱方晶系和三方晶系。
它们的主要差异在于晶格的对称性和晶胞的形状。
在立方晶系中,晶格具有最高的对称性,晶胞形状为正方体。
四方晶系中,晶格同样具有最高的对称性,但晶胞形状为长方体。
正交晶系中,晶格对称性稍低,晶胞形状为长方体。
单斜晶系中,晶格对称性进一步降低,晶胞形状为斜长方体。
三斜晶系中,晶格对称性更低,晶胞形状为斜方体。
菱方晶系中,晶格对称性再次提高,晶胞形状为正八面体。
最后,在三方晶系中,晶格对称性最低,晶胞形状为等边三角形。
这些晶系对于研究材料的性质很重要,因为晶体的结构和对称性决定了它们的物理和化学性质。
例如,在电子学中,半导体的能带结构和电子输运特性与晶体结构密切相关。
因此,了解七大晶系对于理解和开发新型材料具有重要意义。
- 1 -。