随机过程复习题答案
- 格式:doc
- 大小:4.14 MB
- 文档页数:39
1、随机过程()0,≥+=t Bt A t X ,其中A 和B 是独立随机变量,分别服从正态分布()1,0N 。
求()t X 的一维和二维分布。
答案:一维分布为 ()21,0t N +二维分布是数学期望矢量为()τ0,0,协方差阵为⎥⎦⎤⎢⎣⎡++++222121211111t t t t t t 的二维正态分布2、设随机过程)(t X 只有两条样本曲线t a w t X cos ),(1=t a t a w t X cos )cos(),(2-=+=π, +∞<<∞-t其中常数 0>a ,且 32)(1=w P ,31)(2=w P 。
试求)(t X 的一维分布函数)0(;x F ,)4(π;x F 和二维分布函数)4,0,(21π;x x F 。
答案:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤--<=a x a x a a x x F 22,12222,3122,0)4(π;⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥<≤-<≤--≥-<-<=⎪⎭⎫ ⎝⎛ax a x ax a x a a x a a x ax a x x x F 22122,2222312204,0;,2121212121和当和和当或当π3、设一随机过程 X (t )=A cos(wt +Ф), t ∈R ,其中A 和w 都是常数,Ф~U [-π,π]。
试求:(1) X (t )的一维分布;(2) X (t )的数字特征。
答案:(1)一维概率密度为Rt At x A t x A t x f t X ∈⎪⎩⎪⎨⎧<<--=,,0)(,)(1))((22)(其它π(2)R t t m X ∈=0)(Rt s s t w At s C X ∈-==,)(cos 2),(2Rt At t C t D X X ∈==2),()(24、设随机过程)(t X 与)(t Y ,T t ∈不相关,试用它们的均值函数与协方差函数来表示随机过程)()()()()()(t c t Y t b t X t a t Z ++=,T t ∈的均值函数和自协方差函数,其中)(t a 、)(t b 和)(t c 是普通的函数。
随机过程复习题2的答案1. 定义:随机过程是定义在概率空间上的随机变量序列,这些随机变量随时间或空间的变化而变化。
2. 分类:- 离散时间随机过程:随机变量序列的索引是离散的,例如整数序列。
- 连续时间随机过程:随机变量序列的索引是连续的,例如时间序列。
3. 基本特征:- 概率分布:描述随机过程在任意时刻的状态分布。
- 联合分布:描述随机过程在多个时刻的状态分布。
4. 重要随机过程:- 泊松过程:描述在固定时间或空间内随机事件发生的次数。
- 布朗运动(Wiener过程):连续时间随机过程,具有独立增量和正态分布的增量。
5. 随机过程的数学描述:- 随机变量函数:每个时刻的随机变量可以看作是时间的函数。
- 样本路径:随机过程在特定样本空间中的实现。
6. 随机过程的性质:- 平稳性:如果随机过程的统计特性不随时间变化,则称其为平稳的。
- 遍历性:如果随机过程在足够长的时间后,其统计特性与初始状态无关,则称其具有遍历性。
7. 随机过程的应用:- 信号处理:分析和处理信号中的随机成分。
- 金融数学:模拟股票价格的变动。
8. 随机过程的数学工具:- 期望:随机过程在某一时刻的期望值。
- 方差:随机过程在某一时刻的方差,衡量其波动大小。
- 协方差和相关系数:描述不同时刻随机变量之间的关系。
9. 随机过程的极限定理:- 大数定律:随着时间的增长,随机过程的样本均值趋于其期望值。
- 中心极限定理:在一定条件下,随机过程的和趋于正态分布。
10. 随机过程的模拟:- 使用计算机模拟随机过程,例如通过生成随机数来模拟泊松过程或布朗运动。
结束语:随机过程是理解现实世界中不确定性现象的重要工具。
通过对随机过程的学习,我们能够更好地分析和预测各种随机现象,为科学研究和工程实践提供理论支持。
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 Γ 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 (n)n P P = 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑ 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
1.为it(e-1)e λ。
2. 1(sin(t+1)-sin t)2ωω。
3. 1λ4. Γ 5. 212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。
6.(n)nP P =。
随机过程试题与答案《随机过程》试题一、简答题(每小题4分,共16分) 1、φX t =E e jtX2、acos ωt +π3 ,acos ωt ?π4 . (任意两条即可)3、N t 为参数λ的poison 过程,{X n }是独立同分布的随机变量序列,且与N t相互独立,则称Y t = X n N tn=1为复合poison 过程。
4、二重积分 R X s,t dsdt ba b a 存在且有限。
二、(本题10分)解:(1)P N 12 ?N 8 =0 =e ?12. (5分)(2)f T t =3e ?3t t >00t ≤0(10分)三、(本题12分)解:(1){0,3}是正常返的闭集,{1,4}是正常返的闭集,{2}是非常返的。
(4分)(2)对于{0,3}和{1,4}的转移概率矩阵分别为P 1= 0.60.40.40.6 ,P 2= 0.60.40.20.8 (6分)记z 1 =(z 1 1,z 2 1),z 2 =(z 1 2,z 2 2),求解方程组z 1 =z 1 P 1, z 1 1 +z 2 1=1z 2 =z 2 P 2, z 1 2 +z 2 2=1得z 1 = 12,12 , z 2 = 13,23 。
则平稳分布为(10分)π= λ1,λ2,0,λ1,2λ2(12分)四、(本题13分)解:(1)Q = ?λλμ?(λ+μ) 0 0λ 00 μ0 0 ?(λ+μ)λμ?μ (4分)前进方程dP(t)dt =P(t)Q (6分)后退方程dP(t)dt=QP(t) (8分)(2)由πQ =0,π=1, π=(π0,π1,π2,π3) 解得平稳分布为π0=1?λμ1? λμ4,π1=λμ 1?λμ1? λμ4,π2=λμ2 1?λμ1? λμ4,π3=λμ3 1?λμ1? λμ4(13分) 五、(本题13分)解:(1)对任意的t 1,t 2,?,t n ∈R ,Z t 1 Z t 2 ?Z t n = t 12t 22?t n2 2t 12t 2?2t n X Y + ?2?2?2?2因X,Y 是相互独立的正态分布,所以 XY 是正态分布,又线性变换的性质可知Z t 1 ,Z t 2 ,?,Z t n T 服从多元正态分布,故Z t 是正态过程。
随机过程复习题答案
1. 随机过程的定义是什么?
答:随机过程是一组随机变量的集合,这些随机变量是时间或空间的函数,用来描述系统随时间或空间的演变。
2. 什么是马尔可夫链?
答:马尔可夫链是一种随机过程,其中未来状态的概率分布仅依赖于当前状态,而与之前的状态无关。
3. 描述随机游走的特点。
答:随机游走是一种马尔可夫过程,其中每一步移动到相邻状态的概率是固定的,并且每一步都是独立的。
4. 什么是平稳过程?
答:平稳过程是指其统计特性不随时间变化的过程,即过程的均值、方差和自相关函数不随时间变化。
5. 如何定义一个过程的遍历性质?
答:一个过程的遍历性质是指该过程的样本函数的统计特性与该过程的总体统计特性相一致。
6. 什么是鞅?
答:鞅是一种随机过程,其中给定当前和过去信息,未来某个时间点的期望值等于当前的值。
7. 描述泊松过程的基本性质。
答:泊松过程是一种计数过程,具有独立增量、平稳增量和泊松分布的到达时间间隔等基本性质。
8. 什么是布朗运动?
答:布朗运动是一种连续时间随机过程,其增量服从正态分布,且具有独立性和平稳性。
9. 如何确定一个过程是否是高斯过程?
答:如果一个过程的所有有限维分布都是多元正态分布,则该过程是高斯过程。
10. 什么是随机过程的谱分析?
答:随机过程的谱分析是研究过程功率谱密度的方法,它描述了过程在不同频率上的功率分布。
随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。
答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。
2. 解释什么是泊松过程,并给出其主要特征。
答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。
其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。
三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。
计算在时间间隔[0, t]内恰好发生n次事件的概率。
答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。
答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。
F(0,x)8P{X(0)Vx} ‘031x<0;< .r < 1;M>4分P{i l0<5} = P{N(5) >10} =工it=10 e 心(12.5)*k\=i-Ek=0e"5(12.5)*V.®0.79857 (5)随机过程参考答案及评分标准一、填空(每空5分)1.才儿匚 + 2min(/] ,0)2.Vr n eT,limEIX(0-X(r n)l2 = 0 或limE I X(x + /i)-X(x) l2 = 0■ t^>t…"TO3.5at74.—24'o r二、解:(1).心0时,X(0)~ I 25 3 J(2). m * (/) = EX (/) = 1 x * + sin / x * + cos / x * = * (1 + sin / + cos t).R x (?, ,t2) = EX(/J • EX (切=1 x P { W]} + sin £ sin t2P {w2} + cos £ cos t2P {w3} = -{l + COS(r i _?2)} .......................................................................................................................Cx(t\ ,t2) = Rx(t\) —EX (G • X 律)=Rx(t[,G)-m.Y(?1)m A-(?2)= — +—008(^ -Z2)- —(sin t x +cos/] + cos t2 + sinr2)- — sinZ2(cos+sin/J.................................................................................................. 3分二、解:N⑴为何到达的顾客数,贝U N(f)~P(2.5)—2.5x5 /r\斥10 1(1)-列“⑸=吩爲诂严•(12®。
随机过程复习题二及其答案一、选择题1. 随机过程的定义是什么?A. 一系列随机变量的集合B. 一系列确定变量的集合C. 一个随机变量D. 一个确定变量2. 什么是马尔可夫链?A. 一个具有时间序列的随机过程B. 一个具有空间序列的随机过程C. 一个具有独立同分布的随机过程D. 一个具有时间依赖性的随机过程3. 随机过程的期望值定义为:A. \( E[X(t)] \)B. \( E[X] \)C. \( \int_{-\infty}^{\infty} x f(x,t) \, dx \)D. \( \sum_{i=1}^{\infty} x_i p_i \)4. 以下哪个不是随机过程的属性?A. 期望B. 方差C. 协方差D. 导数5. 什么是平稳随机过程?A. 随机过程的期望随时间变化B. 随机过程的方差随时间变化C. 随机过程的统计特性不随时间变化D. 随机过程的协方差随时间变化答案:1. A2. A3. A4. D5. C二、简答题1. 解释什么是遍历定理,并给出其在随机过程分析中的应用。
2. 描述什么是泊松过程,并解释其主要特点。
3. 简述什么是布朗运动,并解释其在金融领域中的应用。
三、计算题1. 给定一个随机过程 \( X(t) \),其期望 \( E[X(t)] = t \),方差 \( Var[X(t)] = t^2 \),计算 \( E[X^2(t)] \)。
2. 假设一个马尔可夫链 \( \{X_n\} \) 有状态空间 \( S = \{1, 2, 3\} \),转移概率矩阵 \( P \) 为:\[P = \begin{bmatrix}0.1 & 0.8 & 0.1 \\0.5 & 0.3 & 0.2 \\0.2 & 0.6 & 0.2\end{bmatrix}\]计算状态 1 在第 3 步的概率。
四、论述题1. 论述随机过程在信号处理中的应用,并举例说明。
随机过程试题及答案一、选择题1. 关于随机过程的描述,错误的是:A. 随机过程是一种由随机变量组成的集合B. 随机过程是一种在时间上有序排列的随机变量序列C. 随机过程可以是离散的,也可以是连续的D. 随机过程是一种确定性的数学模型答案:D2. 以下哪种过程不是随机过程?A. 白噪声过程B. 马尔可夫过程C. 布朗运动D. 正态分布答案:D3. 随机过程的一阶矩描述的是:A. 均值B. 方差C. 偏度D. 峰度答案:A4. 当随机过程的各个时间点上的随机变量是独立同分布时,该随机过程为:A. 马尔可夫过程B. 马尔可夫链C. 平稳随机过程D. 白噪声过程答案:B5. 下列关于马尔可夫过程的说法中,正确的是:A. 当前状态只与上一状态有关,与历史状态无关B. 当前状态只与历史状态有关,与上一状态无关C. 当前状态只与上一状态和历史状态有关D. 当前状态与所有历史状态均无关答案:A二、填空题1. 随机过程中,时域函数常用的表示方法是__________。
答案:概率分布函数或概率密度函数2. 马尔可夫过程的状态转移概率只与__________相关。
答案:当前状态和下一状态3. 随机过程的时间参数称为__________。
答案:时刻或时间点4. 白噪声过程的自相关函数是一个__________函数。
答案:冲激函数5. 平稳随机过程的自相关函数只与__________相关。
答案:时间差三、解答题1. 请简要解释随机过程的概念。
随机过程是一种由随机变量组成的集合,表示一个在时间上有序排列的随机变量序列。
它可以是离散的,也可以是连续的。
随机过程的描述通常包括概率分布函数或概率密度函数,以及相关的统计特征,如均值、方差等。
随机过程可以用于对随机现象进行建模和分析。
2. 请简要说明马尔可夫过程的特点及应用。
马尔可夫过程是一种具有马尔可夫性质的随机过程,即当前状态只与上一状态有关,与历史状态无关。
其状态转移概率只与当前状态和下一状态相关。
随机过程习题解答(一)第一讲作业:1、设随机向量的两个分量相互独立,且均服从标准正态分布。
(a)分别写出随机变量和的分布密度(b)试问:与是否独立?说明理由。
解:(a)(b)由于:因此是服从正态分布的二维随机向量,其协方差矩阵为:因此与独立。
2、设和为独立的随机变量,期望和方差分别为和。
(a)试求和的相关系数;(b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。
解:(a)利用的独立性,由计算有:(b)当的时候,和线性相关,即3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为,且是一个周期为T的函数,即,试求方差函数。
解:由定义,有:4、考察两个谐波随机信号和,其中:式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。
(a)求的均值、方差和相关函数;(b)若与独立,求与Y的互相关函数。
解:(a)(b)第二讲作业:P33/2.解:其中为整数,为脉宽从而有一维分布密度:P33/3.解:由周期性及三角关系,有:反函数,因此有一维分布:P35/4. 解:(1) 其中由题意可知,的联合概率密度为:利用变换:,及雅克比行列式:我们有的联合分布密度为:因此有:且V和相互独立独立。
(2)典型样本函数是一条正弦曲线。
(3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且所以。
(4)由于:所以因此当时,当时,由(1)中的结论,有:P36/7.证明:(1)(2) 由协方差函数的定义,有:P37/10. 解:(1)(2)当i=j 时;否则令,则有第三讲作业:P111/7.解:(1)是齐次马氏链。
经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。
(2)由题意,我们有一步转移矩阵:P111/8.解:(1)由马氏链的马氏性,我们有:(2)由齐次马氏链的性质,有:,因此:P112/9.解:(1)(2)由(1)的结论,当为偶数时,递推可得:;计算有:,递推得到,因此有:P112/11.解:矩阵的特征多项式为:由此可得特征值为:,及特征向量:,令矩阵则有:因此有:P112/12.解:设一次观察今天及前两天的天气状况,将连续三天的天气状况定义为马氏链的状态,则此问题就是一个马氏链,它有8个状态。
记每天天晴为0,下雨为1,则此链的状态可以由三位二进制数表示。
如三天晴为000,为状态0;第一天晴,第二天晴,第三天雨为001,为状态1;第一天晴,第二天雨,第三天晴为010,为状态2;第一天晴,后两天阴为011,为状态3,等等。
根据题目条件,得到一步转移矩阵如下:P113/13.解:画出状态转移图,有:P113/14. 解:画出状态转移图,有:P113/16.解:画出状态转移图,有:(1)由于三个状态都是相通的,所以三个状态都是常返态。
(3)状态3、4无法和其他状态相通,组成一个闭集,且,所以状态3、4为常返态;另外状态0、2相通组成一个闭集,且,故状态0、2是常返态;因为,故,所以状态1为非常返态。
(4)0、1相通作成一闭集,且,故0、1为常返态;又,因此,故2为常返态;,故3、4为非常返态。
第六讲作业:P115/17.解:(1)一步转移矩阵为:(2)当时,由计算可得,因此可由以下方程组计算极限分布:解得极限分布即可。
P115/18.解:由第七题的结果,计算可得:,因此可计算极限分布如下:解以上方程,得极限分布:P115/19.解:见课上讲稿。
P116/21.解:记,则有:(1)因为:(A)当时,有:由(A)可得:当且时,有:由(A)可得:当且时,有:由(A)可得:另外:下列等式是明显的因此我们有:即{是一齐次马氏链。
一步转移矩阵为:(2)画出转移矩阵图,可得:由:及,并且取,由递归可得:(3)由于:因此,零状态是正常返的,由相通性,故所有状态都是正常返的,即此马氏链是不可约的。
(4)由马氏链的无后效性,可知此时的T 就是零状态到零状态的首达时间。
因此我们有:随机过程习题解答(二)P228/1。
证明:由于t s <,有{}{}{}{}{}n t N P k n s t N P k s N P n t N P n t N k s N P n t N k s N P =-=-⋅=========)(})({)()()(,)()(/)(其中{})()!())((!)(})({)(s t k n s k e k n s t e k s k n s t N P k s N P ------⋅=-=-⋅=λλλλ{}tn e n t n t N P λλ-==!)()(所以{}kn k k n k n k k tn s t k n s k k s k s k n k n k n ts t t s e n t e k n s t e k s n t N k s N P --------⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=--=--⋅===1)!(!!)(!)()!())((!)()(/)()(λλλλλλ 证毕。
P229/3. 解:(1)因为}0),({≥t t N 是一Poission 过程,由母函数的定义,有:()()()()()())()(})({})({})({})({})({})({})({})({})({})({})({)()()(00000000)(s s s j t N P sl t N P s l k t N P sl t N P s l k t N P s l t N P s l k t N P s l t N P s l k t N P l t N P s k t N P s t N t N j jl ll k lk l ll lk l k l k kl l k l k k k l k kt t N ∆∞=∞=∞=-∞=∞=∞=-∞==-∞==∞=∆+ψ⋅ψ=⋅=∆⋅==⋅-=∆⋅==⎥⎦⎤⎢⎣⎡⋅-=∆⋅⋅==⎥⎦⎤⎢⎣⎡⋅-=∆⋅⋅==⋅⎥⎦⎤⎢⎣⎡-=∆⋅==⋅==ψ∑∑∑∑∑∑∑∑∑∑∑ (2)有上面(1)的结果,可得:ts s t s s s ts s ts t N t t N t N t N t N t t N t t N t t N ∆-ψ⋅ψ=∆ψ-ψ⋅ψ=∆ψ-ψ=∂ψ∂∆→∆∆→∆∆+→∆1)()()()()()()(ˆ)()(0)()()()(0)()(0)(limlimlim(3)当t ∆充分小时,由于:[][]∑∑∞=∞=∆⋅∆+⋅∆+∆+⋅∆+∆-=⋅=∆=ψ2100)()()()(1})({)(k kk kt N s t s t t s t t s s t N P s οολολ因此,当1<s 时,有:)1()()(1)(20)(0lim lim-=⋅∆∆+∆∆+∆+∆-=∆-ψ∑∞=→∆∆→∆s s tt t t s t t ts kk t t N t λοολλ由(2)的结果,我们有:)()1()()()(s s ts t N t N ψ-=∂ψ∂λP229/4. 解:(1)由上面3题的结果(3),我们有:t s t N N t N t N e s s s s t s )1()()0()()()(1)()()1()(-=ψ⇒⎪⎩⎪⎨⎧=ψψ-=∂ψ∂λλ (2)由于)()(s t N ψ是随机过程)(t N 的母函数,且t s t N e s )1()()(-=ψλ,将函数t s e )1(-λ关于)1(<s s 展开成级数形式,我们可得:∑∞=--⋅⋅==ψ0)1()(!)()(k kt k ts t N s e k t es λλλ由母函数与分布函数的唯一性定理,可得:Λ2,1,0,!)(})({=⋅==-k e k t k t N P tk λλP230/8. 解:由特征函数的定义,我们有:{}{}[]{}{}()nY u i n tn Y Y Y u i n tn t X u i n t X u i t X e E e n t e E e n t n t N e E n t N P e E u n 1210)(0)()(!)(!)()(})({)(⋅⋅=⋅⋅==⋅===Φ∑∑∑∞=-++∞=-∞=λλλλΛ令{})(11u e E Y Y u i φ=,则有:[]{}1)(exp !))(()(110)(-=⋅=Φ∑∞=-u t e n u t u Y n t nY t X φλφλλ (*)若),2,1(Λ=n Y n 的概率分布为:212211}1{,}1{λλλλλλ+=-=+==n n Y P Y P则{}u i u i Y u i Y e e e E u nn-⋅++⋅+==212211)(λλλλλλφ (**)将(**)代入(*),我们有:{}te t e t e e t u u i u i ui u i t X )(exp 1)(exp )(212121221121)(λλλλλλλλλλλλ+-+=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-⋅++⋅++=Φ--P230/7. 解:先求}0),({0≥t t N 的特征函数:{}{}{}{}{}{}{}t et e t e e t e e t e m e t e n e t ee m t e e n t eE eE e E e E u ui u i tu i t u i m tmu i n t nu i mu i m t m n u i n t n t N u i t N u i t N t N u i t N u i t N )(exp exp exp !)(!)(!)(!)()(2121)(210)(201)(0201)()()())()(()()(212121212100λλλλλλλλλλλλλλλλ+-+=⋅⋅⋅=⋅⋅⋅=⋅⋅⋅⋅⋅=⋅===Φ----∞=--∞=--∞=-∞=---∑∑∑∑由上面8题的结果,根据特征函数与分布函数的唯一性定理,可知}0),({0≥t t N 是复合Poission 过程。
P231/10. 解:由于{}{}{}n t X t X t X P n t X t X t X j t X k t X P n t X t X t X j t X k t X P =++=++=====++==)()()()()()(,)(,)()()()()(,)(3213212132121因为)(t X i 的母函数为:{}t s s i t N )1(ex p )()(-=ψλ,由独立性,可知)()()(321t X t X t X ++的母函数为:()(){}∏=-++=ψ=ψ31321)()(1ex p )()(i t Xt X t s s s λλλ,所以)()()()(321t X t X t X t X ++=是参数为321λλλ++的泊松过程,即{}()()()tn en t n t X t X t X P 321!)()()(321321λλλλλλ++-++==++因此我们有:{}()()()()()()njk n j k tn tkj n t jt kj k n j k n en t ek j n t e j t e k t n t X t X t X j t X k t X P )()!(!!!!)!(!!)()()()(,)(32132132111132121321321λλλλλλλλλλλλλλλλλλ++⋅--=++--⋅⋅===++==--++------P231/12. 解:(1)由{}())(}1)({1})({}1)(,1)({}0)(,)({)(t o t P k t X P t P k t X P t X k t X P t X k t X P k t t X P r r ∆+∆-=+∆-==+=∆-=+=∆====∆+λλΛ 令0→∆t ,有)()()(1t P P t P P dtt dP k r k r k -=+λλ 解得{}tP k r r e k t P k t X P λλ-==!)()((2)由(1)知,)(t X 服从参数为r P λ的泊松分布。