必修1-最值(1)
- 格式:ppt
- 大小:2.60 MB
- 文档页数:9
教学目标1.了解函数单调性的概念,掌握判断简单函数单调性的方法2.能用文字语言和数学符号语言描述增函数、减函数、单调性等概念,能准确理解这些定义的本质特点重难点 3.会求一些简单函数的定义域、函数值。
【知识回顾与能力提升】1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.2.区间概念(a,b为实数,且a<b)定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]3.其他区间的表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)4.函数相等如果两个函数定义域相同,并且对应关系完全一致,我们称这两个函数相等.【新知识梳理与重难点点睛】1.定义域为I 的函数f(x)的增减性2.函数的单调性与单调区间如果函数y =f (x )在区间D 上是增函数或减函数,就说函数y =f (x )在区间D 上具有(严格)的单调性,区间D 叫做y =f (x )的单调区间.3.最大值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①对于任意的x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最大值.(2)几何意义:函数y =f (x )的最大值是图象最高点的纵坐标.4.最小值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①对于任意的x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最小值.(2)几何意义:函数y =f (x )的最小值是图象最低点的纵坐标.要点一 利用图象求函数的最值例1 已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1x,x >1.求f (x )的最大值、最小值.解 作出函数f (x )的图象(如图).由图象可知,当x =±1时,f (x )取最大值为f (±1)=1.当x =0时,f (x )取最小值f (0)=0,故f (x )的最大值为1,最小值为0.规律方法 1.分段函数的最大值为各段上最大值的最大者,最小值为各段上最小值的最小者,故求分段函数的最大值或最小值,应先求各段上的最值,再比较即得函数的最大值、最小值.2.如果函数的图象容易作出,画出分段函数的图象,观察图象的最高点与最低点,并求其纵坐标即得函数的最大值、最小值.跟踪演练1 已知函数f (x )=3x 2-12x +5,当自变量x 在下列范围内取值时,求函数的最大值和最小值: (1)x ∈R ;(2)[0,3];(3)[-1,1]. 解 f (x )=3x 2-12x +5=3(x -2)2-7. (1)当x ∈R 时, f (x )=3(x -2)2-7≥-7, 当x =2时,等号成立.即函数f (x )的最小值为-7,无最大值.(2)函数f (x )的图象如图所示,由图可知,函数f (x )在[0,2)上递减,在[2,3]上递增,并且f (0)=5,f (2)=-7,f (3)=-4,所以在[0,3]上,函数f (x )在x =0时取得最大值,最大值为5,在x =2时,取得最小值,最小值为-7.(3)由图象可知,f (x )在[-1,1]上单调递减,f (x )max =f (-1)=20,f (x )min =f (1)=-4.要点二 利用单调性求函数的最值例2 求函数f (x )=x x -1在区间[2,5]上的最大值与最小值.解 任取2≤x 1<x 2≤5, 则f (x 1)=x 1x 1-1,f (x 2)=x 2x 2-1,f (x 2)-f (x 1)=x 2x 2-1-x 1x 1-1=x 1-x 2(x 2-1)(x 1-1), ∵2≤x 1<x 2≤5,∴x 1-x 2<0,x 2-1>0,x 1-1>0, ∴f (x 2)-f (x 1)<0. ∴f (x 2)<f (x 1).∴f (x )=xx -1在区间[2,5]上是单调减函数.∴f (x )max =f (2)=22-1=2,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000(0≤x ≤400),60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000;∴当x =300时,f (x )max =25 000,当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时 ,f (x )max =25 000.即每月生产300台仪器时利润最大,最大利润为25 000元.规律方法 1.解实际应用题要弄清题意,从实际出发,引入数学符号,建立数学模型,列出函数关系式,分析函数的性质,从而解决问题,要注意自变量的取值范围.2.实际应用问题中,最大利润、用料最省等问题常转化为求函数最值来解决,本题转化为二次函数求最值,利用配方法和分类讨论思想使问题得到解决.跟踪演练3 将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润是多少? 解 设售价为x 元,利润为y 元,单个涨价(x -50)元,销量减少10(x -50)个. ∴y =(x -40)(1 000-10x ) =-10(x -70)2+9 000≤9 000. 故当x =70时,y max =9 000.答 售价为70元时,利润最大为9 000元.1.函数f (x )(-2≤x ≤2)的图象如图所示,则函数的最大值和最小值分别为( )A .f (2),f (-2)B .f (12),f (-1)C .f (12),f (-32)D .f (12),f (0)答案 C解析 由图象可知最大值为f (12),最小值为f (-32).2.已知函数f (x )=1x在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于( )∴f (x )最小值为f (0)=f (2)=0. 而a <-x 2+2x 恒成立,∴a <0.10.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则a 的取值范围是________. 答案 (1,3]解析 由题意知f (x )在[1,a ]上是单调递减的, 又∵f (x )的单调减区间为(-∞,3], ∴1<a ≤3.11.画出函数f (x )=⎩⎪⎨⎪⎧-2x ,x ∈(-∞,0),x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间及最小值.解 f (x )的图象如图所示,f (x )的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f (0)=-1.三、探究与创新12.求函数f (x )=x 2-2ax +2在[-1,1]上的最小值.解 函数f (x )图象的对称轴方程为x =a ,且函数图象开口向上,如图所示:①当a >1时,f (x )在[-1,1]上单调递减, 故f (x )min =f (1)=3-2a ;②当-1≤a ≤1时,f (x )在[-1,1]上先减后增, 故f (x )min =f (a )=2-a 2;③当a <-1时,f (x )在[-1,1]上单调递增, 故f (x )min =f (-1)=3+2a . 综上可知f (x )的最小值为。
函数的最值问题(高一)一.填空题:1. ()35,[3,6]f x x x =+∈的最大值是 。
1()f x x=,[]1,3x ∈的最小值是 。
2.函数y =的最小值是 ,最大值是3.函数212810y x x =-+的最大值是 ,此时x = 4.函数[]23,3,21x y x x -=∈--+的最小值是 ,最大值是 5.函数[]3,2,1y x x x=-∈--的最小值是 ,最大值是 6.函数y=2-x -21+x 的最小值是。
y x =-的最大值是 7.函数y=|x+1|–|2-x| 的最大值是 最小值是 .8.函数()21f x x =-在[2,6]上的最大值是 最小值是 。
9.函数y =x x 213+-(x ≥0)的值域是______________. 10.二次函数y=-x 2+4x 的最大值11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。
12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值13.函数f (x )=)1(11x x --的最大值是 222251x x y x x ++=++的最大值是 14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为:18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。
二、解答题20.已知二次函数 在 上有最大值4,求实数 a 的值。
高一数学必修1 数学。
第一章。
完整知识点梳理大全(最全)集合与函数概念集合是数学中的基本概念之一,它包含了一些确定性、互异性和无序性的元素。
常见的数集有自然数集、正整数集、整数集、有理数集和实数集等。
集合中的元素与集合之间存在着一些关系,例如一个元素属于一个集合,可以表示为a∈M,而不属于则表示为a∉M。
集合的表示方法有自然语言法、列举法、描述法和图示法等。
其中,描述法是通过{x|x具有的性质}来表示集合,而图示法则是用数轴或XXX来表示集合。
集合还可以分为有限集、无限集和空集。
空集是不含有任何元素的集合,记为∅。
集合间的基本关系有子集、真子集和集合相等等。
子集指一个集合中的所有元素都属于另一个集合,而真子集则是指一个集合是另一个集合的子集,但不等于该集合。
如果两个集合中的元素完全相同,则它们是相等的。
集合的基本运算有交集、并集和补集等。
交集是指两个集合中共同存在的元素所组成的集合,而并集则是指两个集合中所有的元素所组成的集合。
补集是指一个集合中不属于另一个集合的所有元素所组成的集合。
最后,含有绝对值的不等式和一元二次不等式的解法也是数学中的重要知识点。
对于含有绝对值的不等式,可以通过分情况讨论来求解。
而对于一元二次不等式,则可以通过求解二次函数的根来确定其解集。
x|>a (a>0)x|c (c>0)XXX:x|-a<x<a}x|xa}We can treat ax+b as a whole and transform it into the form of |x|a (a>0) XXX.Summary of Knowledge Points in Chapter 1 of High School Mathematics2.Solving Quadratic InequalitiesDiscriminantΔ>0Δ=b-4acQuadratic ny=ax^2+bx+c (a>0) Δ=Δ<0XXXax^2+bx+c=0 (a>0) Ox=(-b±√Δ)/(2a)1,2where x1<x2)x|xx2}x|x1<x<x2}x1=x2=-b/2an of No Real Root ax^2+bx+c>0 (a>0) n setx|x≠-b/2a}Rax^2+bx+c0)n set1.2 n and Its XXX1.2.1 Concept of n1.A n is a correspondence een two non-empty sets A and B。
习题课与圆有关的最值问题学习目标 1.能用直线与圆的方程解决一些简单的最值问题.2.初步了解用代数方法处理几何问题的思想.导语2017年7月我国首座海上风电平台4G基站在黄海建成,信号覆盖范围达60公里.一艘船由于机械故障在海上遇险,想要求救,却发现手机没有信号.已知基站在海面上的信号覆盖范围是以基站为圆心的一个圆及其内部区域,那么船到达信号区域的最短路程是多少呢?一、与距离有关的最值问题知识梳理已知圆心到直线(或圆外一点)的距离为d,圆的半径为r.1.圆外一点到圆上任意一点距离的最小值=d-r,最大值=d+r.2.直线与圆相离,圆上任意一点到直线距离的最小值=d-r,最大值=d+r.3.过圆内一定点的直线被圆截得的弦长的最小值=2r2-d2,最大值=2r.4.直线与圆相离,过直线上一点作圆的切线,切线长的最小值=d2-r2.例1已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别为圆C1,圆C2上的点,P为x轴上的动点,则PM+PN的最小值为()A.17B.17-1C .6-2 2D .52-4答案 D解析 如图所示,圆C 1关于x 轴对称的圆的圆心坐标为A (2,-3),半径为1,圆C 2的圆心坐标为(3,4),半径为3.设M ′为点M 关于x 轴对称的点,由图象可知,当P ,M ′,N 三点共线时,PM +PN =PM ′+PN 取得最小值,且PM +PN 的最小值为圆A 与圆C 2的连心线的长减去两个圆的半径之和,即AC 2-3-1=(3-2)2+(4+3)2-4=52-4.反思感悟 (1)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点(x ,y )到定点(a ,b )的距离的平方的最值问题.(2)定点到圆上动点距离的最值可以先计算定点到圆心的距离,然后利用数形结合确定距离的最值.跟踪训练1 已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0,则直线l 被圆C 截得的弦长的最小值为( ) A .2 5 B .4 5 C .6 3 D .8 3 答案 B解析 圆C :(x -1)2+(y -2)2=25的圆心坐标为C (1,2),半径为5, 由直线l :(2m +1)x +(m +1)y -7m -4=0,得m (2x +y -7)+x +y -4=0,联立⎩⎪⎨⎪⎧ 2x +y -7=0,x +y -4=0,解得⎩⎪⎨⎪⎧x =3,y =1,∴直线l 过定点P (3,1),又点P (3,1)在圆内部,则当直线l 与线段PC 垂直时,直线l 被圆C 截得的弦长最小, 此时PC =(1-3)2+(2-1)2=5,∴直线l 被圆C 截得的弦长的最小值为252-(5)2=4 5.二、与面积相关的最值问题例2 已知点O (0,0),A (0,2),点M 是圆(x -3)2+(y +1)2=4上的动点,则△OAM 面积的最小值为( )A .1B .2C .3D .4 答案 A解析 根据题意,得圆(x -3)2+(y +1)2=4的圆心为(3,-1),半径r =2,O (0,0),A (0,2),OA 所在的直线是y 轴,当M 到直线AO 的距离最小时,△OAM 的面积最小, 则M 到直线AO 的距离的最小值d =3-2=1, 则△OAM 的面积最小值S =12×OA ×d =1.反思感悟 求圆的面积的最值问题,一般转化为寻求圆的半径相关的函数关系或者几何图形的关系,借助函数求最值的方法,如配方法、基本不等式法等求解,有时可以通过转化思想,利用数形结合思想求解.跟踪训练2 直线y =kx +3与圆O :x 2+y 2=1相交于A ,B 两点,则△OAB 面积的最大值为( )A .1 B.12 C.24 D.34答案 B解析 设圆心到直线的距离为d (0<d <1), 则所截得的弦长l =21-d 2,所以S △OAB =12·21-d 2·d =(1-d 2)·d 2,由基本不等式,可得S △OAB =(1-d 2)·d 2≤1-d 2+d 22=12,当且仅当d =22时,等号成立.三、利用数学式的几何意义解圆的最值问题例3 已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上. (1)求yx的最大值和最小值;(2)求x 2+y 2+2x +3的最大值与最小值; (3)求x +y 的最大值与最小值.解 方程x 2+y 2-6x -6y +14=0可化为(x -3)2+(y -3)2=4.(1)yx 表示圆上的点P 与原点连线所在直线的斜率,如图(1)所示,显然PO (O 为坐标原点)与圆相切时,斜率最大或最小.设切线方程为y =kx (由题意知,斜率一定存在),即kx -y =0,由圆心C (3,3)到切线的距离等于半径2,可得|3k -3|k 2+1=2,解得k =9±2145,所以yx 的最大值为9+2145,最小值为9-2145. (2)x 2+y 2+2x +3=(x +1)2+y 2+2,它表示圆上的点P 到E (-1,0)的距离的平方再加2,所以当点P 与点E 的距离最大或最小时,所求式子取得最大值或最小值,如图(2)所示,显然点E 在圆C 的外部,所以点P 与点E 距离的最大值为P 1E =CE +2,点P 与点E 距离的最小值为P 2E =CE -2.又CE =(3+1)2+32=5,所以x 2+y 2+2x +3的最大值为(5+2)2+2=51,最小值为(5-2)2+2=11.(3)设x +y =b ,则b 表示动直线y =-x +b 在y 轴上的截距,如图(3)所示,显然当动直线y =-x +b 与圆(x -3)2+(y -3)2=4相切时,b 取得最大值或最小值,此时圆心C (3,3)到切线x +y =b 的距离等于圆的半径2,则|3+3-b |12+12=2,即|b -6|=22,解得b =6±22,所以x +y的最大值为6+22,最小值为6-2 2.反思感悟 (1)形如u =y -bx -a 形式的最值问题,可转化为过点(x ,y )和(a ,b )的动直线斜率的最值问题.(2)形如l =ax +by 形式的最值问题,可转化为动直线y =-a b x +lb 的截距的最值问题.跟踪训练3 (多选)已知实数x ,y 满足方程x 2+y 2-4x +1=0,则下列说法正确的是( ) A .y -x 的最大值为6-2 B .x 2+y 2的最大值为7+4 3 C.y x 的最大值为32D .x +y 的最大值为2+ 3 答案 AB解析 对于A ,设z =y -x ,则y =x +z ,z 表示直线y =x +z 的纵截距,当直线与圆(x -2)2+y 2=3有公共点时,|2+z |2≤3,解得-6-2≤z ≤6-2,所以y -x 的最大值为6-2,故A 说法正确;对于B ,x 2+y 2的几何意义是表示圆上的点到原点距离的平方,易知原点到圆心的距离为2,则原点到圆上的最大距离为2+3,所以x 2+y 2的最大值为(2+3)2=7+43,故B 说法正确;对于C ,设yx =k ,把y =kx 代入圆的方程得(1+k 2)x 2-4x +1=0,则Δ=16-4(1+k 2)≥0,解得-3≤k ≤3,yx的最大值为3,故C 说法错误;对于D ,设m =x +y ,则y =-x +m ,m 表示直线y =-x +m 的纵截距,当直线与圆(x -2)2+y 2=3有公共点时,|-2+m |2≤3,解得-6+2≤m ≤6+2,所以x +y 的最大值为6+2,故D 说法错误.1.知识清单:(1)与距离、面积有关的最值问题. (2)利用数学式的几何意义解圆的最值问题.2.方法归纳:数形结合法、转化法. 3.常见误区:忽略隐含条件导致范围变大.1.圆x 2+y 2=4上的点到直线4x -3y +25=0的距离的取值范围是( ) A .[3,7] B .[1,9] C .[0,5] D .[0,3]答案 A解析 x 2+y 2=4,圆心(0,0),半径r =2, 圆心到直线4x -3y +25=0的距离d =|0-0+25|42+(-3)2=5,所以圆上的点到直线的距离的最小值为5-2=3,最大值为5+2=7,所以圆上的点到直线的距离的取值范围为[3,7].2.已知O 为坐标原点,点P 在单位圆上,过点P 作圆C :(x -4)2+(y -3)2=4的切线,切点为Q ,则PQ 的最小值为( ) A. 3 B .2 3 C .2 D .4 答案 B解析 根据题意,圆C :(x -4)2+(y -3)2=4,其圆心C (4,3),半径r =2,过点P 作圆C :(x -4)2+(y -3)2=4的切线,切点为Q ,则PQ =PC 2-4,当PC 最小时,PQ 最小,又由点P 在单位圆上,则PC 的最小值为OC -1=9+16-1=4,则PQ 的最小值为16-4=2 3.3.点M (x ,y )在圆x 2+(y -2)2=1上运动,则yx 的取值范围是( )A .[3,+∞) B. (-∞,-3]C. (-∞,-3]∪[3,+∞)D. [-3,3] 答案 C解析 将yx看作圆上动点(x ,y )与原点O (0,0)连线的斜率,如图,可得k ≥3或k ≤- 3.4.已知圆C1:x2+y2+4x-4y=0,动点P在圆C2:x2+y2-4x-12=0上,则△PC1C2面积的最大值为_________.答案4 5解析因为C1(-2,2),r1=22,C2(2,0),r2=4,所以C1C2=(-2-2)2+22=25,当PC2⊥C1C2时,△PC1C2的面积最大,其最大值为12×25×4=4 5.课时对点练1.已知过点(1,1)的直线l与圆x2+y2-4x=0交于A,B两点,则AB的最小值为()A. 2 B.2 C.2 2 D.4答案 C解析将圆的方程x2+y2-4x=0化为标准方程为(x-2)2+y2=4,则圆心为(2,0),半径r=2,则圆心(2,0)到定点(1,1)的距离为2,AB的最小值为222-(2)2=2 2.2.若实数x,y满足(x+5)2+(y-12)2=142,则x2+y2的最小值为()A.2 B.1 C. 3 D. 2答案 B解析x2+y2表示圆上的点(x,y)与(0,0)间距离的平方,又点(0,0)在圆内,所以由几何意义可知最小值为14-52+122=1.3.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则PQ的最小值为() A.6 B.4 C.3 D.2答案 B解析如图,圆心M(3,-1)与定直线x=-3的最短距离为MQ=3-(-3)=6.又因为圆的半径为2,故所求最短距离为6-2=4.4.在平面直角坐标系xOy 中,已知(x 1-2)2+y 21=5,x 2-2y 2+4=0,则(x 1-x 2)2+(y 1-y 2)2的最小值为( ) A.55 B.15 C.1215 D.1155答案 B解析 由已知得点(x 1,y 1)在圆(x -2)2+y 2=5上,点(x 2,y 2)在直线x -2y +4=0上, 故(x 1-x 2)2+(y 1-y 2)2表示(x -2)2+y 2=5上的点和直线x -2y +4=0上点的距离的平方, 而距离的最小值为|2+4|1+4-5=55, 故(x 1-x 2)2+(y 1-y 2)2的最小值为15.5.已知实数x ,y 满足方程x 2+y 2-4x -1=0,则y -2x 的最小值和最大值分别为( ) A .-9,1 B .-10,1 C .-9,2 D .-10,2答案 A解析 圆x 2+y 2-4x -1=0的圆心坐标为(2,0),半径r = 5. y -2x 可看作是直线y =2x +b 在y 轴上的截距,如图所示,当直线y =2x +b 与圆x 2+y 2-4x -1=0相切时,b 取得最大值或最小值,此时|2×2+b |1+22=5,解得b =-9或b =1,所以y -2x 的最大值为1,最小值为-9.6.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则实数m 的最大值为( ) A .7 B .6 C .5 D .4答案 B解析根据题意,画出示意图,如图所示,圆心C的坐标为(3,4),半径r=1,且AB=2m.连接OP,因为∠APB=90°,所以OP=12AB=m.要求实数m的最大值,即求圆C上的点P 与原点O之间距离的最大值.因为OC=32+42=5,所以OP max=OC+r=6,即实数m的最大值为6.7.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为________________.答案(x-1)2+y2=2解析∵直线mx-y-2m-1=0恒过定点(2,-1),∴圆心(1,0)到直线mx-y-2m-1=0的最大距离为d=(2-1)2+(-1)2=2,∴半径最大为2,∴半径最大的圆的标准方程为(x-1)2+y2=2.8.圆过点A(1,-2),B(-1,4),则周长最小的圆的方程为__________________.答案x2+y2-2y-9=0解析当AB为直径时,过A,B的圆的半径最小,从而周长最小.即AB的中点(0,1)为圆心,半径r=12AB=10.则圆的方程为x2+(y-1)2=10,即x2+y2-2y-9=0.9.已知M为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求MQ的最大值和最小值;(2)若M(m,n),求n-3m+2的最大值和最小值.解(1)由圆C的方程x2+y2-4x-14y+45=0化为标准方程得(x-2)2+(y-7)2=8,∴圆心C的坐标为(2,7),半径r=22,又QC=(2+2)2+(7-3)2=42,∴MQ max =42+22=62,MQ min =42-22=2 2. (2)由题可知n -3m +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0, 则n -3m +2=k . 由直线MQ 与圆C 有交点,得|2k -7+2k +3|1+k 2≤22,可得2-3≤k ≤2+3, ∴n -3m +2的最大值为2+3,最小值为2- 3. 10.已知直线l :3x +4y +1=0,一个圆与x 轴正半轴、y 轴正半轴都相切,且圆心C 到直线l 的距离为3. (1)求圆的方程;(2)P 是直线l 上的动点,PE ,PF 是圆的两条切线,E ,F 分别为切点,求四边形PECF 的面积的最小值.解 (1)∵圆与x ,y 轴正半轴都相切, ∴圆的方程可设为(x -a )2+(y -a )2=a 2(a >0), ∵圆心C 到直线的距离为3,∴由点到直线的距离公式,得d =|3a +4a +1|32+42=3,解得a =2,∴半径为2.∴圆的方程为(x -2)2+(y -2)2=4.(2)PE ,PF 是圆的两条切线,E ,F 分别为切点, ∴△PCE ≌△PCF ,∴S 四边形PECF =2S △PCE ,PE 是圆的切线,且E 为切点, ∴PE ⊥CE ,CE =2,PE 2=PC 2-CE 2=PC 2-4,∴当斜边PC取最小值时,PE也最小,即四边形PECF的面积最小.PC min即为C到l的距离,由(1)知PC min=3,∴PE2min=32-4=5,即PE min=5,∴S△PCE=12EC·PE=12×2×5=5,∴四边形PECF面积的最小值为2 5.11.已知点P是直线l:3x+4y-7=0上的动点,过点P引圆C:(x+1)2+y2=r2(r>0)的两条切线PM,PN,M,N为切点,则当PM的最小值为3时,r的值为()A.2 B. 3 C. 2 D.1答案 D解析如图,由题意得PM2=PC2-r2,当PC⊥l时,PC最小时,PM最小.由题意得PC min=d=|3×(-1)+4×0-7|32+42=2,所以(3)2=22-r2,所以r=1.12.已知圆C:x2+y2-2x+4y+1=0关于直线l:3ax+2by+4=0对称,则由点M(a,b)向圆C所作的切线中,切线长的最小值是()A.2 B. 5 C.3 D.13答案 B解析因为圆C:x2+y2-2x+4y+1=0,即圆C:(x-1)2+(y+2)2=4,所以圆心为C(1,-2),半径R=2.因为圆C关于直线l:3ax+2by+4=0对称,所以l :3a -4b +4=0,所以点M (a ,b )在直线l 1:3x -4y +4=0上,所以MC 的最小值为d =|3+8+4|5=3,切线长的最小值为d 2-R 2=9-4= 5.13.已知圆C :(x -a )2+(y -a )2=1(a >0)与直线y =3x 相交于P ,Q 两点,则当△CPQ 的面积最大时,实数a 的值为________.答案 52 解析 圆C :(x -a )2+(y -a )2=1(a >0)的圆心为(a ,a ),半径为1,圆心到直线y =3x 的距离d =2a 10,PQ =21-⎝⎛⎭⎫2a 102=210-4a 210,所以△CPQ 的面积S =12×2a 10×210-4a 210=10a 2-4a 45.当a 2=54时,10a 2-4a 4取得最大值,且最大值为10×54-4×⎝⎛⎭⎫542=254,所以△CPQ 的面积S 的最大值为12,此时a =52. 14.已知实数x ,y 满足方程y =-x 2+4x -1,则y x的取值范围是________. 答案 [0,3]解析 方程y =-x 2+4x -1化为(x -2)2+y 2=3(y ≥0),表示的图形是一个半圆,令y x=k ,即y =kx ,如图所示,当直线与半圆相切时,k =3,所以y x的取值范围是[0,3].15.已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k =________.答案 2解析 圆C :x 2+y 2-2y =0的圆心为C (0,1),半径r =1,由圆的性质可知,四边形的面积S =2S △PBC ,又四边形P ACB 的最小面积是2,则S △PBC 的最小值为S =1=12r (PB min )=12PB min , 则PB min =2,因为PB =PC 2-r 2=PC 2-1,所以当PC 取最小值时,PB 最小.又点P (x ,y )是直线kx +y +4=0上的动点,当CP 垂直于直线kx +y +4=0时,PC 最小,即为圆心C (0,1)到直线的距离,所以|1+4|k 2+1=22+12=5,解得k =±2,因为k >0,所以k =2.16.在△ABO 中,OB =3,OA =4,AB =5,P 是△ABO 的内切圆上的一点,求分别以P A ,PB ,PO 为直径的三个圆的面积之和的最大值与最小值.解 建立如图所示的平面直角坐标系,使A ,B ,O 三点的坐标分别为A (4,0),B (0,3),O (0,0).设△AOB 的内切圆的半径为r ,点P 的坐标为P (x ,y ),则2r +AB =OA +OB ,求得r =1,又可求得内切圆的圆心为(1,1),所以内切圆的方程为(x -1)2+(y -1)2=1,即x 2+y 2-2x -2y +1=0,①又P A 2+PB 2+PO 2=(x -4)2+y 2+x 2+(y -3)2+x 2+y 2=3x 2+3y 2-8x -6y +25.②将①代入②,得P A 2+PB 2+PO 2=-2x +22.因为P (x ,y )是内切圆上的点,则0≤x ≤2,所以P A 2+PB 2+PO 2的最大值为22,最小值为18.又三个圆的面积之和为π×⎝⎛⎭⎫P A 22+π×⎝⎛⎭⎫PB 22+π×⎝⎛⎭⎫PO 22=π4(P A 2+PB 2+PO 2), 所以分别以P A ,PB ,PO 为直径的三个圆的面积之和的最大值为11π2,最小值为9π2.。