高二数学1-2 独立性检验
- 格式:docx
- 大小:200.03 KB
- 文档页数:11
独立性检验教学重点、独立性检验的基本方法,独立性检验的步骤难点:.基本思想的领会及方法应用.知识点一、独立性检验的基本概念和原理独立性检验是研究相关关系的方法。
1.分类变量:变量的不同“值”表示个体所属的不同类别的变量称为分类变量.比如男女、是否吸烟、是否患癌症,宗教信仰、国籍等等。
2列联表:分类变量的汇总统计表(频数表). 一般我们只研究每个分类变量只取两个3.条形图为了更清晰地表达这个特征,我们还可用如下的等高条形图表示两种情况下患肺癌的比例.如图3.2一3 所示,在等高条形图中,浅色的条高表示不患肺癌的百分比;深色的条高表示患肺癌的百分比.通过分析数据和图形,我们得到的直观印象是“吸烟和患肺癌有关”.那么我们是否能够以一定的把握认为“吸烟与患肺癌有关”呢?4.独立性检验的步骤为了回答下面问题,我们先假设H:吸烟与患肺癌没有关系,看看能够得到什么样的结论。
不患肺癌患肺癌合计不吸烟 a b a+b吸烟 c d c+d合计a+c b+d a+b+c+d样本容量 n=a+b+c+d如果“吸烟与患肺癌没有关系”,则吸烟者中不患肺癌的的比例应该与不吸烟者中相应的比例差不多,即:()()()()()()()220a ca c d c ab ad bc a b c dad bc ad bc n ad bc k a b c d a c b d n a b c d ≈⇒+≈+⇒-≈++---=++++=+++因此 : 越小, 说明吸烟与患肺癌之间关系越弱. 越大, 说明吸烟与患肺癌之间关系越强构造随机变量 其中为样本容量若 H 0 成立,即“吸烟与患肺癌没有关系”,则 K “应该很小.根据表3一7中的数据,利用公式(1)计算得到 K “的观测值为()22996577754942209956.63278172148987491K ⨯-⨯=≈⨯⨯⨯,这个值到底能告诉我们什么呢?统计学家经过研究后发现,在 H 0成立的情况下,2( 6.635)0.01P K ≥≈. (2)(2)式说明,在H 0成立的情况下,2K 的观测值超过 6. 635 的概率非常小,近似为0 . 01,是一个小概率事件.现在2K 的观测值k ≈56.632 ,远远大于6. 635,所以有理由断定H 0不成立,即认为“吸烟与患肺癌有关系”.但这种判断会犯错误,犯错误的概率不会超过0.01,即我们有99%的把握认为“吸烟与患肺癌有关系” .在上述过程中,实际上是借助于随机变量2K 的观测值k 建立了一个判断H 0是否成立的规则:如果k ≥6. 635,就判断H 0不成立,即认为吸烟与患肺癌有关系;否则,就判断H 0成立,即认为吸烟与患肺癌没有关系.在该规则下,把结论“H 0 成立”错判成“H 0 不成立”的概率不会超过2( 6.635)0.01P K ≥≈,即有99%的把握认为H 0不成立.假设检验 备择假设H 1在H 1不成立的条件下,即H 0成立的条件下进行推理 推出有利于H 1成立的小概率事件(概率不超过α的事件)发生,意味着H 1成立的可能性(可能性为(1-α))很大推出有利于H 成立的小概率事件不发生,接受原假设上例的解决步骤第一步:提出假设检验问题 H 0:吸烟与患肺癌没有关系↔ H 1:吸烟与患肺癌有关系第二步:选择检验的指标 22()K ()()()()n ad bc a b c d a c b d -=++++(它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H 1:吸烟与患肺癌有关系”成立的可能性越大. 第三步:查表得出结论注意:1观测值是2K 的值2.假设没有关系,如果2K 大,则H 0不成立,即两个量有关系。
2018-2019学年度第二学期高二年级期中考试(数学学科)试卷 第1页 共4页 2018-2019学年度第二学期高二年级期中考试(数学学科)试卷 第2页 共4页喀什市特区高级中学教育集团2018-2019学年第二学期高二数学(文科)期中考试试卷(时间120分钟,满分100分)命题人:穆拉丁·马木提 审题人:穆拉丁·马木提说明:1. 答题前,务必将自己的姓名、学号等填写在答题卷规定的位置上。
2. 考生必须在答题卷上按规定作答:凡在试卷、草稿纸上作答的,其答案一律无效。
3. 全卷共4页,考试时间120分钟,满分100分。
参考附表如下一、单项选择题(本大题共12小题,每小题3分,共36分;将答题卷上对应题目的答案标号涂黑,答在试题卷上无效。
)1.独立性检验,适用于检查 变量之间的关系 ( )A.线性B.非线性C.解释与预报D.分类 2.样本点的样本中心与回归直线 的关系( )A.在直线上B.在直线左上方C. 在直线右下方D.在直线外 3.数列 2 , 5 , 11 , 20 ,X , 47 ,····中的X 等于( )A.28B. 32C.33D.274.下面说法正确的有 ( )(1)演绎推理是由一般到特殊的推理; (2)演绎推理得到的结论一定是正确的; (3)演绎推理一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关。
A.1个 B.2个 C.3个 D.4个5. 将x =2 019输入下面的程序框图得到的结果是( ) A .2019 B .0 C .2020D .-2 0196.复数z =i 1+i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7. “金导电、银导电、铜导电、锡导电,所以一切金属都导电”.此推理方法是( ) A .完全归纳推理 B .归纳推理 C .类比推理D .演绎推理8. 由①小燕子是高二(1)班的学生,②小燕子是独生子女,③高二(1)班的学生都是独生子女,写一个“三段论”形式的推理,则大前提,小前提和结论分别为( ) A .②①③ B .③①② C .①②③ D .②③①9.下表是某工厂6~9月份用电量(单位:万度)的一组数据:用电量y 与月份x 间有线性相关关系,其线性回归直线方程是y ^=-1.4x +a ,则a 等于( ) A .10.5 B .5.25 C .5.2 D .14.510.复数z =-3+i2+i的共轭复数( )A .2+i B.2-I C .-1+i D .-1-i11.对分类变量X 与Y 的随机变量K2的观测值k ,说法正确的是( ) A .k 越大,“ X 与Y 有关系”可信程度越小 B .k 越小,“ X 与Y 有关系”可信程度越小 C .k 越接近于0,“X 与Y 无关”程度越小 D .k 越大,“X 与Y 无关”程度越大12. 如图是一个2×2列联表则表中a 、b 的值分别为( ) A .94、96 B .52、50 C .52、54 D .54、522018-2019学年度第二学期高二年级期中考试(数学学科)试卷 第3页 共4页 2018-2019学年度第二学期高二年级期中考试(数学学科)试卷 第4 页 共4二、填空题(每小题4分,共16分)13.复数22(1)z i i =+的共轭复数是 ; 14. 已知回归直线方程y bx a =+,其中3a =且样本点中心为(12),,则回归直线方程 ; 15. 在如图所示程序图中,输出结果是 16. 指出三段论“自然数中没有最大的数(大前提),2是自然数(小前提),所以2不是最大的数(结论)”中的错误是___________。
高二数学独立性检验知识点独立性检验是高中数学中的重要概念之一,用于判断两个或多个事件是否相互独立。
在数学考试中,独立性检验经常被应用于概率统计等相关题目。
本文将详细介绍高二数学中的独立性检验知识点,帮助同学们更好地理解和应用。
一、独立性的定义和特性在进行独立性检验之前,我们首先需要了解独立性的定义和特性。
在概率统计中,两个事件A和B的独立性表示事件A的发生与事件B的发生是互相独立的,即A的发生不影响B的发生,反之亦然。
独立性的特性包括以下几个方面:1. 互斥性:如果A和B互斥(即A和B不能同时发生),则A和B是相互独立的。
2. 互不影响性:如果A和B是相互独立的,那么A和B的补事件也是相互独立的。
即P(A) = 1 - P(A'),P(B) = 1 - P(B')。
3. 乘法法则:如果A和B是相互独立的,那么P(A∩B) = P(A) × P(B)。
二、独立性检验方法在实际应用中,我们需要通过数据分析或实验来判断两个事件是否独立。
针对不同情况,有不同的独立性检验方法。
1. 经验法:当数据较少或不能进行大样本实验时,我们可以使用经验法来判断独立性。
经验法主要是通过观察、比较和思考来判断两个事件是否独立。
2. 理论法:当数据比较充足并且满足一定的条件时,我们可以使用理论法来进行独立性检验。
理论法主要是基于概率计算和统计推断来判断独立性。
三、常见的独立性检验方法在高二数学中,常见的独立性检验方法包括以下几种:1. 卡方检验:卡方检验是一种针对频数资料的检验方法,用于检验两个事件是否独立。
通过计算观察频数和期望频数之间的差异来判断独立性。
2. 相关系数检验:相关系数检验可以用于判断两个事件之间是否存在线性相关性。
当两个事件呈现出线性相关性时,它们往往是不独立的。
3. 二项分布检验:二项分布检验可以用于判断两个事件的独立性。
当事件满足二项分布的条件时,可以通过计算观察值与理论值之间的差异来判断独立性。
教案满招损,谦受益。
《尚书》
大地二中张清泉
【素材积累】
1、一个房产经纪人死后和上帝的对话一个房产经纪人死后,和上帝喝茶。
上帝认为他太能说了,会打扰天堂的幽静,于是旧把他打入了地狱。
刚过了一个星期,阎王旧满头大汗找上门来说:上帝呀,赶紧把他弄走吧!上帝问:怎么回事?
阎王说:地狱的小。
2、机会往往伪装成困难美国名校芝加哥大学的一位教授到访北大时曾提到:芝加哥大学对学生的基本要求是做困难的事。
因为一个人要想有所成旧,旧必须做那些困难的事。
只有做困难的事,才能推动社会发展进步。
【素材积累】
每个人对未来都有所希望和计划,立志是成功的起点,有了壮志和不懈的努力,就能向成功迈进。
1、立志多在少年,但宋朝学家苏洵27岁开始发愤,立志就读,昼夜不息,结果大器晚成,终于成为唐宋八大家之一。
2、我国明代画家王冕,少年放牛时,立志要把荷花佳景惟妙惟肖地画出来。
他不分昼夜地绘画,立志不移,后来成为当时著名的画家。
3、越王勾践被吴国军队打败,忍受奇耻大辱,给吴王夫差当奴仆。
三年后,他被释放回国,立志洗雪国耻。
他卧薪尝胆,发愤图强,终于打败了吴国。
4、有志者事竟成,百二秦关终归楚;苦心人天不负,三千越甲可吞吴。
——蒲松龄。
独立性检验教学重点、独立性检验的基本方法,独立性检验的步骤难点:.基本思想的领会及方法应用.知识点一、独立性检验的基本概念和原理独立性检验是研究相关关系的方法。
1.分类变量:变量的不同“值”表示个体所属的不同类别的变量称为分类变量.比如男女、是否吸烟、是否患癌症,宗教信仰、国籍等等。
2列联表:分类变量的汇总统计表(频数表). 一般我们只研究每个分类变量只取两个3.条形图为了更清晰地表达这个特征,我们还可用如下的等高条形图表示两种情况下患肺癌的比例.如图3.2一3 所示,在等高条形图中,浅色的条高表示不患肺癌的百分比;深色的条高表示患肺癌的百分比.通过分析数据和图形,我们得到的直观印象是“吸烟和患肺癌有关”.那么我们是否能够以一定的把握认为“吸烟与患肺癌有关”呢?4.独立性检验的步骤为了回答下面问题,我们先假设H:吸烟与患肺癌没有关系,看看能够得到什么样的结论。
不患肺癌患肺癌合计不吸烟 a b a+b吸烟 c d c+d合计a+c b+d a+b+c+d样本容量 n=a+b+c+d如果“吸烟与患肺癌没有关系”,则吸烟者中不患肺癌的的比例应该与不吸烟者中相应的比例差不多,即:()()()()()()()220a ca c d c ab ad bc a b c dad bc ad bc n ad bc k a b c d a c b d n a b c d ≈⇒+≈+⇒-≈++---=++++=+++因此 : 越小, 说明吸烟与患肺癌之间关系越弱. 越大, 说明吸烟与患肺癌之间关系越强构造随机变量 其中为样本容量若 H 0 成立,即“吸烟与患肺癌没有关系”,则 K “应该很小.根据表3一7中的数据,利用公式(1)计算得到 K “的观测值为()22996577754942209956.63278172148987491K ⨯-⨯=≈⨯⨯⨯,这个值到底能告诉我们什么呢?统计学家经过研究后发现,在 H 0成立的情况下,2( 6.635)0.01P K ≥≈. (2)(2)式说明,在H 0成立的情况下,2K 的观测值超过 6. 635 的概率非常小,近似为0 . 01,是一个小概率事件.现在2K 的观测值k ≈56.632 ,远远大于6. 635,所以有理由断定H 0不成立,即认为“吸烟与患肺癌有关系”.但这种判断会犯错误,犯错误的概率不会超过0.01,即我们有99%的把握认为“吸烟与患肺癌有关系” .在上述过程中,实际上是借助于随机变量2K 的观测值k 建立了一个判断H 0是否成立的规则:如果k ≥6. 635,就判断H 0不成立,即认为吸烟与患肺癌有关系;否则,就判断H 0成立,即认为吸烟与患肺癌没有关系.在该规则下,把结论“H 0 成立”错判成“H 0 不成立”的概率不会超过2( 6.635)0.01P K ≥≈,即有99%的把握认为H 0不成立.假设检验 备择假设H 1不成立的前提下进行推理 10成立 推出有利于H 1成立的小概率事件(概率不超过α的事件)发生,意味着H 1成立的可能性(可能性为(1-α))很大下任上例的解决步骤第一步:提出假设检验问题 H 0:吸烟与患肺癌没有关系↔ H 1:吸烟与患肺癌有关系第二步:选择检验的指标 22()K ()()()()n ad bc a b c d a c b d -=++++(它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H 1:吸烟与患肺癌有关系”成立的可能性越大. 第三步:查表得出结论注意:1观测值是2K 的值2.假设没有关系,如果2K 大,则H 0不成立,即两个量有关系。
如果2K 小,说明没有足够证据证明H 0不成立,即两个量没有关系 3.查表后,大于某个值0k 的可能性很小,如果大于0k ,则得出两个量有关系 4得到两个量有(没有)关系的结论是在概率基础上决定的,存在犯错误的概率5有99%的把握(相当于正确概率99%)认为 有关 在犯错误的概率不超过1%的前提下,认为“ 有关”说明:95%就是概率,可以说成有95%的把握,这种事件出现的可能性极大 5%当然也是概率,这种事件出现的可能性极小,在新闻中播报的水灾20年一遇,就是概率5%事件发生了 题型一概念辨析例题 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A .若K 2的观测值为k =6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病B .从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C .若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误D .以上三种说法都不正确A 变式1下列关于独立性检验的说法中,错误的是( ) A .独立性检验得到的结论一定正确B .独立性检验依赖小概率原理C .样本不同,独立性检验的结论可能有差异D .独立性检验不是判定两事物是否相关的唯一方法考点:独立性检验的基本思想.分析:对选项进行判断,独立性检验取决于样本、独立性检验是依据小概率原理,用样本计算统计量的、样本不同,观测值统计量也不同、对于检验两个事件是否相关除了统计量外,还可以根据两个分类变量之间频率大小差异进行粗略判断,即可得出结论.解答:解:因为独立性检验取决于样本,故结论不一定正确,即A不正确独立性检验是依据小概率原理,用样本计算统计量的,故正确;样本不同,观测值统计量也不同,故正确;对于检验两个事件是否相关除了统计量外,还可以根据两个分类变量之间频率大小差异进行粗略判断,故正确.故选:A.点评:本题主要考查了独立性检验的定义和检验步骤,独立性检验的意义,属基础题A变式2 对于独立性检验,下列说法正确的是()A.K2独立性检验的统计假设是各事件之间相互独立B.K2可以为负值C.K2独立性检验显示“患慢性气管炎和吸烟习惯有关”,这就是指“有吸烟习惯的人必定会患慢性气管炎”D.2×2列联表中的4个数据可以是任意正数分析:利用独立性检验的定义和解题步骤逐一筛选四个选项即可解答:解:由独立性检验的检验步骤可知A正确;∵2×2列联表中的数据均为正整数,故k2不可能为负值,排除B;∵K2独立性检验显示“患慢性气管炎和吸烟习惯有关”,是指有一定的把握说他们相关,或者说有一定的出错率,故排除C;∵2×2列联表中的4个数据是对于某组特定数据的统计数据,故四个数据间有一定的关系,故排除D故选A点评:本题主要考查了独立性检验的定义和检验步骤,独立性检验的意义,属基础题A.变式3独立性检验中,假设H0:变量X与变量Y没有关系.则在H0成立的情况下,估算概率P(K2≥6.635)≈0.01表示的意义是()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99%C.变量X与变量Y有关系的概率为99%D.变量X与变量Y没有关系的概率为99.9%考点:实际推断原理和假设检验的应用.分析:根据所给的估算概率,得到两个变量有关系的可信度是1-0.01,即两个变量有关系的概率是99%,这里不用计算,只要理解概率的意义即可.解答:解:∵概率P(K2≥6.635)≈0.01,∴两个变量有关系的可信度是1-0.01=99%,即两个变量有关系的概率是99%,故选C.点评:本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.B变式1 在独立性检验中,统计量Χ2有两个临界值:3.841和6.635.当Χ2>3.841时,有95%的把握说明两个事件有关,当Χ2>6.635时,有99%的把握说明两个事件有关,当Χ2≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算Χ2=20.87.根据这一数据分析,认为打鼾与患心脏病之间()A.有95%的把握认为两者有关B.约有95%的打鼾者患心脏病C.有99%的把握认为两者有关D.约有99%的打鼾者患心脏病考点:独立性检验的应用.分析:这是一个独立性检验理论分析题,根据K2的值,同所给的临界值表中进行比较,可以得到有99%的把握认为打鼾与心脏病有关.解答:解:∵计算Χ2=20.87.有20.87>6.635,∵当Χ2>6.635时,有99%的把握说明两个事件有关,故选C.点评:考查独立性检验的应用,是一个典型的问题,注意解题时数字运算要认真,不要出错,本题不需要运算直接考查临界值对应的概率的意义二.独立性检验的应用题型二、独立性检验的应用 例2.为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:性别与喜欢数学课程列联表由表中数据计算得2K 的观测值 4.514k .能够以95%的把握认为高中生的性别与是否喜欢数学课程之间有关系吗?请详细阐明得出结论的依据. 解:在假设“性别与喜欢数学课之间没有关系”的前提下,事件A ={2K ≥3. 841}的概率为P (2K≥3. 841) ≈0.05因此事件 A 是一个小概率事件.而由样本数据计算得2K 的观测值k=4.514,即小概率事件 A 发生.因此应该断定“性别与喜欢数学课之间有关系”成立,并且这种判断结果出错的可能性约为5 %.所以,约有95%的把握认为“性别与喜欢数学课之间有关系”.A .变式1 某卫生机构对366人进行健康体检,阳性家族史者糖尿病发病的有16人,不发病的有93人;阴性家族史者糖尿病发病的有17人,不发病的有240人,有______的把握认为糖尿病患者与遗传有关系.( )A .99.9%B .99.5%C .99%D .97.5%[解析] 可以先作出如下列联表(单位:人):糖尿病患者与遗传列联表k =366×(16×240-17×93)2109×257×33×333≈6.067>5.024.故我们有97.5%的把握认为糖尿病患者与遗传有关系.A .变式2 在500人身上试验某种血清预防感冒的作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示.问:该种血清能否起到预防分析:在使用该种血清的人中,有24248.4%500=的人患过感冒;在没有使用该种血清的人中,有28456.8%500=的人患过感冒,使用过血清的人与没有使用过血清的人的患病率相差较大.从直观上来看,使用过血清的人与没有使用过血清的人的患感冒的可能性存在差异.解:提出假设0H :感冒与是否使用该种血清没有关系.由列联表中的数据,求得221000(258284242216)7.075474526500500χ⨯⨯-⨯=≈⨯⨯⨯∵当0H 成立时,26.635χ≥的概率约为0.01,∴我们有99%的把握认为:该种血清能起到预防感冒的作用.A 变式 通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天由,算得B变式1 媒体为调查喜欢娱乐节目A是否与性格外向有关,随机抽取了500名性格外向的和500名性格内向的居民,抽查结果用等高条形图表示如下:(1)作出2×2列联表;(2)试用独立性检验的方法分析,能否在犯错的概率不超过0.001的前提下说明喜欢娱乐节目A与性格外向有关?1000×(400×250−100×250)500×500×650×350 ≈98.901>10.828,∴能在犯错的概率不超过0.001的前提下说明喜欢娱乐节目A 与性格外向有关.点评:本题考查独立性检验的应用,本题解题的关键是正确理解观测值对应的概率的意义.B 变式2.为研究不同的给药方式(口服或注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果如表所示.根据所选择的193个病人的数据,能否作分析:在口服的病人中,有5859%98≈的人有效;在注射的病人中,有6467%95≈的人有效.从直观上来看,口服与注射的病人的用药效果的有效率有一定的差异,能否认为用药效果与用药方式一定有关呢?下面用独立性检验的方法加以说明. 解:提出假设0H :药的效果与给药方式没有关系.由列联表中的数据,求得22193(58314064) 1.3896 2.072122719895χ⨯⨯-⨯=≈<⨯⨯⨯当0H 成立时,21.3896χ≥的概率大于15%,这个概率比较大,所以根据目前的调查数据,不能否定假设0H ,即不能作出药的效果与给药方式有关的结论B.变式3 某中学采取分层抽样的方法从应届高三学生中按照性别抽取20名学生,其中8名女生中有3名报考理科,男生中有2名报考文科. (1)是根据以上信息,写出2×2列联表(2)用独立性检验的方法分析,能否在犯错误的概率不超过0.05的前提下认为该中学的高三学生选报文理科与性别有关?考点:独立性检验的应用.20×(10×5−2×3)12×8×13×7≈4.432.因为p(K2>3.84)=0.05,所以我们有95%把握认为该中学的高三学生选报文理科与性别有关.点评:本题考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题题型三、已知可信度,求观测值k22A变式用的方法,我们得到能有99%的把握认为变量X与Y有关系,则()A.K2≥2.706B.K2≥6.635C.K2<2.706 D.K2<6.635A 变式 随机调查某校110名学生是否喜欢跳舞,由列联表和公式K 2=计算出K 2,并由此作出结论:“有99%的可能性认为学生喜欢跳舞与性别有关”,则K 2可以为( )总结:第一步:提出假设检验问题 H 0: 与 没有关系↔ H 1: 与 有关系 第二步:选择检验的指标 22()K ()()()()n ad bc a b c d a c b d -=++++ (它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H 1:吸烟与患肺癌有关系”成立的可能性越大.第三步:查表得出结论1. 观测值是2K 的值2. 假设没有关系,如果2K 大,则H 0不成立,即两个量有关系。