1 晶体结构及其对称性(研)
- 格式:ppt
- 大小:2.43 MB
- 文档页数:68
晶体的对称性1. 晶体的宏观和微观对称性晶体的对称性最直观地表现在其几何外形上,由于晶体外形为有限的几何图形,故晶体外形上所体现的对称性与分子一样为点对称性,称为宏观对称性。
有四种类型的对称操作和对称元素旋转旋转轴反映反映面(镜面)反演对称中心旋转反演反轴由于晶体内部结构为点阵结构,点阵结构是一种无限的几何对称图形。
故晶体结构具有这种基本的空间对称性(通过平移对称操作能使点阵结构复原),常称为晶体的微观对称性。
有三种类型的对称操作和对称元素平移点阵螺旋螺旋轴滑移滑移面2. 晶体和晶体结构对称性的有关定理晶体和晶体结构的对称元素及相应的对称操作有上述七种。
晶体中点阵与对称元素的制约关系为:对称面和对称轴的取向定理在晶体结构的空间点阵图形中,对称轴必与一组直线点阵平行,并与一组平面点阵垂直;对称面则必与一组直线点阵垂直,并与一组平面点阵平行。
(对称轴包括旋转轴、反轴和螺旋轴;对称面包括反映面、滑移面)∙对称轴的轴次定理在晶体结构中存在的对称轴,其轴次只能为1、2、3、4、6这五种。
3. 7个晶系和32个晶体点群∙根据晶体的对称性,可将晶体分为7个晶系,每个晶系有它自己的特征对称元素。
晶体特征对称元素立方晶系四个按立方体的对角线取向的3重轴六方晶系唯一的6重轴四方晶系唯一的4重轴三方晶系唯一的3重轴正交晶系三个互相垂直的2重轴或二个互相垂直的对称面单斜晶系一个2重轴或对称面三斜晶系无∙由于晶体的对称性定理,限制了对称轴的轴次只能为1、2、3、4、6;又由于反轴中只有4重反轴是独立的对称元素,所以在晶体的宏观对称性中,只能找到8个独立的对称元素:1、2、3、4、6、m、i、。
∙与分子所含的对称元素相比,晶体中所含的对称元素有限,这八个对称元素按一定的组合规则组合后只能产生32个对称类型(对称元素系),每个对称类型所具有的对称元素所对应的对称操作构成一个群。
由于晶体的宏观外形为有限图形,故各种对称元素至少要相交于一点,故称为32个晶体点群。
固体物理(胡安)课后答案第一章晶体的结构及其对称性1.1石墨层中的碳原子排列成如图所示的六角网状结构,试问它是简单还是复式格子。
为什么?作出这一结构所对应的两维点阵和初基元胞。
解:石墨层中原子排成的六角网状结构是复式格子。
因为如图点A和点B的格点在晶格结构中所处的地位不同,并不完全等价,平移A→B,平移后晶格结构不能完全复原所以是复式格子。
1.2在正交直角坐标系中,若矢量,,,为单位向量。
为整数。
问下列情况属于什么点阵?(a)当为全奇或全偶时;(b)当之和为偶数时。
解:当为全奇或全偶时为面心立方结构点阵,当之和为偶数时是面心立方结构1.3 在上题中若奇数位上有负离子,偶数位上有正离子,问这一离子晶体属于什么结构?解:是离子晶体,属于氯化钠结构。
1.4 (a)分别证明,面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角相等,对fcc为,对bcc为(b)在金刚石结构中,作任意原子与其四个最近邻原子的连线。
证明任意两条线之间夹角θ均为解:(1)对于面心立方 (2)对于体心立方 (3)对于金刚石晶胞1.5 证明:在六角晶系中密勒指数为(h,k,l)的晶面族间距为证明:元胞基矢的体积倒格子基矢倒格矢:晶面间距1.6 证明:底心正交的倒点阵仍为底心正交的。
证明:简单六角点阵的第一布里渊区是一个六角正棱柱体底心正交点阵的惯用晶胞如图: 初级晶胞体积: 倒易点阵的基矢: 这组基矢确定的面是正交底心点阵1.7 证明:正点阵是其本身的倒易点阵的倒格子。
证明:倒易点阵初级元胞的体积:是初基元胞的体积而由于而或:现在证明: 又令又:代入同理 1.8 从二维平面点阵作图说明点阵不可能有七重旋转对称轴。
解: 1.9 试解释为什么:(a)四角(四方)晶系中没有底心四角和面心四角点阵。
(b)立方晶系中没有底心立方点阵。
(c)六角晶中只有简单六角点阵。
解:(a)因为四方晶系加底心,会失去4次轴。
(b)因为立方晶系加底心,将失去3次轴。
晶体对称性晶体对称性是晶体学研究的一个重要组成部分,它是晶体结构的关键,可以解释晶体的外观、性质以及界面问题。
其中,最常见的是空间群,它用数学表示法确定变换的形式。
接下来,让我们来更多地了解晶体对称性:一、空间群1. 什么是空间群:空间群是一种变换群,也是对称性理论的基础,可以描述物体在特定坐标系中的集合子空间上的空间操作。
举个例子,如果一个物体只可以在空间系中做180°旋转,那么它就只具有一种(即旋转)拓扑群。
2. 空间群划分:空间群可以根据对称性来划分,主要包括有限对称群、无限对称群和单调对称群三类。
其中,有限对称群表示法子群的形状、大小或空间构造不变;无限对称群指的是无限种变换,其轴心、空间点或空间构造不变;而单调的对称群是单一的元素组成的,在该空间群中任何对称性都不变。
二、对称性1. 什么是对称性:对称性是空间群的基础,一般来说,它表示物体在某种坐标下有特定形状和空间操作的属性,也可以用数学表示法来表达这种特征。
2. 对称性的类型:对称性的类型可以分为四大类,分别是正交对称性、立体对称性、平面对称性和点对称性。
其中,正交对称性主要涉及空间中的空间坐标变换,立体对称性是指物体在立体坐标系下的操作,而平面对称性是指物体在平面坐标系下的操作,而点对称性则是指物体在特定空间构造下的操作。
三、晶体对称性1. 晶体对称性是什么:晶体对称性是晶体学研究的一个重要组成部分,它涉及到晶体结构的外观、性质以及界面问题的解释。
2. 晶体对称性的应用:晶体对称性可以用来研究和设计多种材料,如金属、半导体、有机分子晶体、生物晶体等,它们是将材料化学性质同物理性质关联起来,从而更好地理解材料的特性。
此外,晶体对称性也可用于分类、指导结构分析以及材料的设计和合成等。
四、总结从上文可以看出,晶体对称性是一个非常重要的概念,它不仅仅可以用来描述物体的形状、大小和空间结构,而且可以应用于许多不同的领域,如材料的研究与设计等。
第二章晶体结构一、教学要求(1)内容提要:物质通常有三种聚集状态:气态、液态和固态。
而按照原子(或分子)排列的规律性又可将固态物质分为两大类,晶体和非晶体。
晶体中的原子在空间呈有规则的周期性重复排列;而非晶体的原子则是无规则排列的。
原子排列在决定固态材料的组织和性能中起着极重要的作用。
金属、陶瓷和高分子的一系列特性都和其原子的排列密切相关。
一种物质是否以晶体或以非晶体形式出现,还需视外部环境条件和加工制备方法而定,晶态与非晶态往往是可以互相转化的。
本章主要内容包括::晶体学基础;金属的晶体结构;合金相结构;离子晶体结构;共价晶体结构;聚合物的晶态结构;非晶态结构。
(2)基本要求掌握晶体的空间点阵、晶胞、晶向和晶面指数、晶体的对称性等结晶学基础知识,了解32种点群和230种空间群等;掌握三种典型的金属晶体结构、合金相结构、离子晶体结构和硅酸盐晶体结构,了解共价晶体结构和分子与高分子晶体结构。
(3)重点难点重点:结晶学基本原理及典型的金属晶体、合金相、离子晶体结构。
难点:空间点阵、非化学计量化合物和鲍林规则。
(4)主讲内容①晶体学基础;②金属的晶体结构;③合金相结构;④离子晶体结构;⑤共价晶体结构;⑥聚合物晶体结构。
《第二章晶体结构》目录——引言——晶体的结构特征与基本性质(1.0h)2.1晶体结构的周期性(4.0-6.0h)2.2.1点阵与平移群一、点阵结构与点阵(1)一维点阵结构与直线点阵;(2)二维点阵结构与平面点阵(3)三维点阵结构与空间点阵二、点阵的条件与性质(1)定义;(2)条件;(3)点阵与点阵结构的对应关系。
2.2.2点阵单位与点阵参量一、点阵单位与点阵常数(1)直线点阵单位与线段参数(2)平面点阵单位与网格参数(3)空间点阵单位与晶胞参数二、其他晶体结构参数(1)(原子)阵点坐标与原子间距;(2)晶向(直线点阵)指数(3)晶面(平面点阵)指数;(4)晶面间距与晶面夹角(5)晶带与晶带定律三、极射投影*2.2.3 倒易点阵与晶体衍射*2.2晶体结构的对称性(4.0h)2.3.1对称性的基本概念——对称及其对称元素与对称操作2.3.2宏观对称性—晶体外形(有限)表现的对称性—点对称性一、点对称操作与宏观对称元素;二、点群及其表示方法——32个点群(晶类);三、晶系与空间点阵型式——7种晶系与14种布拉菲点阵2.3.3微观称对性—晶格基元(无限)排列的对称性—体对称性一、空间对称操作与微观对称元素;二、空间群及其表示方法;三、等效点系——2.3.4点群与空间群的关系2.3.4 晶体结构符号2.3典型晶体结构分析(8.0h)2.3.1金属晶体结构2.3.2共价晶体结构2.3.3离子晶体结构2.3.4分子晶体结构2.3.5高分子(晶体)结构2.4 合金相结构2.2晶体结构的对称性——强调:对称操作与矩阵变换(点阵与矩阵)2.2.1对称性的基本概念——对称的概念(定义与划分)擅长形象思维的中国人在西汉〈韩诗外传〉就有:“凡草木花(注:有生命)多五出,雪花(注:无生命)独六出。
晶体的对称性与性质晶体是指有着高度有序的内部结构的固体物质,其中原子、离子或分子的排列方式呈规则的、周期性的、三维的重复排列。
这种结构的复杂性不仅决定了晶体的物理和化学性质,还包括其独特的光学和电学特性。
而晶体的对称性是晶体结构的重要属性之一,它描述了晶体在对称性操作下是否保持不变,从而影响了晶体的性质。
本文中,我们将探讨晶体的对称性与性质之间的关系。
晶体系统与对称性晶体中的原子或离子按照一定的空间规律排列,这种排列方式称为晶体结构。
为了描述晶体结构中的对称性,科学家们引入了晶体系统,即描述不同晶体结构之间相对对称性的一组规则。
通常,晶体系统按照对称元素的数目和类型而分类。
晶体中存在23个对称元素,其中最简单的是旋转轴和反演中心,旋转轴将晶体沿特定轴旋转一定的角度后,晶体仍保持不变;反演中心是指沿特定平面反射能够将晶体完全翻转过来,即晶体具有中心对称性。
其他的对称元素包括旋转反演轴、镜面反射、滑移反射等。
根据对称元素的数目和类型,晶体可以划分为7个晶体系统。
相同晶体系统的晶体结构中具有相似的对称性和晶格参数,例如立方晶系中的晶体结构具有三个等价的轴和相同的晶胞角,这是晶体对称性的明显特征。
晶体对称性与物理性质与对称性密切相关的是晶体的物理性质,包括晶体的光学、电性质等。
这里我们介绍一些影响最大的性质。
1. 光学性质晶体的光学性质是晶体材料中最显著的性质之一,也是晶体对称性的重要体现。
晶体通过在自然光中的吸收、反射和折射等方式与光互作用。
光在晶体中传播时会遵循光电双折射规律,即一个光线会被折射成两个振动方向不同的光线。
而晶体对称轴和反演中心对光的传播方向和振动方向有着深刻的影响,因此,在晶体中,不同的对称性操作对光的传播和折射产生不同的影响,从而形成了不同的光学性质,例如双折射、偏振、旋光、吸光和荧光等。
2. 电学性质电学性质是晶体材料最重要的技术应用之一。
晶体材料中的电质子和电子一般是固定的,电学性质是由它们的内部结构和电场之间的相互作用所决定的。