数学分析习题集10复旦大学
- 格式:pdf
- 大小:138.85 KB
- 文档页数:7
206习题十6. 画出积分区域,改变累次积分的积分次序: (1)2220d (,)d yyy f x y x ⎰⎰; (2)eln 1d (,)d xx f x y y ⎰⎰;解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以22242d (,)d d (,)d .y x yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D :1e,0ln .x y x ≤≤≤≤如图10-7所示.图10-7D 亦可表示为: 01,e e,y y x ≤≤≤≤所以e ln 1e 1ed (,)d d (,)d y xx f x y y y f x y x =⎰⎰⎰⎰8. 计算下列二重积分: (1)221d d ,:12,;Dx x y D x y x yx≤≤≤≤⎰⎰(2)e d d ,x yDx y ⎰⎰D 由抛物线y 2 = x ,直线x =0与y =1所围;解:(1)()22222231221111d d d d d d xx D x xx x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.207图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000e d d d e d d e d()x x x y y yyyD xx y y x y y y==⎰⎰⎰⎰⎰⎰ 2111100ed (e 1)d e d d y x y y yy y y y y y y y ==-=-⎰⎰⎰⎰1111120000011de d e e d .22y y y y y y y y y =-=--=⎰⎰⎰10. 在极坐标系下计算二重积分:(1){}2222d ,;(,)|π4πDx y D x y x y =≤+≤⎰⎰(3)arctand d ,Dxx y y⎰⎰D 是由22x y +=4, 22x y +=1,及直线y =0,y =x 所围成的在第一象限内的闭区域;解:(1)积分区域D 如图10-16所示:图10-16D 亦可采用极坐标表示为:π≤r ≤2π, 0≤θ≤2π所以[]2π2ππ2π2πd d sin d 2π6π.cos sin Dx y r r rr r r θ==-=--⎰⎰⎰⎰(3)积分区域D 如图10-17所示.208图10-17D 可用极坐标表示为:0≤θ≤π4, 1≤r ≤2. 所以:π2401π240arctan d d arctan(cot )d d 39ππd .2642D x x y r r yθθθθ=⎛⎫==- ⎪⎝⎭⎰⎰⎰⎰⎰11. 将下列积分化为极坐标形式,并计算积分值:)211222220(3)d ()d ;(4)d d .xaxx x y y y x x y -++⎰⎰⎰解:(3)积分区域D如图10-21所示.图10-21D 也可用极坐标表示为:π0,0sec tan 4r θθθ≤≤≤≤ . 于是:21ππ1sec tan 2221440π4d ()d d d sec tan d sec 1xx x x y y r r r θθθθθθθ--+=⋅===⎰⎰⎰⎰⎰(4)积分区域D如图10-22所示.209图10-22D 可用极坐标表示为:π0,02r a θ≤≤≤≤ 于是:π42234200ππd )d d d .284aaar y x y x r r a θ+==⋅=⎰⎰⎰29. 在直角坐标系下计算三重积分: (1)23d d d xyz x y z Ω⎰⎰⎰,其中Ω是由曲面z = x y 与平面y = x , x =1和z =0所围成的闭区域;(2)()3d d d 1x y zx y z Ω+++⎰⎰⎰,其中Ω为平面x = 0, y = 0, z = 0, x +y +z = 1所围成的四面体;(5)e d d d y x y z Ω⎰⎰⎰,其中Ω是由x 2+z 2-y 2=1, y =0, y =2所围成;解:(1)积分区域Ω如图10-42所示。
复旦大学数学分析答案【篇一:复旦大学2009年数学分析考研真题】s=txt>一.填空题xln(1?x)=_____x?01?cosxy(1?x)(2)微分方程y=的通解是____,这是变量可分离方程x(1)lim(3)设?是锥面(0?z?1)的下侧,则???xdyd?z2ydz?d3x(?1z)d?xdy____(4)点(2,1,0)到平面3x+4y+5z=0的距离d=____ (5)设a=? ?21??,2阶矩阵b满足ba=b+2e,则b=____??12?(6)设随机变量x与y相互独立,且均服从区间?0,3?上的均匀分布,则p{max(x,y)?1}?____ 一、选择题(1)设函数y?f(x)具有二阶导数,且f(x)?0,f(x)?0,?x为自变量x在x,处的增量,?y与dy分别为f(x)在点x处对应的增量与微分,若?x?0,则()(a)0?dx??y (b)0??y?dy (c)?y?dy?0 (d)dy??y?0 (2)设f(x,y)为连续函数,则(a)(c)??d??f(rcos?,rsin?)rdr等于()1nxf(x,y)dy(b)0f(x,y)dy f(x,y)dx0yf(x,y)dx(d)0(3)若级数?an?1??收敛,则级数()(a)?an?1?n收敛(b)?(?1)a收敛nnn?1??(c)?anan?1收敛(d)?n?1an?an?1收敛 2n?1(4)设f(x,y)和?(x,y)均为可微函数,且?y(x,y)?0,已知(x0,y0)是f(x,y)在约束条件?(x,y)?0下的一个极值点,下列选项正确的是()(a)若fx(x0,y0)?0,则fy(x0,y0)?0(b)若fx(x0,y0)?0,则fy(x0,y0)?0 (c)若fx(x0,y0)?0,则fy(x0,y0)?0 (d)若fx(x0,y0)?0,则fy(x0,y0)?0(5)设?1,?2,?,?s都是n维向量,a是m?n矩阵,则()成立(A)若?1,?2,?,?s线性相关,则a?1,a?2,?a?s线性相关(B)若?1,?2,?,?s线性相关,则a?1,a?2,?a?s线性无关(C)若?1,?2,?,?s线性无关,则a?1,a?2,?a?s线性相关(D)若?1,?2,?,?s线性无关,则a?1,a?2,?a?s线性无关(6)设A是3阶矩阵,将a的第2列加到第1列上得b,将b的第一列的?1倍加到?110???第2列上得c,记p??010?,则()?001???(a)c?pap(b)c?pap (c)c?pap(d)c?pap(7)设a,b为随机事件,p(b)?0,p?a|b??1,则必有()(a)p?a?b??p(a)(b)p?a?b??p(b) (c)p(a?b)?p(a)(d)p(a?b)?p(b)2(8)设随机变量x服从正态分布n(?1,?1),y服从正态分布n(?2,?2),且2tt?1?1p{x??1?1}?py??2?1},则()(a)?1??2 (b)?1??2 (c)?1??2 (D)?1??2三、简答题(1)设区域d?{(x,y)|x2?y2?1,x?0},计算二重积分i?1?xy22??1?x?yd(2)设数列{xn}满足0?x1??,xn?1?sinxn(n=1,2?),求:(i)证明limxn存在,并求之x??1(ii)?xn?1?xn2计算lim?? x???xn?(3)设函数f(u)在(0,?)内具有二阶导数,且z?f满足等式?2?0 2?x?y(i)f(u)?0 验证f(u)?u(ii)若f(1)?0,f(1)?1,求函数f(u)的表达式(4)设在上半平面d?{(x,y)|y?0}内,函数f(x,y)是有连续偏导数,且对任意2的t?0都有f(tx,ty)?tf(x,y)证明:对l内的任意分段光滑的有向简单闭曲线L,都有?lyf(x,y)dx?xf(x,y)dy?0(5)已知非齐次线性方程组?x1?x2?x3?x4??1??4x1?3x2?5x3?x4??1有3个线性无关的解?ax?x?3x?bx?134?12(I)证明方程组系数矩阵A的秩 r(a)?2 (ii)求 a , b 的值及方程组的通解(6)设3阶实对称矩阵a的各行元素之和均为3,向量?1?(?1,2,?1)t,?2?(0,?1,1)t实线性方程组ax?0的两个解,(i)求a的特征值与特征向量(ii)求:正交矩阵Q与对角矩阵A,使得qaq?at?1?2,?1?x?0??1(7)随机变量x的概率密度为fx(x)??,0?x?2令y?x2,f(x,y)为二维随机变?4?0,其他??量(x,y)的分布函数(I)求Y的概率密度fy(y) (ii)f???1???,0?x?1?(8)设总体x的概率密度f(x,0)??1??,1?x?2其中?实未知参数(0???1),?0,其他?x1,x2,?,xn为来自总体x的简单随即样本,记n为样本值x1,x2,?,xn中小于1的个数,求?的最大似然估计【篇二:复旦《数学分析》答案第四章1、2节】题 4.1 微分和导数⒈半径为1cm的铁球表面要镀一层厚度为0.01cm的铜,试用求微?43?r3,每只球镀铜所需要铜的质量为2m???v?4??r?r?1.12g。
习 题 1-11.计算下列极限(1)lim x ax a a x x a→--, 0;a >解:原式lim[]x a a ax a a a x a x a x a→--=---=()|()|x a x a x a a x ==''- =1ln aa a a a a --⋅=(ln 1)a a a -(2)sin sin limsin()x a x ax a →--;解:原式sin sin lim x a x ax a→-=-(sin )'cos x a x a ===(3)2lim 2), 0;n n a →∞->解:原式2n =20[()']x x a ==2ln a = (4)1lim [(1)1]pn n n→∞+-,0;p >解:原式111(1)1lim ()|p p p x n n nx =→∞+-'===11p x px p -== (5)10100(1tan )(1sin )lim;sin x x x x→+-- 解:原式101000(1tan )1(1sin )1lim lim tan sin x x x x x x→→+---=--=990010(1)|10(1)|20t t t t ==+++=(6)1x →,,m n 为正整数;解:原式11lim11nx x x →=--1111()'()'mx nx x x ===n m=2.设()f x 在0x 处二阶可导,计算00020()2()()lim h f x h f x f x h h→+-+-. 解:原式000()()lim 2h f x h f x h h →''+--=00000()()()()lim 2h f x h f x f x f x h h→''''+-+--=000000()()()()lim lim 22h h f x h f x f x h f x h h →→''''+---=+-00011()()()22f x f x f x ''''''=+=3.设0a >,()0f a >,()f a '存在,计算1ln ln ()lim[]()x a x a f x f a -→.解:1ln ln ()lim[]x a x a f x -→ln ()ln ()ln ln lim f x f a x ax a e --→=ln ()ln ()limln ln x a f x f a x a e→--=ln ()ln ()lim ln ln x a f x f a x a x ax ae→----='()()f a a fa e=习 题 1-21.求下列极限 (1)lim sin x →+∞;解:原式lim [(1)(1)]02x x x ξξ→+∞=+--= ,其中ξ在1x -与1x +之间(2)40cos(sin )cos lim sin x x xx→-;解:原式=40sin (sin )limx x x x ξ→--=30sin sin lim()()()x x x x x ξξξ→--⋅=16,其中ξ在x 与sin x 之间(3) lim x →+∞解:原式116611lim [(1)(1)]x x x x →+∞=+--56111lim (1)[(1)(1)]6x x x xξ-→+∞=⋅+⋅+--5611lim (1)33x ξ-→+∞=+= ,其中ξ在11x -与11x +之间 (4) 211lim (arctan arctan);1n n n n →+∞-+ 解:原式22111lim ()11n n n n ξ→+∞=-++1=,其中其中ξ在11n +与1n 之间 2.设()f x 在a 处可导,()0f a >,计算11()lim ()nn n n f a f a →∞⎡⎤+⎢⎥-⎣⎦. 解:原式1111(ln ()ln ())lim (ln ()ln ())lim n n f a f a n f a f a n nn nn e e→∞+--+--→∞==11ln ()ln ()ln ()ln ()[lim lim ]11n n f a f a f a f a n n n ne→∞→∞+---+-=()()2()()()()f a f a f a f a f a f a ee'''+==习 题 1-31.求下列极限(1)0(1)1lim (1)1x x x λμ→+-+-,0;μ≠解:原式0limx x x λλμμ→==(2)0x →;解:02ln cos cos 2cos lim12x x x nxI x →-⋅⋅⋅=20ln cos ln cos 2ln cos 2lim x x x nx x→++⋅⋅⋅+=- 20cos 1cos 21cos 12lim x x x nx x →-+-+⋅⋅⋅+-=-22220(2)()lim x x x nx x →++⋅⋅⋅+=21ni i ==∑ (3)011lim)1xx x e →--(; 解:原式01lim (1)x x x e xx e →--=-201lim x x e x x →--=01lim 2x x e x→-=01lim 22x x x →== (4)112lim [(1)]xxx x x x →+∞+-;解:原式11ln(1)ln 2lim ()x x xxx x ee+→+∞=-21lim (ln(1)ln )x x x x x →+∞=+-1lim ln(1)x x x→+∞=+1lim 1x xx→+∞== 2. 求下列极限 (1)2221cos ln cos limsin x x x x xe e x-→----;解:原式222201122lim12x x x x x →+==- (2)0ln()2sin lim sin(2tan 2)sin(tan 2)tan x x x e xx x x→++--;解:原式0ln(11)2sin lim sin(2tan 2)sin(tan 2)tan x x x e x x x x →++-+=--012sin limsin(2tan 2)sin(tan 2)tan x x x e xx x x→+-+=-- 02lim442x x x xx x x→++==--习 题 1-41.求下列极限(1)21lim (1sin )n n n n→∞-;解:原式2331111lim [1(())]3!n n n o n n n →∞=--+11lim((1))3!6n o →∞=+=(2)求33601lim sin x x e x x→--;解:原式3636336600()112lim lim 2x x x xx o x x e x x x →→++---=== (3)21lim[ln(1)]x x x x→∞-+;解:原式222111lim[(())]2x x x o x x x →∞=--+12=(4)21lim (1)x xx e x-→+∞+;解:原式211[ln(1)]2lim x x xx ee +--→∞==此题已换3.设()f x 在0x =处可导,(0)0f ≠,(0)0f '≠.若()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.解:因为 ()(0)(0)()f h f f h o h '=++,(2)(0)2(0)()f h f f h o h '=++ 所以00()(2)2(0)(1)(0)(2)(0)()0limlim h h af h bf h f a b f a b f o h h h→→'+-+-+++==从而 10a b +-= 20a b += 解得:2,1a b ==- 3.设()f x 在0x 处二阶可导,用泰勒公式求0002()2()()limh f x h f x f x h h →+-+-解:原式222200001000220''()''()()'()()2()()'()()2!2!limh f x f x f x f x h h o h f x f x f x h h o h h→+++-+-++=22201220''()()()lim h f x h o h o h h→++=0''()f x = 4. 设()f x 在0x =处可导,且20sin ()lim() 2.x x f x x x →+=求(0),(0)f f '和01()lim x f x x→+. 解 因为 2200sin ()sin ()2lim()lim x x x f x x xf x x x x→→+=+= []22()(0)(0)()limx x o x x f f x o x x→'++++=2220(1(0))(0)()lim x f x f x o x x →'+++=所以 1(0)0,(0)2f f '+==,即(0)1,(0)2f f '=-= 所以 01()l i mx f x x→+01(0)(0)()l i m x f f x o x x →'+++=02()l i m 2x x o x x →+==习 题 1-51. 计算下列极限(1) limn n →∞++解:原式limn →∞=2n ==(2)2212lim (1)nn n a a na a na+→∞+++⋅⋅⋅+> 解:原式21lim (1)nn n n na na n a ++→∞=--2lim (1)n n na n a →∞=--21a a=-2. 设lim n n a a →∞=,求 (1) 1222lim nn a a na n →∞+++;解:原式22lim (1)n n na n n →∞=--lim 212n n na a n →∞==- (2) 12lim 111n nna a a →∞+++,0,1,2,,.i a i n ≠=解:由于1211111lim lim n n n na a a n a a →∞→∞+++==, 所以12lim 111n nna a a a →∞=+++3.设2lim()0n n n x x -→∞-=,求lim n n x n →∞和1lim n n n x x n-→∞-.解:因为2lim()0n n n x x -→∞-=,所以222lim()0n n n x x -→∞-=且2121lim()0n n n x x +-→∞-=从而有stolz 定理2222limlim 022n n n n n x x xn -→∞→∞-==,且212121lim lim 0212n n n n n x x x n ++-→∞→∞-==+ 所以lim 0n n x n →∞=,111lim lim lim 01nn n n n n n x x x x n n n n n --→∞→∞→∞--=-=-4.设110x q <<,其中01q <≤,并且1(1)n n n x x qx +=-, 证明:1lim n n nx q→∞=.证明:因110x q<<,所以211211(1)111(1)()24qx qx x x qx q q q+-=-≤=<,所以210x q <<,用数学归纳法易证,10n x q <<。
复旦大学数学分析第三版答案【篇一:数学分析复旦大学第四版大一期末考试】s=txt>一、填空题(每空1分,共9分) 1.函数()cos1fxx??的定义域为________________2.已知函数sin,1()0,1xxfxx????????,则(1)____,()____4ff???3.函数()sincosfxxx??的周期是_____4.当0x?时,函数tansinxx?对于x的阶数为______5.已知函数()fx在0xx?处可导,则00011()()23lim____hfxhfxhh ???6.曲线1yx?在点(1,1)处的切线方程为______________,法线方程为________________7.函数2()fxx?在区间[0,3]上的平均值为________二、判断题(每小题1.5分,共9分) 1.函数()fxx?与2()gxx?是同一个函数。
()2.两个奇函数的积仍然是奇函数。
()3.极限0limxxx?不存在。
()4.函数1,0()1,0xfxx???????是初等函数,而1,0()0,01,0xgxxx?不是初等函数。
()5.函数()sinfxxx?在区间[0,]?上满足罗尔中值定理。
()6.函数()fx在区间[,]ab上可导,则一定连续;反之不成立。
()三、计算题(64分)1.求出下列各极限(每小题4分,共20分)(1)111lim(...)1223 (1)nnn????????? (2)222111lim(...)12nnnnn????????(3)4213lim22xxx?????(4)210lim(cos)xxx??(5)211lim1xtxedtx???2.求出下列各导数(每小题4分,共16分)()xtxfxedt????(2)cos()(sin)xfxx? (3) sin1cosxttyt???????1)2 (【篇二:复旦数学真题有答案】?a?bc,y?b?ac,z?c?ab,65、已知是不完全相等的任意实数。