高二数学1-2独立性检验
- 格式:doc
- 大小:362.50 KB
- 文档页数:11
第一章 独立性检验【趁热打铁】 1.【答案】C【解析】∵a +21=73,∴a =52,又a +22=b ,∴b =74. 2.【答案】③【解析】由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75,所以c =20,b =45,①、②错误.根据列联表中的数据,得到()()()()()22n ad bc K a b c d a c b d -=++++2105(10302045) 6.6 3.84155503075⨯⨯-⨯≈>⨯⨯⨯, 因此有95%的把握认为“成绩与班级有关系”.4. 【答案】没有90%的把握认为“测评结果为优秀与性别有关”. 【解析】设从高一年级男生中抽出m 人,则45,m 25500500400m ==+, ∴25205,20182x y =-==-=而()24515510159 1.125 2.706301525208k ⨯⨯-⨯===<⨯⨯⨯,所以没有90%的把握认为“测评结果为优秀与性别有关”.5.【答案】(1)14m =;(2)有99.9%的的把握认为支持网络购物与年龄有关. 【解析】(1)由题意,得8009008002001003009m++++=, 所以14m =.............................5分(2)根据题意得22⨯列联表如下,.......................................................8分所以()21400800300100200376.44410.8289005001000400k⨯⨯-⨯=≈>⨯⨯⨯..................10分所以有99.9%的把握认为是否支持网络购物与年龄有关.....................12分6.【答案】(1)有99.5%的把握认为喜欢“应用统计”课程与性别有关.(2)8 15.7.【答案】(1)抽到参加社团活动的学生的概率是1125;抽到不参加社团活动且学习积极性一般的学生的概率是25.(2)大约有99.9%的把握认为学生的学习积极性与参加社团活动情况有关系.【解析】(1)随机从该班抽查一名学生,抽到参加社团活动的学生的概率是2211 5025=;抽到不参加社团活动且学习积极性一般的学生的概率是202 505=.(2)因为()()()()()22n ad bcKa b c d a c b d-=++++=250(172058)11.68810.828 25252228⨯⨯-⨯≈>⨯⨯⨯,所以大约有99.9%的把握认为学生的学习积极性与参加社团活动情况有关系.8.【答案】(1)240名. (2)(3)能在犯错误的概率不超过1%的前提下,认为“性别”与“工作是否满意”有关.(2)由题意可得下列表格:(3)假设H 0:“性别”与“工作是否满意”无关, 根据表中数据,求得K 2的观测值()()()()()22n ad bc K a b c d a c b d -=++++230(121134)8.571 6.63515151614⨯⨯-⨯≈>⨯⨯⨯,查表得P (K 2≥6.635)=0.010.∴能在犯错误的概率不超过1%的前提下,认为“性别”与“工作是否满意”有关.9.【答案】(1)6;(2)815. 【解析】(1)设常喝碳酸饮料肥胖的学生有x 人,243015x +=,解得x =6.(2)()()()()()22n ad bc K a b c d a c b d -=++++230(61824)8.5237.8791020822⨯⨯-⨯≈>⨯⨯⨯.因此有99.5%的把握认为肥胖与常喝碳酸饮料有关.(3)设常喝碳酸饮料的肥胖男生为A ,B ,C ,D ,女生为E ,F ,任取两人的取法有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种.其中一男一女的取法有AE ,AF ,BE ,BF ,CE ,CF ,DE ,DF ,共8种.故抽出一男一女的概率是P =815. 10.【答案】(1)应收集90位女生的样本数据.(2)该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75. (3)有95%的把握认为“该校学生的每周平均体育运动时间与性别有关” 【解析】(1) 45003009015000⨯=,所以应收集90位女生的样本数据.每周平均体育运动时间与性别列联表()()()()()22n ad bc K a b c d a c b d -=++++=2300(456016530) 4.762 3.8417522521090⨯⨯-⨯≈>⨯⨯⨯.所以,有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”第二章 回归分析【趁热打铁】 1.【答案】A【解析】依题意,画散点图知,两个变量负相关,所以0<b ,0>a .选A. 2.【答案】D【解析】由回归方程y ^=b ^x +a ^知当b ^>0时,y 与x 正相关,当b ^<0时,y 与x 负相关,∴①④一定错误. 3.【答案】A【解析】由表格,得5x =,7y =,代入线性回归方程,得ˆ752b=+,解得ˆ1b =,故选A .5.【答案】A .【解析】因为变量x 和y 满足关系0.11y x =-+,其中0.10-<,所以x 与y 成负相关;又因为变量y 与z 正相关,不妨设z ky b =+(0)k >,则将0.11y x =-+代入即可得到:(0.11)0.1()z k x b kx k b =-++=-++,所以0.10k -<,所以x 与z 负相关,综上可知,应选A .6.【答案】(Ⅰ)^y =-1.45x +18.7;(Ⅱ)以预测当x =3时,销售利润z 取得最大值. 【解析】(Ⅰ)由已知:x -=6,y -=10,5i =1∑x i y i =242,5i =1∑x 2i =220,^b =ni =1∑x i y i -nx -y-ni =1∑x 2i -nx-2=-1.45,a ˆ=y --^bx-=18.7;所以回归直线的方程为^y =-1.45x +18.7 (Ⅱ)z =-1.45x +18.7-(0.05x 2-1.75x +17.2) =-0.05x 2+0.3x +1.5 =-0.05(x -3)2+1.95,所以预测当x =3时,销售利润z 取得最大值.7.【答案】(1)53;(2)325-=∧x y ;(3)可靠.【解析】(1)设抽到不相邻两组数据为事件A ,因此从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,所以531041)(=-=A P ,故选取的2组数据恰好是不相邻2天数据的概率是53.(2)由数据,求得972,27)263025(31,12)121311(31==++==++=y x y x ,4323,434121311,97726123013251122223121==++==⨯+⨯+⨯=∑∑==x x y x i i n i i i ,由公式求得3,2543243497297733231231-=-==--=--=∧∧==∧∑∑x b y a xxyx y x b i ii ii , 所以y 关于x 的线性回归方程为325-=∧x y . (3)当10=x 时,22322,22325<-=-=∧x y ,同样地,当8=x 时,21617,173825<-=-⨯=∧y , 所以该研究所得到的线性回归方程式可靠的.)(2因为25.46,4x ==y ,9424112=∑=-i i x ,945124112=-=-∑i i i y x 所以 83.6449425.464494534ˆ2412212411212≈⨯-⨯⨯-=-⋅-=∑∑=-=--i i i i i xx yx y xb.93.18483.625.46ˆaˆ=⨯-=-=x b y , 即93.18ˆ,83.6ˆ==a b,5.17,5.6==a b . %5ˆ≈-b b b,%8ˆ≈-a a a ,均不超过%10,因此使用位置最接近的已有旧井)24,1(6;………………8分)(3易知原有的出油量不低于L 50的井中,653、、这3口井是优质井,42、这2口井为非优质井,由题意从这5口井中随机选取3口井的可能情况有:)),(,),(,(6,3,25,324.3,2,)),(,(6,4,25,42,)),(,(5,4,36,52,)),(),(,(6,5,46,5,36,43共10种,其中恰有2口是优质井的有6中,所以所求概率是53106==P .………………12分∴c y dw =-=563-68×6.8=100.6.∴y 关于w 的线性回归方程为100.668y w =+,∴y 关于x 的回归方程为100.6y =+……6分 (Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值100.6y =+,10.【答案】(Ⅰ)ˆ 1.2 3.6y t =+,(Ⅱ)10.8千亿元.【解析】 (1)列表计算如下这里111151365,3,7.2.55n n i i i i n t t y y n n=========邋 又2211l 555310,120537.212.nn nt iny i i i i t nt l t y nt y ===-=-?=-=-创=邋从而12ˆˆˆ1.2,7.2 1.23 3.610ny nt l b a y bt l ====-=-?. 故所求回归方程为ˆ 1.2 3.6yt =+. (2)将6t =代入回归方程可预测该地区2015年的人民币储蓄存款为ˆ 1.26 3.610.8().y=?=千亿元第三章 合情推理与演绎推理【趁热打铁】 1.【答案】C【解析】由题意,知所得新数列为1111,,,,222322n n n nn ⨯⨯⨯⨯,所以1223341n n a a a a a a a a -++++=21111[]4122334(1)n n n++++⨯⨯⨯-⨯=21111111[(1)()()()]4223341n n n -+-+-++--=21(1)4n n -=(1)4n n -,故选C . 2.【答案】A【解析】“指数函数y =a x是增函数”是本推理的大前提,它是错误的,因为实数a 的取值范围没有确定,所以导致结论是错误的. 3.【答案】A【解析】()m x x x f +-=232是[]a 2,0上的“双中值函数”,()()220822f a f a a a-∴=-,()22262,6282f x x x x x a a '=-∴-=-在[]a 2,0上有两个根,令()226282g x x x a a =--+()()()2424820,00,20,a a g g a ∴∆=+->>>解得4181<<a ,故选A.6.【答案】mm 02047【解析】观察上图可知,法=实际标注100.2-⨯,故30号的童鞋对应的脚的长度为mm 020,当脚长为为mm 282,对应的法4.46102.0282=-⨯,应穿47码的鞋,故答案为mm 020,47.7.【答案】1111111 (234212)n n +++++++>-【解析】观察不等式左边最后一项的分母3,7,15,…,通项为121n +-,不等式右边为首项为1,公差为12的等差数列,故猜想第n 个不等式为1111111.....234212n n +++++++>-, 答案:1111111 (234212)n n +++++++>-10.【答案】猜想f(x)+f(1-x)=33. 【解析】f(0)+f(1)=130+3+131+3=11+3+13(1+3)=33(1+3)+13(1+3)=33, 同理可得f(-1)+f(2)=33,f(-2)+f(3)=33. 由此猜想f(x)+f(1-x)=33. 证明f(x)+f(1-x)=13x +3+131-x +3=13x +3+3x 3+3·3x =13x +3+3x3(3+3x) =3+3x 3(3+3x)=33.第四章 直接证明与间接证明【趁热打铁】 1.【答案】D【解析】log log 1>=a a b a ,当1>a 时,1>>b a ,10,0∴->->a b a ,(1)()0∴-->a b a ;当01<<a 时,01∴<<<b a ,10,0∴-<-<a b a ,(1)()0∴-->a b a .故选D .3.【答案】A【解析】因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根的个数大于或等于1”,所以要做的假设是“方程x 3+ax +b =0没有实根”.4.【答案】B【解析】在B 中,∵a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,∴a 2+b 2≥2(a -b -1)恒成立.5.【答案】B 【解析】∵a=m +1-m =1m +1+m , b =m -m -1=1m +m -1. 而m +1+m>m +m -1>0(m >1), ∴1m +1+m <1m +m -1,即a<b.6.【答案】C【解析】由题意知b 2-ac <3a ⇐b 2-ac <3a 2⇐(a +c)2-ac <3a 2⇐a 2+2ac +c 2-ac -3a 2<0⇐-2a 2+ac +c 2<0⇐2a 2-ac -c 2>0⇐(a -c)(2a +c)>0⇐(a -c)(a -b)>0.7.【答案】D【解析】反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①不正确;对于②,其假设正确.8.【答案】 ①③④【解析】要使b a +a b ≥2,只需b a >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立. 9.【答案】见解析.【解析】假设a 1,a 2,a 3,a 4均不大于25,即a 1≤25,a 2≤25,a 3≤25,a 4≤25,则a 1+a 2+a 3+a 4≤25+25+25+25=100,这与已知a 1+a 2+a 3+a 4>100矛盾,故假设错误.所以a 1,a 2,a 3,a 4中至少有一个数大于25.10.【答案】(1)a n =2n -1+2,S n =n(n +2).(2)证明:见解析.第五章 复数【趁热打铁】1.【答案】D 【解析】因为243i i(43i)34i i i z --===--,故选D . 2.【答案】C【解析】z=212(12)()2i i i i i i ++-==--,对应点为(2,-1),故选C. 3.【答案】C【解析】由3z i i +=-得,32z i =-,所以32z i =+,故选C.4.【答案】D 【解析】43i ||55z z ==-,故选D . 5.【答案】C【解析】由题意,22(1)122i i i i +=++=,故选C.6.【答案】A 【解析】12(12)(2)2422(2)(2)5i i i i i i i i i +++++-===--+,故选A. 10.【答案】i 2141+ 【解析】设),(R ∈+=b a bi a z ,则bi a -=,因为i z z +=+13,所以i bi a bi a +=-++1)(3,即i bi a +=+124,所以⎩⎨⎧==1214b a ,即⎪⎪⎩⎪⎪⎨⎧==2141b a , 所以i z 2141+=.第六章 框图【趁热打铁】1.【答案】B【解析】由结构图可知设总经理一个,副总经理两个,直接对总经理负责,下设有6个部门,其中副总经理A 管理生产部、安全部和质量部,副总经理B 管理销售部、财务部和保卫部,其中①、 ②处应分别填安全部,保卫部,选B.2.【答案】C【解析】程序运行如下3,21,201224,10n x v i v i ==→==≥→=⨯+==≥4219,0092018,10,v i v i →=⨯+==≥→=⨯+==-<结束循环,输出18v =,故选C.3.【答案】B【解析】由程序框图,,n S 值依次为:6, 2.59808n S ==;12,3n S ==;24, 3.10583n S ==,此时满足 3.10S ≥,输出24n =,故选B.4.【答案】D【解析】由程序框图可知,该程序框图所表示的算法功能为2345671log 3log 4log 5log 6log 7log 83S =⨯⨯⨯⨯⨯⨯=,故选D.5.【答案】C 【解析】2x =,执行程序,0y =,不满足||1y x -<,0;x =执行程序,1y =-,不满足||1y x -<,2;x =-执行程序,2y =-,满足||1y x -<,输出2;- 故选C .7.【答案】C【解析】由已知,1,0k s ==,1,2s s k k =+==,3,4s k ==,7,8s k ==,15,16s k ==,31,32s k ==,符合条件输出,故选C.8.【答案】C【解析】0,2S n ==,判断是,1,42S n ==,判断是,113,6244S n =+==,判断是,11111,824612S n =++==,判断否,输出S ,故填6n ≤.10.【答案】1【解析】按程序运行的过程,运行一遍程序:3,1,0n i S ===,1S =,循环,2,1i S ==,循环,3,11i S ===,退出循环,输出1S =.。
教案满招损,谦受益。
《尚书》
大地二中张清泉
【素材积累】
1、一个房产经纪人死后和上帝的对话一个房产经纪人死后,和上帝喝茶。
上帝认为他太能说了,会打扰天堂的幽静,于是旧把他打入了地狱。
刚过了一个星期,阎王旧满头大汗找上门来说:上帝呀,赶紧把他弄走吧!上帝问:怎么回事?
阎王说:地狱的小。
2、机会往往伪装成困难美国名校芝加哥大学的一位教授到访北大时曾提到:芝加哥大学对学生的基本要求是做困难的事。
因为一个人要想有所成旧,旧必须做那些困难的事。
只有做困难的事,才能推动社会发展进步。
【素材积累】
每个人对未来都有所希望和计划,立志是成功的起点,有了壮志和不懈的努力,就能向成功迈进。
1、立志多在少年,但宋朝学家苏洵27岁开始发愤,立志就读,昼夜不息,结果大器晚成,终于成为唐宋八大家之一。
2、我国明代画家王冕,少年放牛时,立志要把荷花佳景惟妙惟肖地画出来。
他不分昼夜地绘画,立志不移,后来成为当时著名的画家。
3、越王勾践被吴国军队打败,忍受奇耻大辱,给吴王夫差当奴仆。
三年后,他被释放回国,立志洗雪国耻。
他卧薪尝胆,发愤图强,终于打败了吴国。
4、有志者事竟成,百二秦关终归楚;苦心人天不负,三千越甲可吞吴。
——蒲松龄。
独立性检验教学重点、独立性检验的基本方法,独立性检验的步骤难点:.基本思想的领会及方法应用.知识点一、独立性检验的基本概念和原理独立性检验是研究相关关系的方法。
1.分类变量:变量的不同“值”表示个体所属的不同类别的变量称为分类变量.比如男女、是否吸烟、是否患癌症,宗教信仰、国籍等等。
2列联表:分类变量的汇总统计表(频数表). 一般我们只研究每个分类变量只取两个3.条形图为了更清晰地表达这个特征,我们还可用如下的等高条形图表示两种情况下患肺癌的比例.如图3.2一3 所示,在等高条形图中,浅色的条高表示不患肺癌的百分比;深色的条高表示患肺癌的百分比.通过分析数据和图形,我们得到的直观印象是“吸烟和患肺癌有关”.那么我们是否能够以一定的把握认为“吸烟与患肺癌有关”呢?4.独立性检验的步骤为了回答下面问题,我们先假设H:吸烟与患肺癌没有关系,看看能够得到什么样的结论。
不患肺癌患肺癌合计不吸烟 a b a+b吸烟 c d c+d合计a+c b+d a+b+c+d样本容量 n=a+b+c+d如果“吸烟与患肺癌没有关系”,则吸烟者中不患肺癌的的比例应该与不吸烟者中相应的比例差不多,即:()()()()()()()220a ca c d c ab ad bc a b c dad bc ad bc n ad bc k a b c d a c b d n a b c d ≈⇒+≈+⇒-≈++---=++++=+++因此 : 越小, 说明吸烟与患肺癌之间关系越弱. 越大, 说明吸烟与患肺癌之间关系越强构造随机变量 其中为样本容量若 H 0 成立,即“吸烟与患肺癌没有关系”,则 K “应该很小.根据表3一7中的数据,利用公式(1)计算得到 K “的观测值为()22996577754942209956.63278172148987491K ⨯-⨯=≈⨯⨯⨯,这个值到底能告诉我们什么呢?统计学家经过研究后发现,在 H 0成立的情况下,2( 6.635)0.01P K ≥≈. (2)(2)式说明,在H 0成立的情况下,2K 的观测值超过 6. 635 的概率非常小,近似为0 . 01,是一个小概率事件.现在2K 的观测值k ≈56.632 ,远远大于6. 635,所以有理由断定H 0不成立,即认为“吸烟与患肺癌有关系”.但这种判断会犯错误,犯错误的概率不会超过0.01,即我们有99%的把握认为“吸烟与患肺癌有关系” .在上述过程中,实际上是借助于随机变量2K 的观测值k 建立了一个判断H 0是否成立的规则:如果k ≥6. 635,就判断H 0不成立,即认为吸烟与患肺癌有关系;否则,就判断H 0成立,即认为吸烟与患肺癌没有关系.在该规则下,把结论“H 0 成立”错判成“H 0 不成立”的概率不会超过2( 6.635)0.01P K ≥≈,即有99%的把握认为H 0不成立.假设检验 备择假设H 1在H 1不成立的条件下,即H 0成立的条件下进行推理 推出有利于H 1成立的小概率事件(概率不超过α的事件)发生,意味着H 1成立的可能性(可能性为(1-α))很大推出有利于H 成立的小概率事件不发生,接受原假设上例的解决步骤第一步:提出假设检验问题 H 0:吸烟与患肺癌没有关系↔ H 1:吸烟与患肺癌有关系第二步:选择检验的指标 22()K ()()()()n ad bc a b c d a c b d -=++++(它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H 1:吸烟与患肺癌有关系”成立的可能性越大. 第三步:查表得出结论注意:1观测值是2K 的值2.假设没有关系,如果2K 大,则H 0不成立,即两个量有关系。
2018-2019学年度第二学期高二年级期中考试(数学学科)试卷 第1页 共4页 2018-2019学年度第二学期高二年级期中考试(数学学科)试卷 第2页 共4页喀什市特区高级中学教育集团2018-2019学年第二学期高二数学(文科)期中考试试卷(时间120分钟,满分100分)命题人:穆拉丁·马木提 审题人:穆拉丁·马木提说明:1. 答题前,务必将自己的姓名、学号等填写在答题卷规定的位置上。
2. 考生必须在答题卷上按规定作答:凡在试卷、草稿纸上作答的,其答案一律无效。
3. 全卷共4页,考试时间120分钟,满分100分。
参考附表如下一、单项选择题(本大题共12小题,每小题3分,共36分;将答题卷上对应题目的答案标号涂黑,答在试题卷上无效。
)1.独立性检验,适用于检查 变量之间的关系 ( )A.线性B.非线性C.解释与预报D.分类 2.样本点的样本中心与回归直线 的关系( )A.在直线上B.在直线左上方C. 在直线右下方D.在直线外 3.数列 2 , 5 , 11 , 20 ,X , 47 ,····中的X 等于( )A.28B. 32C.33D.274.下面说法正确的有 ( )(1)演绎推理是由一般到特殊的推理; (2)演绎推理得到的结论一定是正确的; (3)演绎推理一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关。
A.1个 B.2个 C.3个 D.4个5. 将x =2 019输入下面的程序框图得到的结果是( ) A .2019 B .0 C .2020D .-2 0196.复数z =i 1+i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7. “金导电、银导电、铜导电、锡导电,所以一切金属都导电”.此推理方法是( ) A .完全归纳推理 B .归纳推理 C .类比推理D .演绎推理8. 由①小燕子是高二(1)班的学生,②小燕子是独生子女,③高二(1)班的学生都是独生子女,写一个“三段论”形式的推理,则大前提,小前提和结论分别为( ) A .②①③ B .③①② C .①②③ D .②③①9.下表是某工厂6~9月份用电量(单位:万度)的一组数据:用电量y 与月份x 间有线性相关关系,其线性回归直线方程是y ^=-1.4x +a ,则a 等于( ) A .10.5 B .5.25 C .5.2 D .14.510.复数z =-3+i2+i的共轭复数( )A .2+i B.2-I C .-1+i D .-1-i11.对分类变量X 与Y 的随机变量K2的观测值k ,说法正确的是( ) A .k 越大,“ X 与Y 有关系”可信程度越小 B .k 越小,“ X 与Y 有关系”可信程度越小 C .k 越接近于0,“X 与Y 无关”程度越小 D .k 越大,“X 与Y 无关”程度越大12. 如图是一个2×2列联表则表中a 、b 的值分别为( ) A .94、96 B .52、50 C .52、54 D .54、522018-2019学年度第二学期高二年级期中考试(数学学科)试卷 第3页 共4页 2018-2019学年度第二学期高二年级期中考试(数学学科)试卷 第4 页 共4二、填空题(每小题4分,共16分)13.复数22(1)z i i =+的共轭复数是 ; 14. 已知回归直线方程y bx a =+,其中3a =且样本点中心为(12),,则回归直线方程 ; 15. 在如图所示程序图中,输出结果是 16. 指出三段论“自然数中没有最大的数(大前提),2是自然数(小前提),所以2不是最大的数(结论)”中的错误是___________。
7.教学环节: 教师活动学生活动媒体&信息技术应用环节一:问题回溯教师活动1回顾上节课的例1例1.为比较甲、乙两所学校学生的数学水平,采用简单随机抽样的方法抽取88名学生. 通过测验得到了如下数据: 甲校43名学生中有10名数学成绩优秀;乙校45名学生中有7名数学成绩优秀.试分析两校学生中数学成绩优秀率之间是否存在差异.思考:你认为“两校学生的数学成绩优秀率存在差异”这一结论是否有可能是错误的?学生活动1学生回顾上节课的例题1,并作出回答。
媒体&信息技术应用1教学PPT 展示活动意图说明:对于随机样本而言,因为频率具有随机性,频率与概率之间存在误差,所以我们的推断可能犯错误,而且在样本容量较小时,犯错误的可能性会较大.因此需要找到一种更为合理的推断方法,同时能对出现错误推断的概率有一定的控制或估算。
环节二:新知探究一教师活动2考虑以ΩΩ上,取值于{0,1}的成对分类变量。
我们希望判断事件{X=1}和{Y=1}之间是否有关联。
抽象简化列联表如下:我们需要判断下面的假定关系:0:(1|0)(1|1)H P Y X P Y X =====是否成立,通常称H 0为零假设或原假设.(类比法官判案中的无罪假设) 进一步由条件概率(0,1)(1,1)(0)(1)P X Y P X Y P X P X ====⇒===(1)(1,1)(1,1)(0)(1)P Y P X Y P X Y P X P X =-====⇒===(1)(1)(1)(1,1)(0)(1,1)P Y P X P X P X Y P X P X Y ⇒=⋅===⋅==+=⋅== (1)(1)(1,1)P Y P X P X Y ⇒=⋅====所以零假设H 0 等价于{X=1}和{Y=1}独立。
学生活动2做好预习,认真阅读材料,了解原假设的设法,以及领悟如何从条件概率出发,一步一步把事件的独立和分类变量的独立等价起来。
此处要求学生复习好条件概率及其性质。
高二数学独立性检验知识点独立性检验是高中数学中的重要概念之一,用于判断两个或多个事件是否相互独立。
在数学考试中,独立性检验经常被应用于概率统计等相关题目。
本文将详细介绍高二数学中的独立性检验知识点,帮助同学们更好地理解和应用。
一、独立性的定义和特性在进行独立性检验之前,我们首先需要了解独立性的定义和特性。
在概率统计中,两个事件A和B的独立性表示事件A的发生与事件B的发生是互相独立的,即A的发生不影响B的发生,反之亦然。
独立性的特性包括以下几个方面:1. 互斥性:如果A和B互斥(即A和B不能同时发生),则A和B是相互独立的。
2. 互不影响性:如果A和B是相互独立的,那么A和B的补事件也是相互独立的。
即P(A) = 1 - P(A'),P(B) = 1 - P(B')。
3. 乘法法则:如果A和B是相互独立的,那么P(A∩B) = P(A) × P(B)。
二、独立性检验方法在实际应用中,我们需要通过数据分析或实验来判断两个事件是否独立。
针对不同情况,有不同的独立性检验方法。
1. 经验法:当数据较少或不能进行大样本实验时,我们可以使用经验法来判断独立性。
经验法主要是通过观察、比较和思考来判断两个事件是否独立。
2. 理论法:当数据比较充足并且满足一定的条件时,我们可以使用理论法来进行独立性检验。
理论法主要是基于概率计算和统计推断来判断独立性。
三、常见的独立性检验方法在高二数学中,常见的独立性检验方法包括以下几种:1. 卡方检验:卡方检验是一种针对频数资料的检验方法,用于检验两个事件是否独立。
通过计算观察频数和期望频数之间的差异来判断独立性。
2. 相关系数检验:相关系数检验可以用于判断两个事件之间是否存在线性相关性。
当两个事件呈现出线性相关性时,它们往往是不独立的。
3. 二项分布检验:二项分布检验可以用于判断两个事件的独立性。
当事件满足二项分布的条件时,可以通过计算观察值与理论值之间的差异来判断独立性。
一、选择题1.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .42.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11123.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1154.从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于( ) A .15B .14C .13D .125.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .406.在一次独立性检验中,得出列表如下:合计 190 400a + 590a +且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720 B .360C .180D .907.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .48.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .149.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为( ) A .130 B .415C .1115D .131510.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是23和12,在这个问题至少被一个人正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为( )A .27B .25C .15D .1911.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格 不及格 合计 很少使用手机 20 5 25 经常使用手机 10 15 25 合计302050则有( )的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中n a b c d =+++()2P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 k 2.0722.7063.8415.0246.6357.87910.828A .97.5%B .99%C .99.5%D .99.9%12.甲、乙两人独立地破译一份密码,破译的概率分别为11,32,则密码被破译的概率为( ) A .16B .23C .56D .1二、填空题13.有甲、乙两台机床生产某种零件,甲获得正品乙不是正品的概率为14,乙获得正品甲不是正品的概率为16,且每台获得正品的概率均大于12,则甲乙同时生产这种零件,至少一台获得正品的概率是___________.14.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.15.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)16.设甲、乙两套方案在一次试验中通过的概率均为0.3,且两套方案在试验过程中相互之间没有影响,则两套方案在一次试验中至少有一套通过的概率为___________. 17.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.18.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A ;“抽出的学生英语口语测试成绩不低于85分”记为事件B .则P (A|B )的值是_____.20.2020年新型冠状病毒疫情期间,大学生小白同学在家里根据某款运动软件安排的训练计划进行运动,每天训练一次,连续3天为一个运动周期,若小白每天不能参加训练的概率为14,假设小白每天的训练是相互独立的,若一个训练周期内出现2次不能参加训练,则停止该训练计划,则这个训练计划在第二个完整周期后结束的概率为______.三、解答题21.一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:网红乡土直播员 乡土直播达人 合计 男 10 40 50 女 20 30 50 合计3070100(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.求这两人中恰有一男一女的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.00122.近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在M省的发展情况,M省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的A,B两项指标数,(1,2,3,4,5)i ix y i=,数据如下表所示:==2s==.(1)试求y与x间的相关系数r,并利用r说明y与x是否具有较强的线性相关关系(若0.75r>,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测当A指标数为7时,B指标数的估计值;(3)若城市的网约车A指标数x落在区间(3,3)x s x s-+之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至A指标数x回落到区间(3,3)x s x s-+之内.现已知2018年11月该城市网约车的A指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.附:相关公式:()()ni ix x y yr--=∑,121()()()ni iiniix x y ybx x==--=-∑∑,a y bx=-.0.55≈0.95≈.23.随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户按年龄分组进行访谈,统计结果如下表.(1)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,则各组应分别抽取多少人?(2)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.(3)按以上统计数据填写下面2×2列联表,并判断以50岁为分界点,能否在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关;参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.24.目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:(3)研究发现,有5种药物对新冠病毒有一定的抑制作用,其中有2种特别有效,现在要通过逐一试验直到把这2种特别有效的药物找出来为止,每一次试验花费的费用是500元,设所需要的试验费用为X ,求X 的分布列与数学期望. 附表及公式:()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822()()()()()n ad bc K a b c d a c b d -=++++25.支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.(1)通过现场调查12位市民得知,其中有10人使用支付宝.现从这12位市民中随机抽取3人,求至少抽到2位使用支付宝的市民的概率;(2)为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有12,13,16的概率获得0.1,0.2,0.3元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一天内使用了2次支付宝,记X 为这一天他获得的奖励金数,求X 的概率分布和数学期望.26.新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表) 月份2020.012020.022020.032020.042020.05(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆ bt y a =+,并预测2020年6月份(月份编号为6)参与竞价的人数;(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:(i )求这200位竞价人员报价的平均值x 和样本方差s 2(同一区间的报价用该价格区间的中点值代替)(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,,N μσ且μ与σ2可分别由(i )中所示的样本平均数x 及s 2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数x ,请你预测(需说明理由)最低成交价. 参考公式及数据:①回归方程ˆˆˆy bx a =+,其中1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑ ②5521155, 2.6;ii i i i tx y ====≈∑∑③若随机变量X 服从正态分布()2,,N μσ则()()0.6826,220.9544,P X P X μσμσμσμσ-<<+=-<<+= ()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kxy ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.2.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.3.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案.详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.4.D解析:D 【解析】分析:这是一个条件概率,可用古典概型概率公式计算,即从5个球中取三个排列,总体事件是第二次是黑球,可在第二次是黑球的条件下抽排第一次和第三次球.详解:111223122412C C C P C A ==. 点睛:此题是一个条件概率,条件是第二次抽取的是黑球,不能误以为是求第二次抽到黑球,第三次抽到白球的概率,如果那样求得错误结论为1132353310C C A ⨯=. 5.D解析:D 【解析】由表中数据知,199.51010.511105x =⨯++++=(),1111086585y =⨯++++=(),代入回归直线方程 3.ˆ2yx a =-+中,求得实数 3.28 3.21040a y x =+=+⨯=,故选D. 6.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.7.C解析:C 【解析】对于①当劳动生产率为1000元时,工资为65080730y =+=元,故①正确;对于②劳动生产率提高1000元,则工资提高80元正确;故③错误;对于④当月工资为810元时,由81065080x =+得2x =,即劳动生产率约为2000元,故④正确;故选C.8.A解析:A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30, 事件B:出现一个5点,有10种,∴()101303|P B A ==, 本题选择A 选项.点睛:条件概率的计算方法:(1)利用定义,求P (A )和P (AB ),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),然后求概率值.9.C解析:C 【分析】先利用相互独立事件的概率乘法公式求出“三人都未解答这个问题”的概率,利用对立事件的概率公式得到“有人能够解决这个问题”的概率即可. 【详解】三人都未解答这个问题的概率为 (112-)(113-)(115-)415=,故有人能够解决这个问题的概率为14111515-=, 故选:C . 【点睛】本题考查了相互独立事件的概率乘法公式、互斥事件和对立事件的概率公式,考查了正难则反的原则,属于中档题.10.B解析:B 【分析】先计算“这个问题至少被一个人正确解答”和“甲、乙两位同学都能正确解答该问题”概率,再利用条件概率公式计算即可. 【详解】由已知,不妨设A =“这个问题至少被一个人正确解答”,B =“甲、乙两位同学都能正确解答该问题”,因为甲、乙两位同学各自独立正确解答该问题的概率分别是23和12, 故215()111326P A ⎛⎫⎛⎫=---= ⎪⎪⎝⎭⎝⎭,121()233P B =⨯=,易知1()()3P AB P B ==.故()1()235()56P AB P BA P A ===∣. 故选:B. 【点睛】本题考查了条件概率的应用,属于中档题.11.C解析:C 【分析】根据2×2列联表,求出k 的观测值2K ,结合题中表格数据即可得出结论. 【详解】 由题意,可得:222()50(2015105)258.3337.879()()()()302025253n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯,所以有99.5%的把握认为经常使用手机对数学学习成绩有影响. 故选C. 【点睛】本题考查了独立性检验的应用,考查了计算能力,属于基础题.12.B解析:B 【分析】密码被破译分三种情况:甲破译出密码乙未破译,乙破译出密码甲未破译,甲乙都破译出密码,根据相互独立事件的概率和公式可求解出答案. 【详解】设 “甲独立地破译一份密码” 为事件A , “乙独立地破译一份密码” 为事件B , 则()13P A =,()12P B =,()12133P A =-=,()11122P B =-=, 设 “密码被破译” 为事件C ,则()()()()P C P AB P AB P AB =++11211123232323=⨯+⨯+⨯=, 故选:B. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.二、填空题13.【分析】设甲乙两台机床生产正品的概率分别为则根据题意列方程组解得甲乙同时生产这种零件至少一台获得正品为甲获得正品乙不是正品乙获得正品甲不是正品以及甲乙均获得正品根据概率加法公式求解即可【详解】设甲乙 解析:1112【分析】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤,根据题意列方程组()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩,“甲乙同时生产这种零件,至少一台获得正品”为甲获得正品乙不是正品,乙获得正品甲不是正品,以及甲乙均获得正品,根据概率加法公式求解即可. 【详解】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤. 甲获得正品乙不是正品的概率为14()114p q ∴-=① 又乙获得正品甲不是正品的概率为16()116q p ∴-=② ①②联立得()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩则甲乙均获得正品的概率为321432p q ⋅=⨯= 即甲乙同时生产这种零件,至少一台获得正品的概率是1111146212++= 故答案为:1112【点睛】本题考查概率的加法与乘法公式,属于中档题.14.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.15.③④【解析】①为了了解800名学生对学校某项教改试验的意见打算从中抽取一个容量为40的样本考虑用系统抽样则分段的间隔为800÷40=20故①错误;②已知如图所示:长方形面积为2以O 为圆心1为半径作圆解析:③④ 【解析】①为了了解800名学生对学校某项教改试验的意见, 打算从中抽取一个容量为40的样本,考虑用系统抽样, 则分段的间隔为800÷40=20,故①错误; ②已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆, 在矩形内部的部分(半圆)面积为π2. 因此取到的点到O 的距离大于1的概率22P 124ππ-==-; 故②错误; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 23sin263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象, 故③正确,④∵回归直线为ˆybx a =+, 的斜率的值为1.23, ∴方程为 1.23ˆyx a =+,∵直线过样本点的中心(4,5), ∴a=0.08,∴回归直线方程是为=1.23x+0.08; ∴故④正确. 故答案为:③④.16.51【解析】由于两套方案互不影响故至少有一套方案通过的概率是解析:51 【解析】由于两套方案互不影响,故至少有一套方案通过的概率是2120.3C 0.3(10.3)0.51+⋅⋅-=.17.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.18.【解析】表示在已经发生事件的情况下事件发生的概率又事件恰有一次出现正面包含于事件至少一次出现反面所以所以解析:37【解析】(/)P B A 表示在已经发生事件A 的情况下,事件B 发生的概率,又事件B = “恰有一次出现正面”包含于事件A =“至少一次出现反面”,所以()()(/)()()P AB P B P B A P A P A ==,37(),()88P B P A ==,所以()3()7P B P A =. 19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】由题意求得一个周期内就停止训练的概率再结合相互独立事件的概率计算公式即可求解【详解】由题意小白每天不能参加训练的概率为若一个训练周期内出现2次不能参加训练可得一个周期内就停止训练的概率为这个 解析:811024【分析】由题意,求得一个周期内就停止训练的概率,再结合相互独立事件的概率计算公式,即可求解.【详解】由题意,小白每天不能参加训练的概率为14,若一个训练周期内出现2次不能参加训练,可得一个周期内就停止训练的概率为221135244432⎛⎫⎛⎫+⨯⨯=⎪ ⎪⎝⎭⎝⎭,这个训练计划持续两个周期的概率为2513811232441024⎛⎫⎛⎫-⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭.故答案为:81 1024.【点睛】本题主要考查了相互独立事件的概率的计算,其中解答中正确理解题意,结合独立事件的概率计算公式求得一个周期内就停止训练的概率是解答的关键,着重考查分析问题和解答问题的能力.三、解答题21.(1)有95%的把握认为“网红乡土直播员”与性别有关系;(2)8 15.【分析】(1)由题中22⨯列联表中的数据代入()()()()()22n ad bcKa b c d a c b d-=++++然后与所给表值进行比较可得答案;(2)列出从这6人中随机抽取2人的所有可能情况,选中的2人中恰有一男一女的所有可能情况可得答案.【详解】(1)由题中22⨯列联表,可得()22100103020404.762 3.84150503070K⨯-⨯=≈>⨯⨯⨯.∴有95%的把握认为“网红乡土直播员”与性别有关系.(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,男性人数为106230⨯=人,记为A,B;女性人数为206430⨯=人,记为a,b,c,d.则从这6人中随机抽取2人的所有可能情况有以下“A,B;A,a;A,b;A,c;A,d;B ,a ; B ,b ; B ,c ; B ,d ;a ,b ; a ,c ; a ,d ; b ,c ; b ,d ; c ,d ”共15种.其中,选中的2人中恰有一男一女的所有可能情况有以下“A ,a ; A ,b ; A ,c ; A ,d ; B ,a ; B ,b ; B ,c ; B ,d ”共8种. ∴选中的2人中恰有一男一女的概率815P =. 【点睛】古典概型的概率的计算方法,首先计算所有基本事件数,再计算事件A 包含的基本事件数,应用古典概率公式计算求解.22.(1)0.95r ≈,y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系;(2)35102y x =+,当7x =时, 4.6y =;(3)要介入进行治理. 【分析】(1)由已知数据可得,x y ,利用公式,求得相关系数r ,即可作出判断,得到结论;(2)由(1),求得b 和ˆa,求得回归直线的方程,代入7x =,即可求得回归方程; (3)由(3,3)(1,11)x s x s -+=-,而1311>,即可得到结论. 【详解】(1)由已知数据可得2456855x ++++==,3444545y ++++==.所以相关系数5()x x y y r --=0.95==≈. 因为0.75r >,所以y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系.(2)由(1)可知()51521()632ˆ010()i i i i i x x y y b x x ==--===-∑∑,354ˆ2ˆ510a y bx =-=-⨯=, 所以y 与x 之间线性回归方程为35102ˆy x =+. 当7x =时,3576102ˆ 4.y=⨯+=. (3)()()3,31,11x s x s -+=-,而1311>,故2018年11月该城市的网约车已对城市交通带来较大的影响,交通管理部门将介入进行治理. 【点睛】本题主要考查了回归直线方程的求解及应用问题,其中解答中,认真审题,正确理解题意,利用公式准确计算是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.23.(1)各组分别为5人,6人,4人;(2)35;(3)在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 【解析】试题分析:(1)三组一共有30人,抽取15人,故两个人抽一人,由此得到抽取的人数分别为5,6,4人.(2)利用列举法列举出所有可能性有15种,其中符合题意的有9种,故概率为35.(3)根据题意填写好表格后,计算29.979 6.635K ≈>,故有在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 试题解:(1)因为1012815=5,15=615=4303030,⨯⨯⨯,所以第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,各组分别为5人,6人,4人.(2)设第5组中不愿意选择此款“流量包”套餐A,B,C,D,愿意选择此款“流量包”套餐人为a,b,则愿意从6人中选取2人有:,,,,,,,,,,,,,,,AB AC AD Aa Ab BC BD Ba Bb CD Ca Cb Da Db ab 共15个结果,其中至少有1人愿意选择此款“流量包”,,,,,,,,,Aa Ab Ba Bb Ca Cb Da Db ab 共9个结果,所以求2人中至少有1人愿意选择此款“流量包”套餐的概率93155P ==. (3)2×2列联表∴()()()()25010310279.979 6.63510271031010273K ⨯⨯-⨯=≈>++++∴在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 24.(1)平均数为6,“长潜伏者”的人数为250人(2)列联表见解析, 有97.5%的把握认为潜伏期长短与年龄有关 (3)分布列见解析,()1750E X = 【分析】(1)由频率分布直方图可计算出潜伏期的均值,再由频率分布直方图可得“长潜伏者”的频率,从而得人数;(2)由所给数据计算出2K 后可得结论;(3)由题意知所需要的试验费用X 所有可能的取值为1000,1500,2000,分别计算出概率得概率分布列,再由期望公式得期望.。
独立性检验教学重点、独立性检验的基本方法,独立性检验的步骤难点:.基本思想的领会及方法应用.知识点一、独立性检验的基本概念和原理独立性检验是研究相关关系的方法。
1.分类变量:变量的不同“值”表示个体所属的不同类别的变量称为分类变量.比如男女、是否吸烟、是否患癌症,宗教信仰、国籍等等。
2 列联表:分类变量的汇总统计表(频数表). 一般我们只研究每个分类变量只取两个患病未患病合计吸烟37 183 220不吸烟21 274 295合计58 457 5153.条形图为了更清晰地表达这个特征,我们还可用如下的等高条形图表示两种情况下患肺癌的比例.如图一3 所示,在等高条形图中,浅色的条高表示不患肺癌的百分比;深色的条高表示患肺癌的百分比.通过分析数据和图形,我们得到的直观印象是“吸烟和患肺癌有关”.那么我们是否能够以一定的把握认为“吸烟与患肺癌有关”呢4.独立性检验的步骤:吸烟与患肺癌没有关系,看看能够得到什么样为了回答下面问题,我们先假设H的结论。
不患肺癌患肺癌合计不吸烟a b a+b吸烟c d c+d合计a+c b+d a+b+c+d样本容量n=a+b+c+d如果“吸烟与患肺癌没有关系”,则吸烟者中不患肺癌的的比例应该与不吸烟者中相应的比例差不多,即:()()()()()()()220a ca c d c ab ad bc a b c dad bc ad bc n ad bc k a b c d a c b d n a b c d ≈⇒+≈+⇒-≈++---=++++=+++因此 : 越小, 说明吸烟与患肺癌之间关系越弱. 越大, 说明吸烟与患肺癌之间关系越强构造随机变量 其中为样本容量若 H 0 成立,即“吸烟与患肺癌没有关系”,则 K “应该很小.根据表3一7中的数据,利用公式(1)计算得到 K “的观测值为()22996577754942209956.63278172148987491K ⨯-⨯=≈⨯⨯⨯,这个值到底能告诉我们什么呢统计学家经过研究后发现,在 H 0成立的情况下,2( 6.635)0.01P K ≥≈. (2)(2)式说明,在H 0成立的情况下,2K 的观测值超过 6. 635 的概率非常小,近似为0 . 01,是一个小概率事件.现在2K 的观测值k ≈ ,远远大于6. 635,所以有理由断定H 0不成立,即认为“吸烟与患肺癌有关系”.但这种判断会犯错误,犯错误的概率不会超过,即我们有99%的把握认为“吸烟与患肺癌有关系” .在上述过程中,实际上是借助于随机变量2K 的观测值k 建立了一个判断H 0是否成立的规则:如果k ≥6. 635,就判断H 0不成立,即认为吸烟与患肺癌有关系;否则,就判断H 0成立,即认为吸烟与患肺癌没有关系.在该规则下,把结论“H 0 成立”错判成“H 0 不成立”的概率不会超过2( 6.635)0.01P K ≥≈,即有99%的把握认为H 0不成立.你觉得和反证法有没有什么共同点反证法 假设检验 要证明结论A备择假设H 1在A 不成立的前提下进行推理 在H 1不成立的条件下,即H 0成立的条件下进行推理 推出矛盾,意味着结论A 成立 推出有利于H 1成立的小概率事件(概率不超过α的事件)发生,意味着H 1成立的可能性(可能性为(1-α))很大 没有找到矛盾,不能对A 下任何结论,即反证法不成功推出有利于H 1成立的小概率事件不发生,接受原假设上例的解决步骤第一步:提出假设检验问题 H 0:吸烟与患肺癌没有关系↔ H 1:吸烟与患肺癌有关系第二步:选择检验的指标 22()K ()()()()n ad bc a b c d a c b d -=++++(它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H 1:吸烟与患肺癌有关系”成立的可能性越大. 第三步:查表得出结论注意:1观测值是2K 的值2.假设没有关系,如果2K 大,则H 0不成立,即两个量有关系。
如果2K 小,说明没有足够证据证明H 0不成立,即两个量没有关系 3.查表后,大于某个值0k 的可能性很小,如果大于0k ,则得出两个量有关系 4得到两个量有(没有)关系的结论是在概率基础上决定的,存在犯错误的概率5有99%的把握(相当于正确概率99%)认为 有关 在犯错误的概率不超过1%的前提下,认为“ 有关”说明:95%就是概率,可以说成有95%的把握,这种事件出现的可能性极大 5%当然也是概率,这种事件出现的可能性极小,在新闻中播报的水灾20年一遇,就是概率5%事件发生了 题型一概念辨析例题 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A .若K 2的观测值为k =,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病B .从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C .若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误D .以上三种说法都不正确A 变式1下列关于独立性检验的说法中,错误的是( ) A .独立性检验得到的结论一定正确B .独立性检验依赖小概率原理C .样本不同,独立性检验的结论可能有差异D .独立性检验不是判定两事物是否相关的唯一方法考点:独立性检验的基本思想.分析:对选项进行判断,独立性检验取决于样本、独立性检验是依据小概率原理,用样本计算统计量的、样本不同,观测值统计量也不同、对于检验两个事件是否相关除了统计量外,还可以根据两个分类变量之间频率大小差异进行粗略判断,即可得出结论.解答:解:因为独立性检验取决于样本,故结论不一定正确,即A不正确独立性检验是依据小概率原理,用样本计算统计量的,故正确;样本不同,观测值统计量也不同,故正确;对于检验两个事件是否相关除了统计量外,还可以根据两个分类变量之间频率大小差异进行粗略判断,故正确.故选:A.点评:本题主要考查了独立性检验的定义和检验步骤,独立性检验的意义,属基础题A变式2 对于独立性检验,下列说法正确的是()A.K2独立性检验的统计假设是各事件之间相互独立B.K2可以为负值C.K2独立性检验显示“患慢性气管炎和吸烟习惯有关”,这就是指“有吸烟习惯的人必定会患慢性气管炎”D.2×2列联表中的4个数据可以是任意正数分析:利用独立性检验的定义和解题步骤逐一筛选四个选项即可解答:解:由独立性检验的检验步骤可知A正确;∵2×2列联表中的数据均为正整数,故k2不可能为负值,排除B;∵K2独立性检验显示“患慢性气管炎和吸烟习惯有关”,是指有一定的把握说他们相关,或者说有一定的出错率,故排除C;∵2×2列联表中的4个数据是对于某组特定数据的统计数据,故四个数据间有一定的关系,故排除D故选A点评:本题主要考查了独立性检验的定义和检验步骤,独立性检验的意义,属基础题A.变式3独立性检验中,假设H0:变量X与变量Y没有关系.则在H0成立的情况下,估算概率P(K2≥)≈表示的意义是()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99%C.变量X与变量Y有关系的概率为99%D.变量X与变量Y没有关系的概率为%考点:实际推断原理和假设检验的应用.分析:根据所给的估算概率,得到两个变量有关系的可信度是,即两个变量有关系的概率是99%,这里不用计算,只要理解概率的意义即可.解答:解:∵概率P(K2≥)≈,∴两个变量有关系的可信度是=99%,即两个变量有关系的概率是99%,故选C.点评:本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.B变式1 在独立性检验中,统计量Χ2有两个临界值:和.当Χ2>时,有95%的把握说明两个事件有关,当Χ2>时,有99%的把握说明两个事件有关,当Χ2≤时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算Χ2=.根据这一数据分析,认为打鼾与患心脏病之间()A.有95%的把握认为两者有关B.约有95%的打鼾者患心脏病C.有99%的把握认为两者有关D.约有99%的打鼾者患心脏病考点:独立性检验的应用.分析:这是一个独立性检验理论分析题,根据K2的值,同所给的临界值表中进行比较,可以得到有99%的把握认为打鼾与心脏病有关.解答:解:∵计算Χ2=.有>,∵当Χ2>时,有99%的把握说明两个事件有关,故选C.点评:考查独立性检验的应用,是一个典型的问题,注意解题时数字运算要认真,不要出错,本题不需要运算直接考查临界值对应的概率的意义二.独立性检验的应用题型二、独立性检验的应用 例2.为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:性别与喜欢数学课程列联表由表中数据计算得2K 的观测值 4.514k .能够以95%的把握认为高中生的性别与是否喜欢数学课程之间有关系吗请详细阐明得出结论的依据. 解:在假设“性别与喜欢数学课之间没有关系”的前提下,事件A ={2K ≥3. 841}的概率为P (2K≥3. 841) ≈因此事件 A 是一个小概率事件.而由样本数据计算得2K 的观测值k=,即小概率事件 A 发生.因此应该断定“性别与喜欢数学课之间有关系”成立,并且这种判断结果出错的可能性约为5 %.所以,约有95%的把握认为“性别与喜欢数学课之间有关系”.A .变式1 某卫生机构对366人进行健康体检,阳性家族史者糖尿病发病的有16人,不发病的有93人;阴性家族史者糖尿病发病的有17人,不发病的有240人,有______的把握认为糖尿病患者与遗传有关系.( )A .%B .%C .99%D .%[解析] 可以先作出如下列联表(单位:人):糖尿病患者与遗传列联表k =366×(16×240-17×93)2109×257×33×333≈>.故我们有%的把握认为糖尿病患者与遗传有关系.A .变式2 在500人身上试验某种血清预防感冒的作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示.问:该种血清能否起到预防感冒的作用分析:在使用该种血清的人中,有24248.4%500=的人患过感冒;在没有使用该种血清的人中,有28456.8%500=的人患过感冒,使用过血清的人与没有使用过血清的人的患病率相差较大.从直观上来看,使用过血清的人与没有使用过血清的人的患感冒的可能性存在差异.解:提出假设0H :感冒与是否使用该种血清没有关系.由列联表中的数据,求得221000(258284242216)7.075474526500500χ⨯⨯-⨯=≈⨯⨯⨯∵当0H 成立时,26.635χ≥的概率约为0.01,∴我们有99%的把握认为:该种血清能起到预防感冒的作用.A 变式 通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表: 男 女 总计 走天桥 40 20 60 走斑马线 20 30 50 总计 60 50 110由,算得参照独立性检验附表,得到的正确结论是()A.有99%的把握认为“选择过马路的方式与性别有关”B.有99%的把握认为“选择过马路的方式与性别无关”C.在犯错误的概率不超过%的前提下,认为“选择过马路的方式与性别有关”D.在犯错误的概率不超过%的前提下,认为“选择过马路的方式与性别无关”B变式1 媒体为调查喜欢娱乐节目A是否与性格外向有关,随机抽取了500名性格外向的和500名性格内向的居民,抽查结果用等高条形图表示如下:(1)作出2×2列联表;(2)试用独立性检验的方法分析,能否在犯错的概率不超过的前提下说明喜欢娱乐节目A 与性格外向有关考点:独立性检验的应用.分析:(1)由等高条形图可知,性格外向、性格内向的人中喜欢节目A的人数,可得2×2列联表;(2)计算K2,与临界值比较,即可得出结论.解答:解:(1)由等高条形图可知,性格外向的人中喜欢节目A的有500×=400人,性格内向的人中喜欢节目A的有500×=250人,作2×2列联表如下喜欢节目A喜欢节目B合计性格外向?????400?????1005001000×(400×250?100×250)500×500×650×350 ≈>,∴能在犯错的概率不超过的前提下说明喜欢娱乐节目A 与性格外向有关.点评:本题考查独立性检验的应用,本题解题的关键是正确理解观测值对应的概率的意义.B 变式2.为研究不同的给药方式(口服或注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果如表所示.根据所选择的193个病人的数据,能否作分析:在口服的病人中,有5859%98≈的人有效;在注射的病人中,有6467%95≈的人有效.从直观上来看,口服与注射的病人的用药效果的有效率有一定的差异,能否认为用药效果与用药方式一定有关呢下面用独立性检验的方法加以说明. 解:提出假设0H :药的效果与给药方式没有关系.由列联表中的数据,求得 22193(58314064) 1.3896 2.072122719895χ⨯⨯-⨯=≈<⨯⨯⨯当0H 成立时,21.3896χ≥的概率大于15%,这个概率比较大,所以根据目前的调查数据,不能否定假设0H ,即不能作出药的效果与给药方式有关的结论B.变式3 某中学采取分层抽样的方法从应届高三学生中按照性别抽取20名学生,其中8名女生中有3名报考理科,男生中有2名报考文科. (1)是根据以上信息,写出2×2列联表(2)用独立性检验的方法分析,能否在犯错误的概率不超过的前提下认为该中学的高三学生选报文理科与性别有关考点:独立性检验的应用.分析:(1)根据抽取20名学生,其中8名女生中有3名报考理科,男生中有2名报考文科,即可得到列联表;(2)根据所给的表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,得到有95%以上的把握认为学生选报文理科与性别有关.解答:解:(1)2×2列联表男生女生总计报考理科10313报考文科257总计12820(2)假设H0:报考文理科与性别无关.则K2的估计值K2=20×(10×5?2×3)12×8×13×7≈.因为p(K2>)=,所以我们有95%把握认为该中学的高三学生选报文理科与性别有关.点评:本题考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题题型三、已知可信度,求观测值k2例题4. 确定结论“X与Y有关系”的可信度为%时,则随即变量k2的观测值k必须()A.小于B.大于C.小于D.大于A变式用的方法,我们得到能有99%的把握认为变量X与Y有关系,则()A.K2≥B.K2≥C.K2<D.K2<A 变式 随机调查某校110名学生是否喜欢跳舞,由列联表和公式K 2=计算出K 2,并由此作出结论:“有99%的可能性认为学生喜欢跳舞与性别有关”,则K 2可以为( )附表:P (K 2≥k 0)k 0A .B .C .D .总结:第一步:提出假设检验问题 H 0: 与 没有关系↔ H 1: 与 有关系第二步:选择检验的指标 22()K ()()()()n ad bc a b c d a c b d -=++++ (它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H 1:吸烟与患肺癌有关系”成立的可能性越大.第三步:查表得出结论1.观测值是2K 的值 2.假设没有关系,如果2K 大,则H 0不成立,即两个量有关系。