第1讲 随机事件及其运算
- 格式:ppt
- 大小:141.50 KB
- 文档页数:2
随机事件及其运算1. 随机现象概率论的研究对象是随机现象。
在一定条件下,并不总是出现相同结果的现象称为随机现象。
只有一个结果的现象叫做确定性现象。
随机现象随处可见。
有的随机现象可以在相同条件下重复,如抛硬币,掷骰子,测量一物体的质量。
也有很多随机现象是不能重复的,比如经济现象(如失业,经济增长速度等)大多不能重复. 在相同条件下重复的随机现象的观察、记录、实验称为随机试验.概率论主要研究能重复的随机现象,但也十分注意研究不能重复的随机现象。
2. 样本空间数学理论的建立总是需要首先给出一些原始的无定义的概念(例如,“点”和“直线”是欧氏几何的公理化处理中无定义的概念)。
在概率论中,第一个“无定义”的原始概念是“样本点”,随机现象的基本结果称为样本点,用?表示样本点;而随机现象的一切样本点组成的集合称为样本空间,记为??{?}.在具体的随机现象或试验中, 有的凭“实际经验”可确定样本点和样本空间,有的需要“数学的理想化”去确定样本点和样本空间,样本点和样本空间的确定也与试验观察或记录的是什么有关.例1 考虑试验:掷一骰子,观察出现的点数.根据“实际经验”,该试验的基本结果有6个:1,2,3,4,5,6,从而其样本空间为??{1,2,3,4,5,6}.例2 考虑试验:观察一天內进入某商场的人数. 一天內进入某商场的人数是非负整数,但由于不知道最多的人数和最少的人数,我们把该试验的样本空间“理想化”地定为??{0,1,2,3...}例3考虑试验:考察一个元件的寿命.为了数学上处理方便, 我们把该试验的样本空间“理想化”地定为??[0,??).例4 对于试验:将一硬币抛3次.若我们记录3次正反情况,则样本空间为??{HHH,HHT,HTH,THH,HTT,THT,TTH,TTT};若我们记录正面出现的次数,则样本空间为??{0,1,2,3}.- 1 -若样本空间中的元素个数是有限个或可列个,我们称此样本空间为离散样本空间.3. 随机事件有了样本空间后,我们可给出随机事件的概念.直观上说, 随机事件是随机现象中可能发生也可能不发生的事件.例如,在掷骰子试验中,“出现偶数点”是可能发生也可能不发生的,因此它是随机事件,而且当试验出现的基本结果是2或4或6时该事件就发生了,否则该事件就不发生.一个事件是否发生了应当能由试验出现的基本结果判定,因此一个事件可以由能使其发生的那些基本结果组成.换言之, 随机事件可以由一个或多个样本点组成的集合来表示.因此有下面概念.样本空间的子集称为随机事件,简称为事件,常用大写字母A,B,C,?表示.事件A发生当且仅当试验出现的基本结果属于A.若一事件是由单个样本点组成,则称该事件为基本事件;由2个或2个以上样本点组成的事件称为复合事件.由全体样本点组成的事件称为必然事件,必然事件就是样本空间?本身.显然, 必然事件是必定发生的事件.空集?作为样本空间?的子集也是事件,称此事件为不可能事件,不可能在任一次试验中都不会发生.以后在理论上讨论概率论问题时,我们总是假定样本空间已经给定,而随机事件就是该样本空间的子集。
§1 随机事件及其运算1.1. “随机试验”是指试验的结果都具有同等发生的可能性吗?答:不是的.所谓“随机试验”, 是相对于“确定性试验”而言的,它是指一个试验可以在相同条件下重复进行, 而且每次试验的结果事先不能预言.出现上述错误看法的原因, 往往是把“随机”两字理解为“机会均等”.1.2. A、B、C为任意三事件, 是否可以推出(A+B)-C=A+(B-C)?答:不可以推出.如掷一颗骰子试验, 观察出现的点数, 记事件A={2}, B={点数小于4}, C={偶数},有,,故(A+B)-C≠A+(B-C).产生这种错误的原因往往是想当然, 不假思索把数的运算律用到事件的运算中来.1.3. A、B为任意二事件, 是否有A+B-A=B?答:不是. 若AB≠Ф, 则A+B-A=(A+B)-A.1.4.事件的和、差运算是否可以“去括号”或交换运算次序, 如B+(A-B)=B+A-B=B-B+A=∅+A=A.答:不可以.设事件A、B关系如图, 显然应有B+(A-B)=A+B.1.5.事件的运算是否可以“移项”, 如由A+B=C⇒A=C-B, A-B=D ⇒A=B+D.答:不可以.但是增加一些条件便可以移项了.有下述结果:(1) 若AB=∅且A+B=C, 则A=C-B;(2) 若, 且A-B=D, 则A=B+D.1.6.若A=B, 则A、B为同一事件, 对吗?答:不对.举一反例说明:两个灯泡串联, 记A={A灯亮}, B={B灯亮},因为A不发生; 又B不发生必导致A不发生,因此A=B, 但A、B必导致B不发生,故并非同一事件.1.7.若A=B, 则A、B同时发生或A、B同时不发生, 对吗?答:对.1.8.“事件A、B都发生”与“A、B都不发生”是对立事件吗?答:不是的.1.9. A1, A2, …, A n构成完备事件组, 当且仅当同时满足(1)A1+A2+…+A n=Ω;(2)A1A2…A n=∅. 上述说法对吗?答:不对.因为A1A2…A n=Φ与A1, A2,…, A n互不相容不等价.1.10.“事件A、B、C两两互不相容”与“ ABC=∅”是不是一回事?并说明它们的联系.答:不是一回事.“两两互不相容”-----其中任意两个事件无公共部分,即AB=Φ, AC=∅ , BC=∅同时成立”;“ABC=∅”-----三事件A、B、C无公共部分.可能的联系是: “两两互不相容” ⇒“ ABC=∅”, 反之则未必成立.1.11.设A、B为两事件,(1) 若AB=A+B, 则A与B应满足什么关系;(2) 若,则A与B应满足什么关系.答:(1) 由知,又互不相容, 从而有:.故, 从而有;仿上述推导可得, 从而有;(2) 由有,.上述两式表明A与B是互为对立事件,即§2 概率的定义2.1.判断: P(A)=P(B)的充要条件是A=B.答:错误. 事实上, 由A=B可以推出P(A)=P(B),但P(A)=P(B) 不能推出A=B.例如在掷币试验中, 记A={正面朝上}, B={反面朝上}, 我们已知P(A)=P(B)=1/2, 但显然A≠B.2.2.若A、B互不相容, 则求A、B同时发生的概率是否可用公式:.答:不可以. 对任意两个事件, 第一个等号成立, 第二个等号也成立, 但第三个等号是不成立的.因为若A、B互不相容, 一般是不互斥的(除非A=∅, B=Ω; 或A=Ω, B=∅).故.总的说来, 当A、B互不相容时, 完全没有必要去建立什么求P(AB)的公式, 因为这时一定有P(AB)=P(Ф)=0.2.3.P(A)=0的充要条件是A=∅, 对吗?答:不对. 因为A=∅可以推出P(A)=0, 故A=∅是P(A)=0的充分条件, 但非必要条件(即由P(A)=0不能推出A=∅). 如连续型随机变量, 在某个点取值的概率为0, 但这个随机变量取这个值这个事件却不是不可能事件.2.4.P(B)=1的充要条件是B=Ω,对吗?答:不对.道理同第2.3.题.2.5.若P(ABC)=0, 是否可以推出: P(A+B+C)=P(A)+P(B)+P(C).答:不可以. 对任意事件A、B、C,恒有P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC).当且仅当A、B、C两两互不相容时才有P(A+B+C)=P(A)+P(B)+P(C).现由题设P(ABC)=0, 并不能推出A、B、C两两互不相容, 因此原命题不成立.2.6.若A、B互不相容, 则是否有P(A-B)=P(A)-P(B).答:不成立. 我们可以证明, 对任意两个事件A、B,恒有P(A-B)=P(A)-P(AB)对上式, 若A、B互不相容, 并不能推出P(AB)=P(B), 从而知原命题不成立.2.7.对于任意两个事件A、B, 恒有P(AB)≤P(A)+P(B), 等号当且仅当A、B都不发生时成立, 上述结论是否正确?答:上述结论的前一半是正确的,但后一半是不正确的.事实上, 由概率的加法定理P(A+B)=P(A)+P(B)-P(AB)≥0,则P(AB)≤P(A)+P(B).但是,显然, 等号当且仅当P(A+B)=0时成立. 因为,当A、B都不发生时, A、B至少一个发生是不可能的, 即A+B=∅, 故P(A+B)=0.反之, 当P(AB)=P(A)+P(B)时, 则P(A+B)=0, 由此并不能推出一定有A+B=∅(即A、B都不发生).综合上述, 知原命题不成立.2.8.设A、B、C为三个事件, 满足条件: P(AB)=P(A)P(B), . 证明: P(AC)≥P(A)P(C).知, 又,证明: 由可得A、B、C三事件之间的关系如图所示.从而有, 且AB与互不相容, 于是.2.9.对于古典概型,因为样本空间中的基本事件没有顺序,因此计算基本事件总数时,只能用组合而不能用排列, 上述说法正确吗?答:不正确. 首先要指出,问题本身的提法是含糊的. 以同时掷两枚硬币的试验为例,它的基本事件是:{e1}={正, 正},{e2}={正, 反},{e3}={反, 正},{e4}={反, 反}. 所谓“基本事件没有顺序”是指{e1}、{e2}、{e3}、{e4}没有顺序,还是指“正”与“反”没有顺序?此其一.古典概型与排列组合有什么必然联系?此其二. 不少学生有一个错误的看法,似乎计算古典概型的概率必须用排列组合,不需排列组合计算的概率就一定不是古典概型。
《概率论与数理统计教程》教案第一章随机事件与概率教材:《概率论与数理统计教程》总安排学时:90本章学时:14第一讲:随机事件及其运算教学内容:引言、概率论的基本概念、事件之间的关系及运算、事件之间的运算规律。
教学目的:(1)了解概率论这门学科的研究对象,主要任务和应用领域;(2)深刻理解随机试验、基本事件、样本空间、随机事件的概念;掌握一个随机试验的样本空间、基本事件和有关事件的表示方法。
(3)深刻理解事件的包含关系、和事件、积事件、互斥事件、互逆事件和差事件的意义;掌握事件之间的各种运算,熟练掌握用已知事件的运算表示随机事件;(4)掌握事件之间的运算规律,理解对偶律的意义。
教学的过程和要求:(1)概率论的研究对象及主要任务(10分钟)举例说明概率论的研究对象和任务,与高等数学和其它数学学科的不同之处,简单介绍概率论发展的历史和应用;(i)概率论的研究对象:确定性现象或必然现象:在相同的条件下,每次观察(试验)得到的结果是完全相同的现象。
例:向空中抛掷一物体,此物体上升到一定高度后必然下落;例:在一个标准大气压下把水加热到100℃必然会沸腾等现象。
随机现象或偶然现象:在相同的条件下,每次观察(试验)可能出现不同结果的现象。
例:在相同的条件下抛一枚均匀的硬币,其结果可能是正面(分值面)向上,也可能是反面向上,重复投掷,每次的结果在出现之前都不能确定;例:从同一生产线上生产的灯泡的寿命等现象。
(ii)概率论的研究任务:概率论与数理统计就是研究和揭示随机现象的统计规律性的一门数学学科。
(iii)概率论发展的历史:概率论起源于赌博问题。
大约在17世纪中叶,法国数学家帕斯卡(B•Pascal)、费马(fermat)及荷兰数学家惠更斯(C•Hugeness)用排列组合的方法,研究了赌博中一些较复杂的问题。
随着18、19世纪科学的迅速发展,起源于赌博的概率论逐渐被应用于生物、物理等研究领域,同时也推动了概率理论研究的发展. 概率论作为一门数学分支日趋完善,形成了严格的数学体系。