第五章差热-热重曲线
- 格式:ppt
- 大小:814.00 KB
- 文档页数:1
实验8 差热-热重分析一、实验目的1.了解LCT-2差热天平仪的原理及仪器装置;2.理解用DTA—TG热分析方法来分析鉴定物质。
二、实验原理由于试样材料在加热或冷却过程中,会发生一些物理化学反应,同时伴随着热效应和质量等方而的变化,这就是热分析技术的基础。
常用的单一的热分析方法主要有:差热分析(DTA)、热重分析(TG)、示差扫描量热法(DSC)和体积热分析等。
1.热重测量将装好试样的坩埚放到天平一臂上方的样品座上,利用电炉对其加热,如果试样在某一温度下由于分解、化合、脱水、吸附、解吸、升华、脱水等原因而出现重量变化时,天平将失衡。
利用光电位移传感器及时检测出失衡信号、热重测量系统自动改变平衡线圈中的平衡电流,使天平恢复平衡,平衡线圈中之电流变化量正比于试样重量变化量,将此电流变化量利用记录仪记录下来,即可得到热重曲线。
2.差热分析随着温度的升高物质将在特定的温度下发生相变、分解、化合、吸附、解吸、升华、脱水、熔化、凝固等现象。
这时常伴随有焓的改变。
有的物质一定的温区内不发生上述变化,在热分析中叫作参比物(简称参样),将被测试样(简称试样)与参样置于电炉的均温区内,同时以相同的条件升温或降温,当试样发生上述变化时,利用差热电偶可以测量出反映试样与参样间温度差的差热电势,将此差热电势经微伏级电流放大器放大后送入记录仪即可得到差热曲线。
利用差热分析和热重测量可得DTA—TG数据,可用于研究物质的相变、分解、化合、脱水、吸附、解吸、熔化、凝固、升华、蒸发等现象及对物质作鉴别分析、组织分析、热参数测定及动力学参数测定等。
三、仪器设备LCT-2差热天平仪,一般由加热炉及温度控制系统、样品支持器、热电偶和记录系统构成。
四、实验操作1.开机准备及操作(1) 检查仪器各种开关是否处于关闭状态,接通冷却水;(2) 接通总电源(要求预热10分钟),打开微机系统及相应的仪器开关;(3) 将装有试样(已称量过的)的坩埚和装有标样即参比物(α-Al2O3)的坩埚分别放到样品座上,并在电控机箱面板上选择各相应的控制档。
热重dta曲线热重差热分析(TGA)是一种广泛应用于材料科学、化学分析和热力学研究的分析技术。
该技术通过测量样品在升温过程中质量的变化来研究材料的热性质。
在TGA实验中,样品被加热至高温,并在惰性气氛下进行测量,从而可以获得样品的热重曲线。
本文将详细介绍热重曲线的意义、测量原理、数据分析以及在不同领域中的应用。
热重曲线是TGA实验的主要输出结果之一,它描述了样品质量随温度的变化情况。
通常,热重曲线以质量变化率(dM/dt)与温度的关系表示。
在曲线上,质量增加的区域代表了样品吸湿或发生化学反应的过程,而质量减少的区域则表示样品蒸发或分解的过程。
通过对热重曲线的分析,可以获得样品的失重温度、转化温度、降解温度等重要信息,进而评估材料的稳定性、热稳定性和蒸发特性。
热重曲线的测量原理基于热平衡和质量守恒原理。
在TGA实验中,样品通常放置在量热杯中,并通过加热器进行加热。
样品与惰性气体环境接触,以避免样品与气体的反应。
当样品受热时,其质量会随温度的升高而发生变化。
此时,质量计会实时测量样品的质量变化,并以一定的时间间隔记录数据。
通过对测得的质量数据进行处理,可以得到热重曲线。
数据分析是从热重曲线中提取有用信息的重要步骤。
常见的数据分析方法包括计算质量损失时间、转化峰温、失重率、失重率峰以及激活能等。
质量损失时间是指样品质量开始下降到最终稳定时所经过的时间。
转化峰温表示样品发生转化反应的温度。
失重率是指样品单位时间内质量减少的比率,通常以百分比或毫克/分钟来表示。
失重率峰代表失重率最高的温度点,对于了解样品热分解或挥发的温度范围非常重要。
激活能是指完成反应所需的能量,通过对失重率数据进行模型拟合,可以计算得到激活能值。
热重曲线在材料科学、化学分析和热力学研究中具有广泛的应用。
在材料科学中,热重曲线可以用于研究材料的热稳定性和热分解行为,评估材料的安全性和耐久性。
在化学分析中,热重曲线可以用于分析样品的组成和纯度,检测杂质或附加成分。
实验5 热重、差热分析实验一.实验目的与基本要求1.在固相反应中,通过对材料基本性质的了解,利用其基本性质参数,试设计出一条合理的温度曲线,利用综合热分析仪(ZRY-1P、ZRY-2P)对其进行测试分析,通过对比,得到最优烧结方案。
2.理解热重分析和差热分析的基本原理。
3.了解高温综合热分析仪(ZRY-2P)的组成及组成各系统的基本工作原理。
4.掌握高温综合热分析仪的具体测量方法。
5.当各种固体氧化物、盐类发生熔融、相变、分解、化合、脱水、凝固、蒸发、升华等特定过程时,对其进行热重分析和差热分析。
6.对实验数据进行处理,根据得到的一系列热重曲线(TG)、微分热重曲线(DTG)和差热曲线(DTA),对物质发生的具体过程进行热分析。
二.实验原理与温度曲线的设计固相反应是一系列合金、传统硅酸盐材料以及新型无机功能材料生产过程中的基础反应。
固相反应是固体参与直接化学反应并起化学变化,同时至少在固体内部或外部的一个过程中起控制作用的反应。
固相反应除固体间的反应外也包括有气、液相参与的反应。
例如金属氧化、碳酸盐、硝酸盐和草酸盐等的热分解反应、粘土矿物的脱水反应以及煤的干馏等反应。
固相反应的共同特点有:首先,固体质点(原子、离子或分子)间具有很大的作用键力,故固态物质的反应活性通常较低,速度较慢。
其次,在低温时固体在化学上一般是不活泼的,因而固相反应通常需在高温下进行。
而且由于反应发生在非均一系统,传热和传质过程都对反应速度有重要影响。
而伴随反应的进行,反应物和产物的物理化学性质将会变化,并导致固体内部温度和反应物浓度分布及其物性的变化,这都可能对传热、传质和化学反应过程产生影响。
在具体的反应中为了得到预定的产物,使反应向着希望的方向进行,各种固体氧化物、盐类发生熔融、相变、分解、化合、脱水、凝固、蒸发、升华等特定过程需要适当的温度和持续时间,在对具体反应物基本性质的了解,利用其基本性质参数的基础上,试设计出一条适宜的温度曲线,利用高温综合热分析仪(ZRY-2P)对其进行测试,通过对实验结果的分析比较,得到最优温度方案。
热重曲线怎么分析?热重分析原理看这⾥!热分析是仪器分析的⼀个重要分⽀,它对物质的表征发挥着不可替代的作⽤。
热分许历经百年的悠悠岁⽉,从矿物、⾦属的热分析兴起,近⼏⼗年来,在⾼分⼦科学和药物分析等⽅⾯焕发了勃勃⽣机。
热重分析法(Thermogravimetry Analysis,简称TG或TGA)为使样品处于⼀定的温度程序(升/降/恒温)控制下,观察样品的质量随温度或时间的变化过程,获取失重⽐例、失重温度(起始点,峰值,终⽌点...)、以及分解残留量等相关信息。
TG⽅法⼴泛应⽤于塑料、橡胶、涂料、药品、催化剂、⽆机材料、⾦属材料与复合材料等各领域的研究开发、⼯艺优化与质量监控。
可以测定材料在不同⽓氛下的热稳定性与氧化稳定性,可对分解、吸附、解吸附、氧化、还原等物化过程进⾏分析,包括利⽤TG测试结果进⼀步作表观反应动⼒学研究。
可对物质进⾏成分的定量计算,测定⽔分、挥发成分及各种添加剂与填充剂的含量。
顶部装样式的热重分析仪结构⽰意图炉体为加热体,在⼀定的温度程序下运作,炉内可通以不同的动态⽓氛(如N2、Ar、He等保护性⽓氛,O2、air等氧化性⽓氛及其他特殊⽓氛等),或在真空或静态⽓氛下进⾏测试。
在测试进程中样品⽀架下部连接的⾼精度天平随时感知到样品当前的重量,并将数据传送到计算机,由计算机画出样品重量对温度/时间的曲线(TG曲线)。
当样品发⽣重量变化(其原因包括分解、氧化、还原、吸附与解吸附等)时,会在TG曲线上体现为失重(或增重)台阶,由此可以得知该失/增重过程所发⽣的温度区域,并定量计算失/增重⽐例。
若对TG曲线进⾏⼀次微分计算,得到热重微分曲线(DTG曲线),可以进⼀步得到重量变化速率等更多信息。
典型的热重曲线如下图所⽰:图谱可在温度与时间两种坐标下进⾏转换。
)曲线,表征了样品在程序温度过程中重量随温度/时间变化的情况,其热重(TG)曲线红⾊曲线:热重(纵坐标为重量百分⽐,表⽰样品在当前温度/时间下的重量与初始重量的⽐值。
热重分析仪热重分析仪方法当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。
这时热重曲线就不是直线而是有所下降。
通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质。
热重分析的应用热重法的重要特点是定量性强,能准确地测量物质的质量变化及变化的速率,可以说,只要物质受热时发生重量的变化,就可以用热重法来研究其变化过程。
热重法所测的性质包括腐蚀,高温分解,吸附/解吸附,溶剂的损耗,氧化/还原反应,水合/脱水,分解,黑烟末等,目前广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。
具体包括:无机物、有机物及聚合物的热分解;金属在高温下受各种气体的腐蚀过程;固态反应;矿物的煅烧和冶炼;液体的蒸馏和汽化;煤、石油和木材的热解过程;含湿量、挥发物及灰分含量的测定;升华过程;脱水和吸湿;爆炸材料的研究;反应动力学的研究;发现新化合物;吸附和解吸;催化活度的测定;表面积的测定;氧化稳定性和还原稳定性的研究;反应机制的研究。
仪器特点:温度范围: RT ~1000℃加热与冷却速率快。
有效精度:1μg (内部精度: 0.1μg) 真空密封结构。
直接测定样品温度。
差热分析仪在程序控制温度下,测量物质与参比物之间的温度差与温度的函数关系的仪器。
由程序控制部件、炉体和记录仪组成,可电脑控制,打印试验报告。
原理将待测试样和参比物(热惰性物质)置于同一条件的炉体中,按给定程序等速升温或降温,当加热试样在不同温度下产生物理、化学性质的变化(如相变,结晶构造转变,结晶作用,沸腾,升华,气化,熔融,脱水,分解,氧化,还原……及其他反应)时,伴随吸热或放热,试样自身的温度低于或高于参比物质的温度,即两者之间产生温差。
温差的大小(反应前和反应后二者的温差为零)和极性由热电偶检测,并转换为电能,经放大器放大输入记录仪,记录下的曲线即为差热曲线。
差热—热重分析法测定硫酸铜的热分析图谱一、实验目的1.了解差热分析法、热重分析法的基本原理。
2.了解差热热重同步热分析仪的基本构造并掌握使用方法。
3.正确控制实验条件,并学会对热分析谱图进行定性分析和定量处理.二、实验原理1.差热分析法(Differential Thermal Analysis,DTA)差热分析是在程序控制温度下,测量试样与参比物(一种在测量温度范围内不发生任何热效应的物质)之间的温度差与温度关系的一种技术。
许多物质在加热或冷却过程中会发生熔化、凝固、晶型转变、吸附、脱附等物理转变及分解、化合、氧化还原等化学反应。
这些变化在微观上必将伴随体系焓的改变,从而产生热效应,在宏观上表现为该物质与外界环境之间有温度差.选择一种对热稳定的物质作为参比物,将其与试样一起置于可按设定速率升温的热分析仪中,分别记录参比物的温度以及试样与参比物间的温度差。
以温差对温度作图就可以得到差热分析曲线,简称DTA曲线.2。
热重法(Thermogravimetry,TG)热重法是在程序控制温度下,测量物质的质量变化与温度关系的一种技术,其基本原理是热天平.热天平分为零位法和变位法两种。
变位法,就是根据天平梁的倾斜度与质量变化呈比例的关系,用差动变压器等检知倾斜度,并自动记录。
零位法,是采用差动变压器法、光学法或电触点法测定天平梁的倾斜度,并用螺线管线圈对安装在天平系统中的永久磁铁施加力,使天平梁的倾斜复原。
由于对永久磁铁所施加的力与质量变化呈比例,这个力又与流过螺线管的电流呈比例,因此只要测量并记录电流,便可得到质量变化的曲线,以质量对温度作图就可以得到热重曲线,简称TG曲线。
三、实验用品1.仪器日本SHIMADZU DTG—60差热—热重同步热分析仪(TA-60工作站),镊子,坩埚,研钵.2.药品参比物:α—AL2O3(A。
R,原装进口)试样:CuSO4·5H2O(A。
R)四、操作步骤1、熟悉差热—热重同步热分析仪的组成及相应旋钮的作用.2、开启主机电源,整机预热30min。
热差热重曲线
热差热重曲线(Differential Scanning Calorimetry,DSC)是一种热分析技术,用于研究物质的热性质。
它通过测量样品与参比物在控制温度升降速率下的热容差异来获取热差热重曲线。
在DSC实验中,样品和参比物都被加热或冷却,而其温度与时间的变化被记录下来。
当样品发生物理或化学变化时,它会吸收或释放热量,导致与参比物的热容差异。
这些热容差异被转换成热差引力,在热差模块中被测量。
热差热重曲线提供了有关样品热性质和热力学反应的信息,如熔化温度、熔化焓、玻璃化转变、相变、反应放热或吸热等。
它可以用于研究材料的相变、聚合物的热性质、化学反应的热力学等领域。
热差热重曲线常用于材料科学、聚合物科学、药学、食品科学等领域的研究。
通过分析热差热重曲线,可以获得关于材料的热稳定性、反应动力学、相变温度范围等信息,对研究和应用具有重要意义。
cu的热重曲线摘要:1.热重曲线简介2.热重曲线的作用3.热重曲线的测量方法4.热重曲线的应用领域5.总结正文:1.热重曲线简介热重曲线,简称TG 曲线,是一种记录物质在加热过程中质量变化与温度关系的曲线。
这种曲线可以帮助我们了解物质在不同温度下的热稳定性、热分解情况以及组分变化等信息。
在材料科学、化学、物理等领域的研究中,热重曲线具有重要的应用价值。
2.热重曲线的作用热重曲线具有以下几种主要作用:(1) 分析材料的热稳定性:通过观察热重曲线,可以判断材料在高温条件下是否稳定,以及其热分解温度和分解产物。
(2) 确定材料的组分:热重曲线可以帮助我们分析材料中的各种组分及其含量,这对于了解材料的性能和应用具有重要意义。
(3) 研究材料的热分解过程:热重曲线可以清晰地反映材料的热分解过程,有助于我们深入了解热分解机理和动力学行为。
(4) 优化材料性能:通过调整材料的组成和结构,可以改善其热稳定性和性能,热重曲线可以为此提供依据。
3.热重曲线的测量方法热重曲线的测量通常采用热重分析仪进行。
热重分析仪是一种高精度的热分析仪器,它可以在高温环境下对样品进行质量测量,并通过计算机处理数据,绘制出热重曲线。
在测量过程中,需要将样品放入热重分析仪的高温炉中,然后以一定的升温速率加热样品。
在加热过程中,通过记录样品的质量变化和温度关系,可以得到热重曲线。
4.热重曲线的应用领域热重曲线在多个领域具有广泛的应用,包括:(1) 材料科学:研究金属、陶瓷、聚合物等材料的热稳定性、热分解和组分变化。
(2) 化学:分析化合物的热稳定性、热分解和反应动力学。
(3) 物理:研究材料的相变行为、热膨胀系数等物理性能。
(4) 环境科学:监测废气、废水等环境中有害物质的排放和降解情况。
(5) 生物学:研究生物大分子的热稳定性和结构变化等。
5.总结热重曲线作为一种重要的热分析手段,可以帮助我们深入了解材料的热稳定性、热分解和组分等信息。