实数单元测试题1
- 格式:doc
- 大小:90.50 KB
- 文档页数:3
人教版七年级下册数学单元检测卷:第六章实数一、填空题1. (1) 若 a<- 1,化简 a+ |a + 1| = ____________;(2) 将,,这三个数按从小到大的次序用”<”连结起来: ____________ ;(3) 如图是一个简单的数值运算程序,若输入x的值为,则输出的数值为____________;(4) 已知- 1<x<0,请把- x,-,,x2按从大到小的次序用”>”连结起来:____________.答案: (1)- 1(2)(3) 2(4)2.5- 1与 0.5的大小关系:5- 1预计________0.5( 填“ >”“ <”或“=” ) .22答案:>3. 若=0,则 x+ y= _____0_______ .4.如图,数轴上 A, B 两点表示的数分别为和5.1 ,则 A, B 两点之间表示整数的点共有___________ 个.答案: 45. 假如 4 是 5m+ 1 的算术平方根,那么2- 10m= __________.答案: -28二、选择题6. 立方根是- 0.2的数是 (D)A. 0.8B.0.08C.- 0.8D.- 0.0087.与最靠近的整数是(B)A.0B.2C.4D.58. 若一个数的算术平方根等于它的相反数,则这个数是( D )A.0B.1C.0或 1 D .0或±19.假如是实数,则以下必定存心义的是(D )A.B.C.D.10.以下说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个B.2个C.3个D.4个11. 若x- 3 是 4 的平方根,则x 的值为( C )A. 2B.± 2C.1或 5D. 1612.以下说法正确的选项是 ( D )A.- 1 没有立方根B. 0 没有平方根C. 1 的平方根是1D. 1 的算术平方根是113.一个底面是正方形的水池,容积是11.52m3,池深 2m,则水池底边长是( C ) A. 9.25m B. 13.52mC. 2.4mD.4.2m14. 用计算器计算44.86 的值为 ( 精准到 0.01)( C )A. 6.69 B.6.7 C. 6.70 D .± 6.7015. 假如,,则人教版七年级下册第六章实数尖子生培优测试一试卷一、单项选择题(共 10 题;共 30 分)1.如图,在数轴上表示无理数的点落在()A. 线段 AB 上B线.段 BC上C线.段 CD上D线.段 DE 上2.在-,,,了11,2.101101110...(每个0之间多1个1)中,无理数的个数是( )A.2个B.个3C.个4D5个3.一个自然数的算术平方根是x,则它后边一个数的算术平方根是()2A. x+1B. x+1C.+1D.4.以下命题:①负数没有立方根;② 一个实数的立方根不是正数就是负数;③ 一个正数或负数的立方根与这个数的符号一致;④ 假如一个数的立方根等于它自己,那么它必定是1或0.此中正确有()个.A. 1B. 2C. 3D. 45.以下说法中,不正确的选项是 ( ).A. 3 是(﹣ 3)2的算术平方根B.是(﹣ 3)2的平方±3根C. ﹣ 3 是(﹣ 3)2的算术平方根D﹣.3 是(﹣ 3)3的立方根6.的算术平方根是()A.4B.C.2D.7.如图,数轴上A, B 两点分别对应实数a、 b,则以下结论中正确的选项是()A. a+b> 0B. ab> 0C.D. a+ab-<b 08.已知一个正数的两个平方根分别是a+3 和 2a-15,则这个正数为()A. 4B.C. -7D. 499.晓影设计了一个对于实数运算的程序:输入一个数后,输出的数老是比该数的平方小1,晓影依据此程序输入后,输出的结果应为()A. 2016B. 2017C. 2019D. 202010.,则 a 与 b 的关系是()A. B. a与 b 相等 C. a与 b 互为相反数D无.法判定二、填空题(共 6 题;共 24 分)11.的平方根是 ________,的算术平方根是________,-216的立方根是________.12.是 9 的算术平方根,而的算术平方根是 4,则= ________.13.已知:( x2+y2+1)2﹣ 4=0,则 x2+y2 =________.14.实数 a 在数轴上的地点如图,则 |a ﹣3|=________ .15.若四个有理数同时知足:,,,则这四个数从小到大的次序是________.16.若用初中数学课本上使用的科学计算器进行计算,则以下按键的结果为________.三、计算题(共 1 题;共 6 分)17.计算:四、解答题(共 6 题;共 40 分)18.一个数的算术平方根为2M -6,平方根为± (M- 2),求这个数.19.某公路规定行驶汽车速度不得超出80 千米 / 时,当发生交通事故时,交通警察往常依据刹车后车轮滑过的距离预计车辆的行驶速度,所用的经验公式是,此中v 表示车速(单位:千米/ 时),d 表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.在一次交通事故中,经丈量 d=32 米,f=2.请你判断一下,闯事汽车当时能否高出了规定的速度?20. a, b,c 在数轴上的对应点如下图,化简+|c ﹣b| ﹣()3.21.阅读以下资料:∵,即,∴的整数部分为2,小数部分为.请你察看上述的规律后试解下边的问题:假如的小数部分为a,的小数部分为b,求的值.22.规定一种新的运算a△ b=ab﹣ a+1,如3△ 4=3 ×4﹣ 3+1,请比较与的大小.23.求以下 x 的值.(1) 2x3=﹣ 16(2)(x﹣1)2=4.答案一、单项选择题1.C2.B3.D4.A5.C6.C7.C8.D9.B 10.C 二、填空题11. ±;;-612.19 13.1 14.3﹣ a 15.16.﹣5三、计算题17. 解:原式 =5+3-6=2四、解答题18.解:应分两种状况: ① 2M -6= M -2,解得 M= 4,2∴2M - 6=8- 6= 2,2 = 4,② 2M -6=- (M- 2),解得 M=,∴ 2M - 6=-6=(不合题意 ,舍去 ),故这个数是 4.19.解:把 d=32, f=2 代入 v=16,v=16=128(km/h )∵128> 80,∴闯事汽车当时的速度高出了规定的速度20.解:依据数轴上点的地点得:a< b< 0<c,且|a|>|b|>|c|,∴a﹣ b< 0, c﹣ b> 0, a+c< 0,则原式 =|a ﹣ b|+|c ﹣ b| ﹣( a+c) =b﹣ a+c﹣ b﹣ a﹣ c=﹣2a21.解:∵<,<,∴ a=﹣2,b=﹣3,∴=﹣2+﹣ 3﹣=﹣ 522.解:∵ a△ b=a ×b﹣ a+b+1,∴(﹣ 3)△=(﹣ 3)×﹣(﹣ 3)++1=4﹣ 2,△(﹣ 3)=×(﹣ 3)﹣+(﹣ 3) +1=﹣4﹣ 2,∵4﹣ 2>﹣ 4﹣ 2,∴﹣ 3△>△(﹣ 3).23.解:( 1)∵ 2x3=﹣ 16,2∴x =﹣ 8,∴x=﹣ 2.(2)∵(x﹣1)2=4,∴x﹣ 1=±2,∴x=﹣ 1 或 3.人教版数学七年级下册第六章实数单元复习卷人教版七年级数学下册第六章实数单元检测卷一、选择题1. 假如 | x| = 4,那么 5-x的算术平方根是()A.±1 B.±4 C.1或9 D.1或32.27 的立方根与 81 的平方根之和是()A. 0B. 6C.-12或6D.0或-63.预计的值在()A.0和1之间B.1和 2之间C.2和 3之间D. 3和 4之间4.若与的整数部分分别为,,则的立方根是()A. B. C. 3 D.75.一个数的算术平方根的相反数是-3,则这个数是 ()949349A. 7B.3C.49D. 96.若一个数的一个平方根是8,则这个数的立方根是()A.2B.4C. 2D. 47.在实数:﹣,0,π,,,, 3.142中,无理数有()A.2 个 B.3个 C.4 个 D.5 个8.实数 a,b, c, d 在数轴上的对应点的地点如下图,则正确的结论是()A. a>﹣ 4B. bd> 0C. |a| > |d| D . b+c> 09. 以下计算正确的选项是()30.012 5= 0.5 B.3273-A.=644331D 3-82C. 3 = 1.-125=-82510. 假如一个正数的两个平方根为x+1和 x-3,那么 x 的值是() A.4 B.2 C.1 D.±2二、填空题11.16的算术平方根是12.- 64 的立方根是1,-3是的立方根.13.大于- 18而小于13的全部整数的和为 __ .14.17的整数部分是 __________ ,小数部分是 ________.15.若3 (4 k) 3k 4 ,则 k 的值为.16.如图,在数轴上有O, A,B, C, D五点,依据图中各点所表示的数,判断18 在数轴上的地点会落在线段上.三、解答题17. 计算:;18.计算:19.求以下各式的值:(1)1+24;(2) 252- 242;(3) (- 3)2.2520.求 x 的值(1) 8x3+125=0( 2) (x+3) 3+27=021. 已知,是 a 的小数部分,求的值.22.已知 1- 3a与b- 27互为相反数,求ab的算术平方根.23.解答以下应用题:⑴某房间的面积为17.6 m 2,房间地面恰巧由110 块同样的正方形地砖铺成,每块地砖的边长是多少?⑵已知第一个正方体水箱的棱长是60 cm,第二个正方体水箱的体积比第一个水箱的体积的 3 倍还多81 000 cm3,则第二个水箱需要铁皮多少平方米?24. 对于实数a,我们规定:用符号表示不大于的最大整数,称为 a 的根整数,。
第6章《实数》单元测试题一.选择题(每题2分,共20分)1.下列说法中,正确的是( )A .有理数都是实数B .实数都是有理数C .带根号的数都是无理数D .无理数是开方开不尽的数2.在-2.87、22 3.257π、 -3.140 1.212112……这几个数中,无理数的个数是( ). A .4个 B .5个 C .6个 D .7个3.下列语句:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数,其中正确的是( )A .①②③B .②③④C .①②④D .②④4. 下列命题:①(-3)2的平方根是-3 ;②-8的立方根是-23;④平方根与立方根相等的数只有0; 其中正确的命题的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个5.使等式2(x =成立的x 的值( ) A 、是正数 B 、是负数 C 、是0 D 、不能确定6.若330a a --+=,则a 的取值范围是( )A .a ≤3 B .a <3 C .a ≥3 D .a >37.(y +2)20,则xy 的值等于( )A .-6 B .-2 C .2 D .68.当0<a <1时,a ,a 2,1a)A .a <21a aB .21a a a <C 21a a a <<D .21a a a<<9.在数-22,-(-2)、2(-2)、-2-,3(-2)中,负数的个数为( )A .3个B .2个C .4个D .5个10.我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i ”,使其满足i 2=-1(即方程x 2=-1有一个根为i ).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i 1=i ,i 2=-1,i 3=i 2•i =(-1)•i =-i ,i 4=(i 2)2=(-1)2=1,从而对于任意正整数n ,我们可以得到i 4n +1=i 4n •i =(i 4)n •i =i ,同理可得i 4n +2=-1,i 4n +3=-i ,i 4n =1.那么i +i 2+i 3+i 4+…+i 2012+i 2013的值为( )A .0B .1C .-1D .i二.填空题(每题2分,共20分)11. 立方根等于本身的实数是 .12. 49的算术平方根是______;______;-8的立方根是______.13.满足x x 是___________.14.如果29a =2,且0ab <,则_________a b +=.15. 3,则a =______.16. =所揭示的规律,可得出一般的结论是 . 17.计算:2(-2)+112-()= .18.若实数a 、b 满足2310a b +-,则c -a b 的值为 .19. 已知(a -3)2与1b -互为相反数,则式子a b b a-÷()(a +b )的值是 .20. 如图,已知实数a 、b 、c 对应数轴上的点A 、B 、C ,化简:a +b c +b c -= .三.解答题(共80分)21.计算:(每题5分,共20分)①② 1)③④ 132-22.求下列各式中x 的值.(每题5分,共20分)①2(1)121x -= ②38(1)125x -=③33(4)375x -=- ④ 10x -=23. 已知x 、y 是实数,且2(1)x y -+(6分)24.如果实数3和10a b 、,求出a b +的精确值.(6分)25.已知2m -3和m -12是数p 的平方根,试求p 的值.(6分)26.已知a ,b ,c |a −b |+|c −a |+.(6分)27.已知m ,n 是有理数,且2)(370m n +-+=,求m 、n 的值. (8分)28.已知20142(4a x a -=+,求x 的个位数字. (8分)。
西 关 中 学 八 年 级 上 册 数 学第二章 实数 单元测试卷(一卷)一、选择题(每小题3分,共30分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内。
1、若x 2=a ,则下列说法错误的是( )(A )x 是a 的算术平方根 (B )a 是x 的平方(C )x 是a 的平方根 (D )x 的平方是a2、下列各数中的无理数是( )(A )16 (B )3.14 (C )113 (D )0.1010010001…(两个1之间的零的个数依次多1个) 3、下列说法正确的是( )(A )任何一个实数都可以用分数表示(B )无理数化为小数形式后一定是无限小数(C )无理数与无理数的和是无理数(D )有理数与无理数的积是无理数4、9=( )(A )±3 (B )3 (C )±81 (D )815、如果x 是0.01的算术平方根,则x=( )(A )0.0001 (B )±0.0001 (C )0.1 (D )±0.16、面积为8的正方形的对角线的长是( )(A )2 (B )2 (C )22 (D )47、下列各式错误的是( )(A )2)5(5= (B )2)5(5-= (C )2)5(5-=(D )2)5(5-=8、4的算术平方根是( )(A )2 (B )2 (C )4 (D )169、下列推理不正确的是( )(A )a=b b a = (B )a=b 33b a =(C )b a = a=b (D )33b a = a=b10、如图(一),在方格纸中,假设每个小正方形的面积为2,则图中的四条线段中长度是有理数的有( )条。
(A )1 (B )2 (C )3 (D )4二、填空题(每空2分,共20分)1、任意写一对和是有理数的无理数 。
(一)2、一个正方形的面积扩大为原来的100倍,则其边长扩大为原来的 倍。
3、如果a 21-有意义,则a 的取值范围是 。
实数单元测试题一班级姓名一(选择题(每小题2分,共24分)1. 计算的结果是( )( 4,.2 ,(?2 ,(-2 ,(4(,,32. 在-1.732,,π, 3.,2+,3.212212221…,3.14这些数中,无理数的个214数为( ).A.5B.2C.3D.43. 已知下列结论:?在数轴上只能表示无理数2;?任何一个无理数都能用数轴上的点表示;?实数与数轴上的点一一对应;?有理数有无限个,无理数有有限个. 其中正确的结论是( ).A.??B.??C.??D.???4. 下列各式中,正确的是( ).233,5,,5,3.6,,0.6(,13),,1336,,6A. B. C. D. 6. 下列说法中,正确的是( )(A. 不带根号的数不是无理数B. 8的立方根是?233C. 绝对值是的实数是 D. 每个实数都对应数轴上一个点2(a,3),a7. 若-3,则a的取值范围是( ).A. ,3B. ?3C. ,3D. ?3 aaaa5x,2,8. 能使有意义的x的范围是( ). 3,xA. x?-2且x?3B. x?3C.-2?x,3D.-2?x?3 9.下列说法错误的是( )5A(是9的平方根 B(的平方等于5 ,3,1,1C(的平方根是 D(9的算术平方根是310.下列说法中正确的是( )22a,aA. 实数是负数 B. ,aC. 一定是正数D. 实数的绝对值是 ,aa,a11( 有下列说法:其中正确的说法的个数是( ) (1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。
A(1 B(2 C(3 D(4212(的平方根是( ) ,0.7,,A( B( C( D( ,0.7,0.70.70.49二.填空题(每小题2分,共20分)113(若x的立方根是,,则x,___________( 414(化简 =___________。
人教版七年级数第二学期第6章《实数》单元测试题及答案一.选择题(共10小题)1.若m,n满足(m﹣1)2+=0,则的平方根是()A.±4B.±2C.4D.22.下列几个数中,属于无理数的数是()A.0.1 B.C.πD.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|4.下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=725.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.b+c>0D.|a|>|b|6.9的平方根是()A.B.81C.±3D.37.的算术平方根是()A.±B.C.±D.58.实数的算术平方根是()A.2B.C.±2D.±9.下列实数中,最大的是()A.﹣0.5B.﹣C.﹣1D.﹣10.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间二.填空题(共8小题)11.实数a、b在数轴上的位置如图所示,则①a+b<0;②a﹣b>0;③|a|<|b|;④a2<b2;⑤ab>b2.以上说法正确的有(在横线上填写相应的序号)12.﹣1的相反数是.13.下列各数:3.146,,0.010010001,3﹣π,.其中,无理数有个.14.与最接近的整数是.15.比较大小:.16.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根.17.有一个数值转换器,原理如图:当输入的x=4时,输出的y等于.18.计算:=.三.解答题(共7小题)19.计算:+×﹣6+.20.求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣6421.若5x﹣19的算术平方根是4,求3x+9的平方根.22.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求3a﹣2b的立方根.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a﹣c|.24.天气晴朗时,一个人能看到大海的最远距离S(单位:km)可用公式S2=1.7h米估计,其中h(单位:m)是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面的高度是1.7m时,能看到多远?(2)若登上一个观望台,使看到的最远距离是(1)中的3倍,已知眼睛到脚底的高度为1.7m,求观望台离海平面的高度?25.已知5+和5﹣的小数部分分别为a,b,试求代数式ab﹣a+4b﹣3的值.参考答案与试题解析一.选择题(共10小题)1.若m,n满足(m﹣1)2+=0,则的平方根是()A.±4B.±2C.4D.2【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【解答】解:由题意得,m﹣1=0,n﹣15=0,解得,m=1,n=15,则=4,4的平方根的±2,故选:B.【点评】本题考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.2.下列几个数中,属于无理数的数是()A.0.1 B.C.πD.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【解答】解:A.0.1是有限小数,属于有理数,故本选项不合题意;B.,是整数,属于有理数,故本选项不合题意;C.π是无理数,故本选项符合题意;D.是分数,属于有理数,故本选项不合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、=2,﹣2与是互为相反数,故本选项正确;B、=﹣2,﹣2与相等,不是互为相反数,故本选项错误;C、﹣2与﹣是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.【点评】本题考查了实数的性质,对各项准确计算是解题的关键.4.下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=72【分析】A、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据乘方运算法则计算即可判定.【解答】解:A、=3,故选项A错误;B、=﹣2,故选项B正确;C、=,故选项C错误;D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,故选项D错误.故选:B.【点评】本题主要考查实数的运算能力,解决此类题目的关键是熟记二次根式、三次根式和立方、平方的运算法则.开平方和开立方分别和平方和立方互为逆运算.立方根的性质:任何数都有立方根,①正数的立方根是正数,②负数的立方根是负数,③0的立方根是0.5.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.b+c>0D.|a|>|b|【分析】观察数轴,找出a、b、c、d四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.【解答】解:A、∵a<﹣4,∴结论A错误;B、∵b<﹣1,d=4,∴bd<0,结论B错误;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,结论C错误;D、∵a<﹣4,b>﹣2,∴|a|>|b|,结论D正确.故选:D.【点评】本题考查了实数与数轴以及绝对值,观察数轴,逐一分析四个选项的正误是解题的关键.6.9的平方根是()A.B.81C.±3D.3【分析】根据平方根的定义即可解答.【解答】解:9的平方根是±3,故选:C.【点评】此题主要考查了平方根.解题的关键是掌握平方根的定义,注意一个正数的平方根有两个,且互为相反数.7.的算术平方根是()A.±B.C.±D.5【分析】直接根据算术平方根的定义计算即可.【解答】解:因为=5,所以的算术平方根是,故选:B.【点评】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.8.实数的算术平方根是()A.2B.C.±2D.±【分析】首先得出=4,进而利用算术平方根的定义得出答案.【解答】解:∵=4,∴的算术平方根是:2.故选:A.【点评】此题主要考查了立方根和算术平方根的定义,正确理解算术平方根与立方根的定义是解题关键.9.下列实数中,最大的是()A.﹣0.5B.﹣C.﹣1D.﹣【分析】根据实数的比较大小即可求出答案.【解答】解:由于﹣0.5>﹣1>>﹣,故选:A.【点评】本题考查实数,解题的关键是熟练运用实数比较的方法,本题属于基础题型.10.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先估算出的范围,再估算出7﹣的范围即可.【解答】解:∵4<<5,∴7﹣的值在2和3之间;故选:A.【点评】此题主要考查了估计无理数,得出的取值范围是解题关键.二.填空题(共8小题)11.实数a、b在数轴上的位置如图所示,则①a+b<0;②a﹣b>0;③|a|<|b|;④a2<b2;⑤ab>b2.以上说法正确的有①⑤(在横线上填写相应的序号)【分析】根据图示,可得a<b<0,﹣a<﹣b,据此逐项判断即可.【解答】解:∵a<b<0,∴a+b<0,∴选项①正确;∵a<b<0,∴a﹣b<0,∴选项②错误;∵a<b<0,∴|a|>|b|;∴选项③错误;∵a<b<0,﹣a>﹣b,∴a2>b2,∴选项④错误;∵a<b<0,﹣a>﹣b,∴ab>b2,∴选项⑤正确,∴正确的结论有3个:①、⑤.故答案为:①⑤.【点评】此题主要考查了有理数大小比较的方法,以及数轴的特征和应用,要熟练掌握.12.﹣1的相反数是1﹣.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣1的相反数是1﹣,故答案为:1﹣.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.13.下列各数:3.146,,0.010010001,3﹣π,.其中,无理数有1个.【分析】无理数常见的三种类型(1)开不尽的数;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数.【解答】解:3.146是有限小数,属于有理数;是分数,属于有理数;0.010010001是有限小数,属于有理数;是循环小数,属于有理数.∴无理数有3﹣π共1个.故答案为:1【点评】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.14.与最接近的整数是2.【分析】直接利用的取值范围进而得出答案.【解答】解:∵<<,∴1<<2,∴与最接近的整数是:2.故答案为:2.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.15.比较大小:<.【分析】首先分别求出+、的平方的值各是倒数;然后比较出它们的大小关系,再根据:两个正数,平方大的,原来的数也大,判断出原来的两个数的大小关系即可.【解答】解:=11+2=22∵11+2<11+2×5.5=22,∴<,∴<.故答案为:<.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:两个正数,平方大的,原来的数也大.16.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根±.【分析】先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值,进而得到2﹣b的平方根.【解答】解:由题意,有,解得.则a+b=5+6=11,所以a+b的平方根±.故答案为:±.【点评】本题考查了平方根、立方根的定义.解题的关键是掌握平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.17.有一个数值转换器,原理如图:当输入的x=4时,输出的y等于.【分析】根据转换程序把4代入求值即可.【解答】解:4的算术平方根为:=2,则2的算术平方根为:.故答案为:.【点评】此题主要考查了算术平方根,正确把握运算规律是解题关键.18.计算:=6.【分析】根据算术平方根和立方根的定义计算可得.【解答】解:原式=9﹣3=6,故答案为:6.【点评】本题主要考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义.三.解答题(共7小题)19.计算:+×﹣6+.【分析】直接利用二次根式的性质和立方根的性质分别化简得出答案.【解答】解:原式===.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣64【分析】(1)根据平方根定义开方,再求出方程的解即可;(2)根据立方根定义开方,再求出方程的解即可.【解答】解:(1)3x2﹣12=0,3x2=12,x2=4,x=±2;(2)(x﹣1)3=﹣64,x﹣1=﹣4,x=﹣3.【点评】本题考查了立方根和平方根定义的运用,解此题的关键是能根据平方根和立方根定义得出一元一次方程.21.若5x﹣19的算术平方根是4,求3x+9的平方根.【分析】由题意得4的平方是16,那么5x﹣19=16,即可求得x,进而求得3x+9的平方根.【解答】解:∵5x﹣19的算术平方根是4∴5x﹣19=16∴x=7∴3x+9=30,其平方根为±.【点评】此题主要考查了算术平方根、平方根的定义,注意:被开方数应等于它的算术平方根的平方.一个正数的平方根有2个.22.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求3a﹣2b的立方根.【分析】分别根据2a﹣1的平方根是±3,3a+2b﹣1的算术平方根是4,求出a、b的值,再求出3a﹣2b的值,求出其立方根即可.【解答】解:∵2b﹣1的平方根是±3,∴2b+1=(±3)2,解得b=4;∵3a+2b﹣1的算术平方根是4,∴3a+2b﹣1=16,把b=4代入得,3a+2×4﹣1=16,解得a=3,∴3a﹣2b=3×3﹣2×4=1.∵13=1,∴3a﹣2b的立方根是1.【点评】本题考查的是立方根、平方根及算术平方根的定义,根据题意列出关于a、b的方程,求出a、b的值是解答此题的关键.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a﹣c|.【分析】观察数轴,可得出b<c<0<a<﹣b,进而可得出b+c<0,b+a<0,a﹣c>0,再结合绝对值的定义即可求出结论.【解答】解:观察数轴,可知:b<c<0<a<﹣b,∴b+c<0,b+a<0,a﹣c>0,∴原式=﹣b﹣c+b+a+a﹣c=2a﹣2c.【点评】本题考查了实数与数轴以及绝对值,观察数轴找出b+c,b+a,a﹣c的正负是解题的关键.24.天气晴朗时,一个人能看到大海的最远距离S(单位:km)可用公式S2=1.7h米估计,其中h(单位:m)是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面的高度是1.7m时,能看到多远?(2)若登上一个观望台,使看到的最远距离是(1)中的3倍,已知眼睛到脚底的高度为1.7m,求观望台离海平面的高度?【分析】(1)求出h=1.7时S的值即可得;(2)求出S=1.7×3=5.1时h的值,再减去1.7米即可得答案.【解答】解:(1)当h=1.7时,S2=1.7×1.7,∴S=﹣1.7(舍)或S=1.7,答:当眼睛离海平面的高度是1.7m时,能看到1.7m远;(2)当S=1.7×3=5.1时,可得5.12=1.7h,解得h=15.3,15.3﹣1.7=13.6(米),答:观望台离海平面的高度为13.6米.【点评】本题主要考查的是算术平方根.解题的关键是掌握算术平方根的定义.25.已知5+和5﹣的小数部分分别为a,b,试求代数式ab﹣a+4b﹣3的值.【分析】先估算出的大小,然后求得a、b的值,最后利用二次根式的乘法法则进行计算即可.【解答】解:∵1<3<4,∴1<<2,∴,,∴a=5+﹣6=,b==,∴ab﹣a+4b﹣3===1﹣.【点评】本题主要考查的是估算无理数的大小、二次根式的混合运算,求得a、b的值是解题的关键.。
WORD 格式整理版实数单元测试题一、选择题(每题 3 分,共 24 分) 1.(易错易混点) 4 的算术平方根是() A . 2B .2C .2D .22、下列实数中 ,无理数是 ()A.4B.C. 21 3D. 1 23.(易错易混点) 下列运算正确的是()2A 、9 3B 、3 3C 、9 3D 、3 94、3 27 的绝对值是()A .3B . 3C .13D .1 35、若使式子x 2在实数范围内有意.义..,则 x 的取值范围是 ()A . x 2B . x 2C . x 2D . x 22011x6、若 x ,y 为实数,且 x 2y 2 0,则的值为()yA .1B . 1C .2D . 27、有一个数值转换器,原理如图,当输入的x 为 64 时,输出的 y 是()A 、8B 、 2 2C 、 2 3D 、 3 28.设a2 ,2b(3) ,39c,11d( ) ,则 a ,b ,c ,d 按由小到大的顺序排列 2正确的是( )A . c a d bB . b d a cC . a c dbD . b c a d二、填空题(每题 3 分,共 24 分) 9、9的平方根是.学习好帮手WORD格式整理版10、在3,0, 2 , 2 四个数中,最小的数是11、(易错易混点)若 2(a3) 3 a ,则a与3 的大小关系是12、请写出一个比5小的整数.13、计算:03 ( 2 1)。
14、如图2,数轴上表示数 3 的点是.15、化简:3 8 5 32 的结果为。
16 、对于任意不相等的两个数 a ,b ,定义一种运算※如下:a※b=aabb,如3 23※2= 53 2.那么12※4= .三、计算(17-20题每题4分,21题12分)117(1)计算:3 3 16 .3(2)计算:110 2 | 2|(π2) 9 ( 1) 318、将下列各数填入相应的集合内。
学习好帮手-7,0.32, 13,0,8 ,12,3 125 ,,0.1010010001 ⋯①有理数集合{⋯}②无理数集合{⋯}③负实数集合{⋯}19、求下列各式中的x2 (1)x2 121= 17;(2)x49= 0。
实 数(时间:45分钟 满分:100分) 姓名一、选择题(每小题4分,共16分)1. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( ) A .1 B .2 C .3 D .42.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.493.若=a 的值是( )A .78B .78-C .78±D .343512-4.若225a =,3b =,则a b +=( )A .-8B .±8C .±2D .±8或±2二、填空题(每小题3分,共18分) 5.在-52,3π, 3.14,01,21-中,其中:整数有 ; 无理数有 ; 有理数有 。
62-的相反数是 ;绝对值是 。
7.在数轴上表示的点离原点的距离是 。
8= 。
910.1== 。
10.若一个数的立方根就是它本身,则这个数是 。
三、解答题(本大题共66分) 11.计算(每小题5分,共20分)(1)(2)-0. 01);(3(4))11(保留三位有效数字)。
12.求下列各式中的x (每小题5分,共10分) (1)x 2 = 17;(2)x 2 -12149= 0。
13.比较大小,并说理(每小题5分,共10分) (1与6;(2)1+与2-。
14.写出所有适合下列条件的数(每小题5分,共10分) (1)大于(215.(本题5分)13+---16.(本题5分)一个正数x 的平方根是2a -3与5-a ,则a 是多少? 17.(本题6分)观察========想。
附:命题意图及参考答案(一)命题意图1.本题考查对无理数的概念的理解。
2.本题考查对平方根概念的掌握。
3.本题考查对立方根概念的掌握。
4.本题考查查平方根、实数的综合运用。
5.本题考查实数的分类及运算。
实数单元测试题及答案一、选择题(每题3分,共30分)1. 实数集R中,最小的正整数是:A. 0B. 1C. -1D. 不存在答案:B2. 下列哪个数是无理数?A. πB. 0.5C. √4D. -3答案:A3. 如果a是一个实数,且a > 0,那么下列哪个表达式是正确的?A. -a < 0B. a + 0 = 0C. a × 0 = aD. a - a = 1答案:A4. 两个负实数相加的结果是什么?A. 正数B. 负数C. 零D. 无法确定答案:B5. 以下哪个数是实数?A. iB. √-1C. 2 + 3iD. √4答案:D6. 绝对值的定义是:A. 一个数的相反数B. 一个数的平方C. 一个数距离0的距离D. 一个数的立方答案:C7. 以下哪个不等式是正确的?A. √2 < 1.5B. √2 > 1.5C. √2 = 1.5D. √2 ≠ 1.5答案:B8. 一个实数的平方总是:A. 正数B. 零C. 负数D. 无法确定答案:A9. 如果x是一个实数,那么x² + 2x + 1的最小值是:A. 0B. 1C. 2D. 4答案:B10. 以下哪个数是实数?A. 1/0B. √-9C. 1/√2D. 0.33333...(无限循环)答案:C二、填空题(每题2分,共20分)11. √9 = ______。
答案:312. 如果一个数的绝对值是5,那么这个数可以是______或______。
答案:5 或 -513. π的值大约等于______。
答案:3.1415914. 两个相反数的和是______。
答案:015. 如果a是实数,那么a的相反数是______。
答案:-a16. 一个数的平方根是它自己的数有______和______。
答案:1 和 017. √16的平方根是______。
答案:±218. 一个数的立方等于它自己的数有______,______和______。
《实数》单元测试卷一、选择题(每题2分,共20分)1. 实数包括有理数和无理数,以下哪个选项不是实数?A. √2B. -3C. 0.33333...(无限循环)D. π2. 以下哪个数是无理数?A. 1/2B. √3C. 22/7D. -13. 如果a是一个正实数,那么下列哪个表达式的结果不是正实数?A. a + 1B. a - 1C. a × 1D. a / a4. 两个负实数相加的结果是什么?A. 正实数B. 负实数C. 零D. 无理数5. 实数的绝对值总是非负的,以下哪个表达式的结果不是非负数?A. |-5|B. |5|C. |-5 + 5|D. |-5| - 5二、填空题(每题2分,共20分)1. 有理数和无理数的集合统称为_______。
2. 一个数的绝对值是该数与零的距离,例如,|-3| = _______。
3. 无理数是不可以表示为两个整数的比的数,例如_______是一个无理数。
4. 两个实数相除,如果除数为零,则结果为_______。
5. 实数的乘方运算中,任何数的零次方等于_______。
三、计算题(每题5分,共30分)1. 计算下列表达式的值:(3 + √5)²2. 求下列方程的解:2x - 5 = 73. 计算下列表达式的值:(-2)³ + √44. 求下列方程的解:x² - 4x + 4 = 0四、解答题(每题10分,共30分)1. 描述实数的分类,并给出有理数和无理数的例子。
2. 解释绝对值的概念,并给出几个绝对值的例子。
3. 讨论实数的运算规则,特别是乘方和开方。
五、附加题(10分)1. 证明:对于任意实数a和b,如果a > b,则|a| ≥ |b|。
【答案】一、选择题1. D2. B3. D4. B5. D二、填空题1. 实数2. 33. √24. 无定义5. 1三、计算题1. (3 + √5)² = 9 + 6√5 + 5 = 14 + 6√52. 2x - 5 = 7 → 2x = 12 → x = 63. (-2)³ + √4 = -8 + 2 = -64. x² - 4x + 4 = (x - 2)² = 0 → x = 2四、解答题1. 实数可以分为有理数和无理数。
实数运算单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是实数?A. πB. iC. -1/3D. √22. 实数a和b满足a < b,那么下列哪个不等式是正确的?A. a + 1 > bB. a + 1 < bC. a + 1 ≥ bD. a + 1 ≤ b3. 如果x^2 = 4,那么x的值是:A. 2B. -2C. 2 或 -2D. 没有实数解4. 计算下列表达式的值:(-3) × (-2) =A. 6B. 9C. -6D. -95. 绝对值|-5|等于:A. 5B. -5C. 0D. 106. 下列哪个数是有理数?A. πB. √3C. 0.33333...D. √2π7. 计算下列表达式的结果:√(9^2) =A. 3B. 9C. 81D. 368. 如果x - 2 = 5,那么x的值是:A. 3B. 7C. -3D. 29. 计算下列表达式的值:(-2)^3 =A. -8B. 8C. -2D. 210. 下列哪个数是无理数?A. 1/3B. 1/7C. √2D. 0.5二、填空题(每题2分,共20分)11. 计算√16 的结果是______。
12. 如果一个数的平方是25,那么这个数是______。
13. 绝对值 |-7| 等于______。
14. 将 -3.5 转换为分数是______。
15. 计算 (-1)^4 的结果是______。
16. 如果x^2 + 6x + 9 = 0,那么x的值是______。
17. 计算√(-1)^2 的结果是______。
18. 一个数的立方是-8,这个数是______。
19. 计算1/√2 的结果是______。
20. 如果一个数的倒数是-2,那么这个数是______。
三、解答题(每题10分,共60分)21. 解方程:2x + 5 = 11。
22. 计算下列表达式的值:(3 + √5) × (3 - √5)。
实数单元测试题及答案一、选择题(每题2分,共20分)1. 以下哪个数是实数?A. √2B. -πC. iD. √(-1)2. 实数集R中,以下哪个数是最小的?A. 0B. -1C. -∞D. 13. 若x^2 = 4,x的值是:A. 2B. -2C. 2或-2D. 44. 以下哪个表达式不是实数?A. 1/3B. √3C. 1/0D. √45. 两个负数相除的结果是:A. 正数B. 负数C. 0D. 无法确定6. 以下哪个数是无理数?A. 1B. 1/2C. √2D. 27. 绝对值 |-5| 等于:A. 5B. -5C. 0D. 18. 以下哪个数不是有理数?A. 3.1415926B. -√2C. 1/2D. 09. 两个正数相加的结果:A. 总是正数B. 可能是正数或负数C. 总是负数D. 无法确定10. 以下哪个数是实数的平方根?A. √16B. √(-4)C. -√4D. √(-1)二、填空题(每题2分,共20分)11. √9 = _______。
12. 一个数的立方根是-2,这个数是 _______。
13. 两个相反数的和是 _______。
14. 一个数的绝对值是它本身,这个数是 _______ 或 _______。
15. 两个数相除,如果商是-3,那么这两个数的符号 _______。
16. 一个数的相反数是它自己,这个数是 _______。
17. 一个数的平方是16,这个数可以是 _______ 或 _______。
18. 绝对值不大于3的整数有 _______ 个。
19. 两个数的乘积为正数,说明这两个数 _______ 同号。
20. 一个数的倒数是1/2,这个数是 _______。
三、解答题(共60分)21. 证明:对于任意实数a和b,有|a + b| ≤ |a| + |b|。
(10分)22. 解方程:x^2 - 4x + 4 = 0。
(10分)23. 计算:(-2)^3 + √(81) - 1/3。
第六章《实数》单元测试姓名:班级:座号:一、单选题(共8题;共32分)1. 9的算术平方根是()A. 81B. ±81C. 3D. ±32. -8的立方根是()A. B. C.D.3.在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A. 2个B. 3个C. 4个D. 5个4.下列说法中错误的是( )A. 0的算术平方根是0B. 36的平方根为±6C.D. -4的算术平方根是-25.已知a2=25, =7,且|a+b|=a+b,则a﹣b的值为()A. 2或12B. 2或﹣12C. ﹣2或12D. ﹣2或﹣126.,则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定7.下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±4,其中正确的个数是()A. 1个B. 2个C. 3个 D. 4个8.下列六种说法正确的个数是()①无限小数都是无理数;②正数、负数统称实数;③无理数的相反数还是无理数;④无理数与无理数的和一定还是无理数;⑤无理数与有理数的和一定是无理数;⑥无理数与有理数的积一定仍是无理数.A. 1B. 2C. 3 D . 4二、填空题(共24分)1.算术平方根等于本身的实数是________.2.﹣125的立方根是________.3.比较大小:﹣π________﹣3.14(选填“>”、“=”、“<”).4.某正数的平方根是n+l和n﹣5,则这个数为________.5.已知一个正数的两个平方根是x﹣7和3x﹣1,则x的值是________.6.方程(x﹣1)3﹣8=0的根是 ________7.若=2﹣x,则x的取值范围是________;若3+ 的小数部分是m,3﹣的小数部分是n,则m+n=________.三、求下列各式中x的值(共10分)(1)(2x﹣1)2=9 (2)2x3﹣6=四、解答题(共10分)1.已知某数的平方根是a+3和2a﹣15,求1﹣7a的立方根。
《实数》单元测试题及答案一、选择题(每题3分,共15分)1. 下列数中,不是实数的是()A. πB. -2C. √2D. i2. 若a > 0,b < 0,且|a| > |b|,则a + b()A. 一定大于0B. 一定小于0C. 一定等于0D. 无法确定3. 以下哪个数是无理数?()A. 3.1415B. √3C. 0.33333D. 1/34. 实数x满足|x - 1| < 2,x的取值范围是()A. -1 < x < 3B. -2 < x < 2C. 0 < x < 2D. 1 < x < 35. 若x² = 4,x的值是()A. 2B. -2C. 2或-2D. 无解二、填空题(每题2分,共10分)6. 一个数的相反数是它自己,这个数是________。
7. 绝对值最小的实数是________。
8. 一个数的平方根是2,这个数是________。
9. √16的算术平方根是________。
10. 若a = -3,则|a| = ________。
三、解答题(每题5分,共20分)11. 证明:对于任意实数x,都有|x| ≥ 0。
12. 解不等式:2x + 5 > 3x - 2。
13. 证明:√2是一个无理数。
14. 已知x² - 4x + 4 = 0,求x的值。
四、综合题(每题10分,共20分)15. 某工厂需要生产一批零件,每件零件的成本是c元,销售价格是p 元。
如果工厂希望获得的利润率是20%,求p和c之间的关系。
16. 一个圆的半径是r,求圆的面积和周长。
五、附加题(每题5分,共5分)17. 一个数的立方根是它自己,这个数有几个?分别是多少?答案:一、选择题1. D2. A3. B4. A5. C二、填空题6. 07. 08. 49. 410. 3三、解答题11. 证明:对于任意实数x,|x|定义为x与0之间的距离,因此|x|总是非负的,即|x| ≥ 0。
《实数》单元测试一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=B C.a=﹣B D.以上结论都不对2.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个3.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数4.的平方根为()A.±8 B.±4 C.±2 D.45.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数C.3 D.无法确定6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.47.下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根8.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a>0 B.a+b>0 C.a﹣b>0 D.ab<09.如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2 B.a+2 C.﹣a﹣2 D.﹣a+210.的相反数是()A.2 B.﹣2 C.4 D.﹣二.填空题(共4小题)11.数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为个单位长度.12.已知x=,则x3+12x的算术平方根是.13.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.三.解答题(共8小题)15.已知实数a、b满足(a+2)2+=0,则a+b的值.16.计算题(1)(+3)(﹣3)﹣(2)+(﹣)×17.已知实数x、y满足y=,求的值.18.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是.19.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣1|+|c﹣2|=0.(1)在数轴上是否存在点P,使得P A+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t(t≥1)秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.20.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.21.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,P A的中点为M,N为PB的三等分点且靠近于P点,求PM﹣BN的值.22.阅读下面的材料:如图①,若线段AB在数轴上,A,B点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm 的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t 的变化而变化?请说明理由.参考答案与试题解析一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对【解答】解:∵a是9的平方根,∴a=±3,又B=()2=3,∴a=±b.故选:A.2.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:在π、,﹣,,3.1416,0.中,无理数是:π,共2个.故选:B.3.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数【解答】解:∵|b|<3,∴﹣3<b<3,又∵a<b,∴a的取值范围是小于或等于﹣3的实数.故选:C.4.的平方根为()A.±8 B.±4 C.±2 D.4【解答】解:∵=4,又∵(±2)2=4,∴的平方根是±2.故选:C.5.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数 C.3 D.无法确定【解答】解:∵的小数部分为b,∴b=﹣2,把b=﹣2代入式子(4+b)b中,原式=(4+b)b=(4+﹣2)×(﹣2)=3.故选:C.6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.4【解答】解:121[]=11[]=3[]=1,∴对121只需进行3次操作后变为1,故选:C.7.下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根【解答】解:A、2是8的立方根是正确的,不符合题意;B、4是64的立方根,原来的说法错误,符合题意;C、﹣是的平方根是正确的,不符合题意;D、4是的算术平方根是正确的,不符合题意.故选:B.8.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a>0 B.a+b>0 C.a﹣b>0 D.ab<0【解答】解:由数轴可知:a<0<b,|a|>|b|,∴a+b<0,a﹣b<0,ab<0,∴选项D正确.故选:D.9.如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2 B.a+2 C.﹣a﹣2 D.﹣a+2【解答】解:根据数轴,可知2<a<3,所以a﹣2>0,则|a﹣2|=a﹣2.故选:A.10.的相反数是()A.2 B.﹣2 C.4 D.﹣【解答】解:的相反数是(2,即2.故选:A.二.填空题(共4小题)11.数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为3个单位长度.【解答】解:根据题意:数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,得到点的坐标为﹣1+4﹣6=﹣3,故此时A点距原点的距离为3个单位长度.12.已知x=,则x3+12x的算术平方根是2.【解答】解:设=a,=b.则,.又4==a3b3,∴x=a2b﹣ab2,x2=a4b2﹣2a3b3+a2b4,故原式=x(x2+12),=(a2b﹣ab2)(a4b2﹣2a3b3+a2b4+12),=(a2b﹣ab2)(a4b2﹣8+a2b4+12),=(a2b﹣ab2)(a4b2+a2b4+4),=ab(a﹣b)a2b2(a2+b2+ab),=a3b3(a3﹣b3),=,=4×2=8.则其算术平方根是2.故答案为:2.13.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.【解答】解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=406.【解答】解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.三.解答题(共8小题)15.已知实数a、b满足(a+2)2+=0,则a+b的值.【解答】解:∵(a+2)2+=0,∴a+2=0,b2﹣2b﹣3=0,解得:a=﹣2,b1=﹣1,b2=3,则a+b的值为:1或﹣3.16.计算题(1)(+3)(﹣3)﹣(2)+(﹣)×【解答】解:(1)原式=()2﹣32﹣(﹣3)=14﹣9+3=8;(2)原式=×+×﹣×,=6+5﹣6,=5.17.已知实数x、y满足y=,求的值.【解答】解:∵4 x﹣1≥0,1﹣4 x≥0∴x≥,x≤,∴x=,∴y=,∴=.18.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是﹣7.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是0或4.【解答】解:(1)∵(c﹣6)2+|a+2|=0,∴a+2=0,c﹣6=0,解得a=﹣2,c=6,∴a2+c2﹣2ac=4+36+24=64;(2)∵b是最小的正整数,∴b=1,∵(﹣2+1)÷2=﹣0.5,∴6﹣(﹣0.5)=6.5,﹣0.5﹣6.5=﹣7,∴点C与数﹣7表示的点重合;(3)设点D表示的数为x,则若点D在点A的左侧,则﹣2﹣x=2(1﹣x),解得x=4(舍去);若点D在A、B之间,则x﹣(﹣2)=2(1﹣x),解得x=0;若点D在点B在右侧,则x﹣(﹣2)=2(x﹣1),解得x=4.综上所述,点D表示的数是0或4.故答案为:﹣7;0或4.19.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣1|+|c﹣2|=0.(1)在数轴上是否存在点P,使得P A+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t(t≥1)秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【解答】解:(1)∵|a+5|+|b﹣1|+|c﹣2|=0,∴a+5=0,b﹣1=0,c﹣2=0,解得a=﹣5,b=1,c=2,设点P表示的数为x,∵P A+PB=PC,①P在AB之间,[x﹣(﹣5)]+(1﹣x)=2﹣x,x+5+1﹣x=2﹣x,x=2﹣1﹣5,x=﹣4;②P在A的左边,(﹣5﹣x)+(1﹣x)=2﹣x,﹣5﹣x+1﹣x=2﹣x,﹣x=2﹣1+5,x=﹣6;③P在BC的中间,(5+x)+(x﹣1)=2﹣x,2x+4=2﹣x,3x=﹣2,x=﹣(舍去);④P在C的右边,(x+5)+(x﹣1)=x﹣2,2x+4=x﹣2,x=﹣6(舍去).综上所述,x=﹣4或x=﹣6.(2)∵运动时间为t(t≥1),A的速度为每秒1个单位长度,B的速度为每秒3个单位长度,C的速度为每秒5个单位长度,∴点A表示的数为﹣5﹣t,点B表示的数为1﹣3t,点C表示的数为2﹣5t,①当1﹣3t>﹣5﹣t,即t<3时,AB=(1﹣3t)﹣(﹣5﹣t)=﹣2t+6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(﹣2t+6)﹣(2t﹣1)=7﹣4t,∴AB﹣BC的值会随着时间t的变化而变化.②当t≥3时,AB=(﹣5﹣t)﹣(1﹣3t)=2t﹣6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(2t﹣6)﹣(2t﹣1)=﹣5,∴AB﹣BC的值不会随着时间t的变化而变化.综上所述,当1≤t<3时,AB﹣BC的值会随着时间t的变化而变化.当t≥3时,AB﹣BC的值不会随着时间t的变化而变化.20.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为﹣5;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.【解答】解:(1)∵正方形ABCD的面积为16,∴AB=4,∵点A表示的数为﹣1,∴AO=1,∴BO=5,∴数轴上点B表示的数为﹣5,故答案为:﹣5.(2)①∵正方形的面积为16,∴边长为4,当S=4时,分两种情况:若正方形ABCD向左平移,如图1,A'B=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1﹣3=﹣4;若正方形ABCD向右平移,如图2,AB'=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1+3=2;综上所述,点A'表示的数为﹣4或2;②t的值为4.理由如下:当正方形ABCD沿数轴负方向运动时,点E,F表示的数均为负数,不可能互为相反数,不符合题意;当点E,F所表示的数互为相反数时,正方形ABCD沿数轴正方向运动,如图3,∵AE=AA'=×2t=t,点A表示﹣1,∴点E表示的数为﹣1+t,∵BF=BB′=×2t=t,点B表示﹣5,∴点F表示的数为﹣5+t,∵点E,F所表示的数互为相反数,∴﹣1+t+(﹣5+t)=0,解得t=4.21.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,P A的中点为M,N为PB的三等分点且靠近于P点,求PM﹣BN的值.【解答】解:(1)①8﹣(﹣2)=10,﹣2+×10=3,故答案为:10,3;②由题可得,点P表示的数为﹣2+3t,点Q表示的数为8﹣2t;故答案为:﹣2+3t,8﹣2t;(2)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当t=1或3时,PQ=AB;(3)∵P A的中点为M,N为PB的三等分点且靠近于P点,∴MP=AP=×3t=t,BN=BP=(AP﹣AB)=×(3t﹣10)=2t﹣,∴PM﹣BN=t﹣(2t﹣)=5.22.阅读下面的材料:如图①,若线段AB在数轴上,A,B点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm 的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t 的变化而变化?请说明理由.【解答】解:(1)如图所示:CA=4﹣(﹣1)=4+1=5(cm);(2)设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;(4)P3P2﹣P1P2的值不会随着t的变化而变化,理由如下:根据题意得:P3P2=(4+4t)﹣(﹣1+t)=5+3t,P1P2=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴P3P2﹣P1P2=(5+3t)﹣(2+3t)=3,∴P3P2﹣P1P2的值不会随着t的变化而变化.。
人教版七年级数学下册第六章实数能力检测卷一.选择题(共10小题)1.16的平方根是()A.4 B.-4 C.16或-16 D.4或-4 2.下列各等式中计算正确的是()A±4 B C=-3 D= 3 23.若方程2(4)x-=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-4是19的算术平方根D.b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平)A.0个B.1个C.2个D.3个5.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10 B.10,11 C.11,12 D.12,138)A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y+0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算++-|1|19.已知|a|=5,b2=4,c3=-8.(1)若a<b,求a+b的值;(2)若abc>0,求a-3b-2c的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a与b就叫做“差商等数对”,记为(a,b).例如:4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版数学 七年级下册期末复习 第6章《实数》 同步测试卷一.选择题(共10小题,3*10=30) 1.3的相反数是( ) A .- 3 B . 3 C .12D .2 2.81的平方根是( ) A .3 B .-3 C .±3D .±93.下列实数中,无理数是( ) A .-2 B .0 C .πD . 44.下列各式中正确的是( )A .16=±4B .3-27=-9 C .-32=-3 D .214=1125.下列说法中:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的相反数.正确的有( )A .0个B .1个C .2个D .3个6.若一个数的算术平方根和立方根都等于它本身,则这个数一定是( ) A .0或1 B .1或-1 C .0或±1D .07.如图,数轴上点P 表示的数可能是( )A . 2B . 5C .10D .158.一个正方形的面积为2,则它的边长是( ) A .4B .±2C .- 2D . 29.在实数 -13, -2, 0, 3 中,最小的实数是( )A .-2B .0C .-13D . 310.已知35.28=1.738,3a =0.173 8,则a 的值为( ) A .0.528B .0.052 8C .0.005 28D .0.000 528 二.填空题(共6小题,3*6=18) 11.化简:|3—2|=________. 12.比较大小:-6 ________-35.13.在数轴上到原点的距离是5的点表示的数是________.14.一个正数x 的两个平方根分别是a +2和a -4,则a =________. 15.已知a 、b 为两个连续的整数,且a <11<b ,则a +b = ________. 16.已知x -1+|2y -2|=0,则x -y =________. 三.解答题(共9小题,72分)17.(7分)计算:(-3)2+||3-2-2(3-1).18.(7分)解方程:3(x -2)2=27.19.(8分)解方程:2(x -1)3+16=0.20.(8分)20.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?21.(8分)实数a ,b ,c 在数轴上的对应点如图所示,化简:3a 3+||a +b -c 2-||b -c .22.(8分)已知实数2a-1的平方根是±3,2b+3人教版数学七下第六章实数能力水平检测卷一.选择题(共10小题)1.下列选项中的数,小于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-123.若实数a,b是同一个数的两个不同的平方根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.用计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x2=2,有x=±当x3=3时,有x想一想,从下列各式中,能得出x=±的是()A.2x=±20 B.20x=20 D.3x=±20x=2 C.±206.下列选项中正确的是()A.27的立方根是±3B的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.在四个实数、3、-1.4中,大小在-1和2之间的数是()A.B.3 C D.-1.481-的相反数是()A.1-B1+-D1-C.19a,小数部分为b,则a-b的值为()A.- 13 B.6-C.8-D6-10.下列说法:①-1是1的平方根;②如果两条直线都垂直于同一直线,那么这两条直线平行;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;⑤无理数就是开放开不尽的数;正确的个数为( ) A .1个B .2个C .3个D .4个二.填空题(共6小题)11.已知a 的平方根是±8,则它的立方根是 ;36的算术平方根是 .122(3)b ++=0= .13A 的算术平方根为B ,则A+B= .14.若45,<<则满足条件的整数a 有 个.15.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是 (M 、N 、P 、R 中选).16.=5,付老师又用计算器求得:=55=555, =5555,个3,2016个4)= . 三.解答题(共7小题) 17.求出下列x 的值 (1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小马说:“我们不可能围成满足要求的长方形场地”小牛说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.21.如果一个正数的两个平方根是a+1和2a-22,求出这个正数的立方根.22-的小数部分,此1事实上,小明的表示方法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,。
七年级下册数学实数单元测试题第一部分:选择题1.把下列有理数从小到大排列,得到:A. -15, -8, -5, -3, 0, 1, 7B. -15, -8, -5, -3, 0, 1, 7C. -15, -8, -5, -3, 0, 1, 7D. -15, -8, -5, -3, 0, 1, 72.下列数中是无理数的是:A. 3.14B. 1/3C. √2D. 0.93.下列数中,不能表示为有限小数和循环小数的数是:A. 1/2B. 1/3C. 1/4D. 1/54.(-5) × (-2)的结果是:A. 10B. -10C. 5D. -55.下列数中是有理数的是:A. √3B. -6/7C. 0.375D. 0.68第二部分:填空题6.下列有理数中,是整数的有()。
7.下列数中是无理数的是()。
8.8/9 的小数表示是()。
9.已知 x = -3,若 2x + 5y = 11 ,则 y 的值是()。
10.下列数是正数的有()。
第三部分:解答题11.请你给出一个无理数的例子,并解释什么是无理数。
12.定义一个数a = 3√2 + 2√3,将 a 化简为最简形式。
13.解方程 3x + 7 = -2x + 12。
14.求下列各题的解:a)-5 + x = -2b)2x + 3 = 9c)4x - 7 = 5 + 3x15.将 0.712 扩展成无限小数,并表示为一个循环小数。
第四部分:应用题16.某汽车行驶了 375 公里,油箱容量为 50 升。
问汽车百公里的油耗是多少升?17.小明家买了一张长方形的地板,长 6.8 米,宽 4.5 米,地板的面积是多少平方米?18.假设可以用 32 个砖块铺一条路,每块砖的长度是 0.6 米,路的总长度是多少米?19.某电子设备从全额电池开始工作,每小时消耗电量为 5%。
问经过3.5 小时后,电池剩余的电量是多少?20.一台机器一分钟可以生产 600 个零件,需要生产 5000 个零件,需要多少分钟?以上是七年级下册数学实数单元的测试题,包含选择题、填空题、解答题和应用题。
实数单元测试题(1)
1.()2
6-的算术平方根是__________. 2.ππ-+-43= _____________.
3.2的平方根是__________.
4.实数a ,b ,c 在数轴上的对应点如图所示 化简c b c b a a ---++2=________________.
5.若m.n 互为相反数,则n m +-5=_________.
6.若2)2(1-+-n m =0,则m =________,n =_________.
7.若 a a -=2,则a______0. 8.12-的相反数是_________. 9. 38-=________,38-=_________.
10.绝对值小于π的整数有__________________________.
一、 选择题:(本题共10小题,每小题3分,共30分)
11.代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( ).
A.1个
B.2个
C.3个
D.4个
12.若73-x 有意义,则x 的取值范围是( ).
A.x >37-
B.x ≥ 3
7- C.x >37 D.x ≥37 13.若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( ). A.0 B.
2
1 C.
2 D.不能确定 14.下列说法中,错误的是( ). A.4的算术平方根是2 B.81的平方根是±3
C.8的立方根是±2 D.立方根等于-1的实数是-1
15. 64的立方根是( ).
A.±4
B.4
C.-4
D.16
16.已知04)3(2=-+-b a ,则b
a 3的值是( ). A. 41 B.- 41 C.4
33 D.43
17.计算33841627-+-+的值是( ).
A.1
B.±1
C.2
D.7
18.有一个数的相反数.平方根.立方根都等于它本身,这个数是( ).
A.-1
B.1
C.0
D.±1
19.下列命题中,正确的是( ).
A.无理数包括正无理数.0和负无理数
B.无理数不是实数
C.无理数是带根号的数
D.无理数是无限不循环小数
20.下列命题中,正确的是( ).
A.两个无理数的和是无理数
B.两个无理数的积是实数
C.无理数是开方开不尽的数
D.两个有理数的商有可能是无理数
三.解答题:(本题共6小题,每小题5分,共30分)
21.求9
72的平方根和算术平方根. 22.计算252826-+的值.23.解方程x 3-8=0.
24.若0)13(12=-++-y x x ,求25y x +的值.
25.计算)515(5-
26.若13223+-+-=x x y ,求3x +y 的值.
四.综合应用:(本题共10小题,每小题2分,共20分)
27.若a.b.c 满足01)5(32=-+++-c b a ,求代数式a
c b -的值.
28.已知052522=-++-x x x y ,求7(x +y )-20的立方根.。