华罗庚学校数学课本电子版
- 格式:doc
- 大小:3.78 MB
- 文档页数:174
一年级共37讲第三讲多边形和扇形文档贡献者:与你的缘数一数,下图中每个小图有几条边(线段)?图(1)有三条边是三边形,也叫做三角形;图(2)有四条边,叫做四边形;图(3)有五条边,叫做五边形;图(4)有六条边;叫做六边形。
这四个小图都是多边形。
在多边形中,除三角形外,有几条边就叫做几边形。
三角形有三条边、三个角、三个顶点;四角形有四条边、四个角、四个顶点;数一数,五边形和六边形各有几条边、几个角、几个顶点?其实,几边形就有几条边,几个角,几个顶点。
如果一个多边形的每个边都相等,这个多边形就叫做正多边形。
正多边形非常整齐漂亮,请看下图。
图(1)是正三角形;图(2)是正四边形,也叫做正方形;图(3)是正五边形;图(4)是正六边形。
常见的还有正七边形、正八边形等等。
看看、想想:一个三角形,像下图那样剪去一个角(虚线是剪痕)变成什么图形?它有几个角?剪掉一个角(如上图),变成了四边形,它有四个角。
上图中有三角形,照下图样剪去两个角变成几边形?剪后它有几个角?剪后变成了五边形,它有五个角。
还是这个图,如果再照下图剪去三个角变成几边形?它有几个角?变成了六边形,它有六个角。
在多边形中,我们着重讲四边形。
在四边形中有五种特殊的四边形。
长方形它的特点是对边相等,四个角都是直角。
正方形它的特点是四条边都相等,四个角都是直角。
正方形具有长方形所有特点,因此正方形是特殊的长方形。
平行四边形用四根木条钉成活动的长方形,仿照下图所演示的那样,两手向相反的方向一拉,它变成的形状就是平行四边形。
竹篱笆上、网兜上常出现很多平行四边形。
下面的四边形都是平行四边形:平行四边形的特点是:相对的边不论怎样延长都不会相交。
如同两条笔直的铁轨,它们永远不相交。
两条永远不相交的直线叫做平行线。
平行四边形对边所在直线是平行线。
平行四边形对边平行而且相等。
可以看出,长方形和正方形都是特殊的平行四边形。
菱形四条边都相等的平行四边形叫做菱形。
见下图。
上册华罗庚学校数学课本:三年级下册第一讲速算与巧算(一)第二讲速算与巧算(二)第三讲上楼梯问题第四讲植树与方阵问题第五讲找几何图形的规律第六讲找简单数列的规律第七讲填算式(一)第八讲填算式(二)第九讲数字谜(一)第十讲数字谜(二)第十一讲巧填算符(一)第十二讲巧填算符(二)第十三讲火柴棍游戏(一)第十四讲火柴棍游戏(二)第十五讲综合练习题第一讲从数表中找规律第二讲从哥尼斯堡七桥问题谈起第三讲多笔画及应用问题第四讲最短路线问题第五讲归一问题第六讲平均数问题第七讲和倍问题第八讲差倍问题第九讲和差问题第十讲年龄问题第十一讲鸡兔同笼问题第十二讲盈亏问题第十三讲巧求周长第十四讲从数的二进制谈起第十五讲综合练习上册第一讲速算与巧算(一)一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89 的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1巧算下面各题:①36+87+64 99+136+101③1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。
例2 ①188+873 ②548+996 9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。
中国华罗庚学校数学课本(五年级)中国华罗庚学校数学课本(五年级)一、数的认识1.1 整数的认识1.2 分数的认识1.3 小数的认识二、四则运算2.1 加法2.2 减法2.3 乘法2.4 除法三、数的应用3.1 长度的应用3.2 面积的应用3.3 体积的应用四、几何图形4.1 直线、线段和射线4.2 角的认识4.3 三角形的认识4.4 四边形的认识五、统计与概率5.1 数据的收集和整理5.2 柱状图的绘制及分析5.3 概率的认识学生们在五年级学习数学,主要是对数的认识进行深入学习和四则运算的加强巩固。
同时,学生们开始接触几何图形和统计与概率的内容。
在数的认识方面,学生们将学习到整数、分数和小数的认识。
通过生活中具体的例子,让学生们从感性上理解数的概念,为进一步的学习打下基础。
四则运算是学生们从小学就开始学习的基础内容,而在五年级,学生们将会更深入地了解到加、减、乘、除四种运算方式的知识点,包括逐位相加、进位、借位等算数技巧,同时训练学生进行连续四则运算的能力。
几何图形是学生们初步接触的内容,并包含了直线、线段、射线、角、三角形和四边形等知识点。
学生们将会学会根据给定的条件,确定几何图形的名称和性质。
统计与概率则是让学生们学习到如何收集和整理数据以及如何用柱状图表示数据。
同时,学生们还将学习到概率的知识点,通过生活实例和游戏练习,了解概率的基本概念、计算方法和应用。
总之,五年级数学课程的内容渐次增多,学生们要重视每一个知识点的学习,提高数学思维和应用能力,为将来高中的数学学习打好基础。
华罗庚学校数学课本:三年级上册第一讲速算与巧算(一)第二讲速算与巧算(二)第三讲上楼梯问题第四讲植树与方阵问题第五讲找几何图形的规律第六讲找简单数列的规律第七讲填算式(一)第八讲填算式(二)第九讲数字谜(一)第十讲数字谜(二)第十一讲巧填算符(一)第十二讲巧填算符(二)第十三讲火柴棍游戏(一)第十四讲火柴棍游戏(二)第十五讲综合练习题下册第一讲从数表中找规律第二讲从哥尼斯堡七桥问题谈起第三讲多笔画及应用问题第四讲最短路线问题第五讲归一问题第六讲平均数问题第七讲和倍问题第八讲差倍问题第九讲和差问题第十讲年龄问题第十一讲鸡兔同笼问题第十二讲盈亏问题第十三讲巧求周长第十四讲从数的二进制谈起第十五讲综合练习上册第一讲速算与巧算(一)一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:①36+87+64②99+136+101③1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。
本系列共14 讲第十二讲棋盘中的数学(三)——棋盘对弈的数学问题.文档贡献者:winner_d1975我们看这样一个比输赢的问题.例1 在 8×8 的棋盘格中的某个格子里已放入一枚棋子“王”(如下图),甲、乙两人轮流移动“王”子,每次只能横向或竖向移动一格.凡“王”子已经占据过的格都不得再进入.谁先遇到无法移动“王”子时,谁就算输方.试证明,先走者存在必胜的策略.分析“王”子已占一个格,还剩下 8×8-1=63 个格,比如甲先走一个格,还剩下62 个格.若能将62 个格分成31 对,每对都是相邻的两小格,这时该乙走,乙领先进入一格,甲就随之进入与其配对的格,这样就造成了甲必取胜的态势.因此,将64 个格两两配对成为32 个1×2 的小矩形是解决本题的关键.证明:设甲为先走的一方,在甲的心目中如上图将 64 个方格两两配对分成32 个1×2 的小矩形,“王”子必在某个1×2 的小矩形的一个格子中.甲先走,将“王”子走入这个1×2 的小矩形的另一个格子中.这时还有31 个1×2 的小矩形,每个小矩形中都有两个小方格.这时该乙走,乙总是领先进入某个1×2 小矩形的第一个格,甲就可以随之进入这个小矩形的第二个格.由于不能重复进入“王”已经进过的格子,所以乙总处于领先进入新的小矩形的第一格的地位,甲就总可随之进入这个小矩形的第二个格.最后必然乙先无法移动“王”子,乙输.甲必取胜.例2 下图是一盘未下完的中国象棋残局,各子走法必须按中国象棋的规则办事,将对方憋死或无法走子时算取得胜利.如果轮到乙方走,问乙怎样走法才能取胜?分析这是中国象棋残局,当然各子的走法必须按中国象棋的规则办事,将对方憋死(无法走子时)算取得胜利。
在上图中,双方的将(帅)均无法移动,双方的士(仕)也无法移动,底炮也不能在横线上移动(否则对方可将炮沉底打闷将).底线兵(卒)只能横向移动.谁先移动底线兵(卒)打将,会造成对方将(帅)移出,从而出现移兵(卒)方自己必输的态势.因而只有底炮、中炮和边卒(兵)可以在纵线上移动,兵(卒)只能前移1 步,中炮只能前移 4 步,底炮只能前移8 步.现在的问题是:乙先走,轮流走完这三对子的13 步,问乙怎样走才能取胜?解:我们把乙的获胜策略及甲的各种走法列表于下(其中“甲1,乙1”分别表示“甲第一步走棋”与“乙第二步走棋”,其余类同;“中炮2,相炮3,卒1”分别表示“中路炮进2 步”,“相位炮进 3 步”和“卒进1 步”.其余类同;“结果”栏表明乙1,甲1,乙1 之后的态势,其中的“距”以步为单位):其中,情形⑦~⑩显然为乙胜.情形①,②中,如甲 2 进炮几步,则乙 3 就将另一路炮进同样步数,…,这样,终将乙胜.情形③,④与⑤,⑥是类似的.以③为例,甲的各种走法及乙的策略见下表:显然,各种情形中也是乙胜.注意,若甲某次退炮几步,则乙接着将同一路炮进相同步数(这样,这两只炮之间的间隔没有改变).说明:本题的深刻道理和规律在于自然数的二进制表示,将1 步,4 步,8 步分别用二进制表示为1,100,1000.当乙从8 步中走了3 步后,变为还有5 步即1,100,101.我们把这三个数写成竖式11 0 01 0 1 容易看出每一个数位上的数字之和都是偶数.(这里均勿进位).无论甲怎样走,所走的那一行的步数(用二进制表示)至少有一个数位上的数字发生了变化,从而破坏了上面的规律,即不是每一个数位上的数字之和都是偶数了,比如说,甲在中路炮进一步,三路的步数变为:11 11 0 1这时三个数位上的数字之和1+1+1,1+0,1 都不是偶数.乙再接着走,他的办法是恢复上面的规律.这是能办到的.首先,他看一下数字和不是偶数的最高数位,三路步数二进制表示中至少有一路在这数位上的数字是 1,然后,他就在这一路上走若干步,使得上述数位上的数字和为0,而较低数位上的数字为1 或0 以保证这些数位上的数字之和为偶数,其它数位上的数字不变.比如,对于上面的情形,乙应当在“相”位炮所在的路线上走3 步,将三路步数变为:11 11 0这样继续下去,步数逐渐减少,必有结束的时候,由于甲走后,不是每个数位上的数字之和都是偶数,所以甲不可能走到最后一步.走最后一步的是乙,所以乙必然取胜.例3 如下图是一个9×9 棋盘,它有81 个小正方形的格子,在右上角顶的格子里标有“▲”的符号代表山顶.A、B 两人这样来游戏:由 A 把一位“皇后”(以一枚棋子代表)放在棋盘的最下面一行或最左边一列的某个格子里(即放在右图中阴影区域的一个格子里),然后由B 开始,两人对奕:“皇后”只能向上,向右或向右上方斜着走,每次走的格数不限,但不得倒退,也不得停步不前;谁把“皇后”走进标有“▲”的那格就得胜.显然,双方对弈下去决不会出现“和棋”,在有限个回合后,必有一胜一负,试分析B 必取胜的策略.这个游戏我们不妨称之为“皇后登山”问题.分析我们采用倒推分析的方法.如果 A 把皇后走进下图中带阴影的格子,则B 就可一步把皇后走到山顶而获胜.因此任何一方都应该避免把皇后走进右图中的阴影地区,而都应该迫使对方不得不把皇后走至带阴影的格子里去,这是取胜的总的指导思想.那么B 应把皇后走到哪些格子中才能迫使对方不得不把皇后走进上图中带阴影的格子里去呢?从上图中可看出,这样的格子只有两个:有标号①和②的格子.由此可知,如果谁抢占了①或②,只要走法不再失误,就必会得胜.因此,我们形象地称①、②两格为“制高点”。
华罗庚学校数学课本(五年级·修订版)上册第一讲数的整除问题数的整除问题,内容丰富,思维技巧性强。
它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。
一、基本概念和知识1.整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。
记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作b a。
如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。
例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。
2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。
即:如果c|a,c|b,那么c|(a±b)。
例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。
性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。
性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。
即:如果b|a,c|a,且(b,c)=1,那么bc|a。
例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。
性质4:如果c能整除b,b能整除a,那么c能整除a。
即:如果c|b,b|a,那么c|a。
例如:如果3|9,9|27,那么3|27。
3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。
②能被5整除的数的特征:个位是0或5。
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
华罗庚学校数学课本电子版第一讲认识图形〔一〕1.这叫什么?这叫“点”。
用笔在纸上画一个点,可以画大些,也可以画小些。
点在纸上占一个位置。
2.这叫什么?这叫“线段”。
沿着直尺把两点用笔连起来,就能画出一条线段。
线段有两个端点。
3.这叫什么?这叫“射线”。
从一点出发,沿着直尺画出去,就能画出一条射线。
射线有一个端点,另一边延伸得很远很远,没有尽头。
4.这叫什么?这叫“直线”。
沿着直尺用笔可以画出直线。
直线没有端点,可以向两边无限延伸。
5.这两条直线相交。
两条直线相交,只有一个交点。
6.这两条直线平行。
两条直线互相平行,没有交点,无论延伸多远都不相交。
7.这叫什么?这叫“角”。
角是由从一点引出的两条射线构成的。
这点叫角的顶点,射线叫角的边。
角分锐角、直角和钝角三种。
直角的两边互相垂直,三角板有一个角就是这样的直角。
教室里天花板上的角都是直角。
锐角比直角小,钝角比直角大。
习题一1.点〔1〕看,这些点排列得多好!〔2〕看,这个带箭头的线上画了点。
2.线段以下图中的线段表示小棍,看小棍的摆法多有趣!〔1〕一根小棍。
可以横着摆,也可以竖着摆。
〔2〕两根小棍。
可以都横着摆,也可以都竖着摆,还可以一横一竖摆。
〔3〕三根小棍。
可以像下面这样摆。
3.两条直线哪两条直线相交?哪两条直线垂直?哪两条直线平行?4.你能在自己的周围发现这样的角吗?第二讲认识图形〔二〕一、认识三角形1.这叫“三角形”。
三角形有三条边,三个角,三个顶点。
2.这叫“直角三角形”。
直角三角形是一种特殊的三角形,它有一个角是直角。
它的三条边中有两条叫直角边,一条叫斜边。
3.这叫“等腰三角形”。
它也是一种特殊的三角形,它有两条边一样长〔相等〕,相等的两条边叫“腰”,另外的一条边叫“底”。
4.这叫“等腰直角三角形”或叫“直角等腰三角形”。
它既是直角三角形,又是等腰三角形。
5.这叫“等边三角形”。
它的三条边一样长〔相等〕,三个角也一样大〔相等〕。
二、认识四边形1.这叫“四边形”。
第一讲工程问题工程问题是应用题中的一种类型.在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量).这三个量之间有下述一些关系式:工作效率×工作时间=工作总量,工作总量÷工作时间=工作效率,工作总量÷工作效率=工作时间.为叙述方便,把这三个量简称工量、工时和工效.例1 一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?答:甲、乙、丙三队合作需10天完成.说明:我们通常把工量“一项工程”看成一个单位.这样,工效就用工例2 师徒二人合作生产一批零件,6天可以完成任务.师傅先做5天批零件各需几天?工效和.要求每人单独做各需几天,首先要求出各自的工效,关键在于把师傅先做5天,接着徒弟做3天转化为师徒二人合作3天,师傅再做2天.答:如果单独做,师傅需10天,徒弟需15天.例3 一项工程,甲单独完成需12天,乙单独完成需9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?分析解答工程问题时,除了用一般的算术方法解答外,还可以根据题目的条件,找到等量关系,列方程解题。
解:设甲做了x天.那么,两边同乘36,得到:3x+40-4x=36,x=4.答:甲做了4天.例4 一件工作甲先做6小时,乙接着做12小时可以完成.甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?分析设一件工作为单位“1”.甲做6小时,乙再做12小时完成或者甲先做8小时,乙再做6小时都可完成,用图表示它们的关系如下:由图不难看出甲2小时工作量=乙6小时工作量,∴甲1小时工作量=乙3小时工作量.可用代换方法求解问题.解:若由乙单独做共需几小时:6×3+12=30(小时).若由甲单独做需几小时:8+6÷3=10(小时).甲先做3小时后乙接着做还需几小时:(10-3)× 3=21(小时).答:乙还需21小时完成.例5 筑路队预计30天修一条公路.先由18人修12天只完成全部工程之几(即一人的工效).解:①1人1天完成全部工程的几分之几(即一人的工效):②剩余工作量若要提前6天完成共需多少人:=36(人).③需增加几人:36-18=18(人).答:还要增加18人.例6 蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需5小时.排光一池水,单开排水管需3小时.现在池内有半池水,如果按进水,排水,进水,排水⋯的顺序轮流各开1小时.问:多长时间后水池的水刚好排完?(精确到分钟)分析与解答①在解答“水管注水”问题时,会出现一个进水管,一个出水管的情况.若进水管、出水管同时开放,则积满水的时间=1÷(进水管工效-出水管工效),排空水的时间=1÷(出水管工效-进水管工效).②这道应用题是分析推理与计算相结合的题目.根据已知条件推出水池好排完.一半,最后余下的部分由甲、乙合作,还需要多少时间才能完成?分析这道题是工程问题与分数应用题的复合题.解题时先要分别求出甲、乙工作效率,再把余下的工作量转化为占单位“1”(总工作量)的几分之几?人一起干,完成任务时乙比甲多植树36棵,这批树一共多少棵?分析求这批树一共多少棵,必须找出与36棵所对应的甲、乙工效=4∶3,所以甲与乙的工效比是3∶4.这个间接条件一旦揭示出来,问题就得到解决了.的时间比是4∶3.工作总量一定,工作效率和工作时间成反比例,所以甲与乙的工效比是时间比的反比,为3∶4.例9 加工一批零件,甲、乙合作24天可以完成.现在由甲先做16天,个零件,求这批零件共多少个?分析欲求这批零件共多少个,由题中条件只需知道甲、乙二人每天共做多少个即可,然后这就转化为求甲、乙两人单独做各需多少天,有了这个结论后,只需算出3个零件相当于总数的几分之几即可.由条件知甲做16甲单独做所用天数可求出,那么乙单独做所用天数也就迎刃而解.解:甲、乙合作12天,完成了总工程的几分之几?甲1天能完成全工程的几分之几?乙1天可完成全工程的几分之几?这批零件共多少个?答:这批零件共360个.例10 一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,⋯,两人如此交替工作,问完成任务时,共用了多少小时?分析要求共用多少小时?可以设想把这些小时重新分配:甲做1小时,乙做1小时,它们相当于合作1小时,也即是每2小时,相当于合做1小时.这样先大致算一下一共进行了多少个这样的2小时,余下部分问题就好解决了.解:①若甲、乙两人合作共需多少小时?②甲、乙两人各单独做7小时后,还剩多少?④共用了多少小时?习题一习题一1.一项工程,甲单独做12天可以完成.如果甲单独做3天,余下工作由乙去做,乙再用6天可以做完.问若甲单独做6天,余下工作乙要做几天?2.一条水渠,甲乙两队合挖30天完工.现在合挖12天后,剩下的由乙队挖,又用24天挖完.这条水渠由乙单独挖,需要多少天?3.客车与货车同时从甲、乙两站相对开出,经2小时24分钟相遇,相遇时客车比货车多行9.6千米.已知客车从甲站到乙站行4小时30分钟,求客车与货车的速度各是多少?4.水箱上装有甲、乙两个注水管.单开甲管20分钟可以注满全箱.现满水箱?5.一项工程,甲、乙单独做分别需要18天和27天.如果甲做若干天后,乙接着做,共用20天完成.求甲乙完成工作量之比.7.做一批儿童玩具.甲组单独做10天完成,乙组单独做12天完成,丙组每天可生产64件.如果让甲、乙两组合作4天,则还有256件没完成.现在决定三个组合做这批玩具,需要多少天完成?习题一解答②余下工作乙几天完成?答:余下工作乙要4天完成.答:乙队单独挖需40天完成.=32(千米/小时).答:客车与货车的速度分别为每小时32千米和28千米.答:单开乙管需30分钟注满水箱.5.解:设甲先做x天,乙做(20-x)天.20-x=20-14=6.答:甲乙完成工作量之比是7∶2.②甲乙工作时间比:3∶2,工效比为2∶3.答:单独做甲需18天,乙需12天.7.解法1:①要加工儿童玩具多少件?②丙组单独做需要几天?960÷64=15(天).③甲乙丙三组合作,共需几天?答:三组合作做这批儿童玩具要4天完成.解法2:甲、乙两组合作4天后,所剩没有完成的256件,由丙组完成,需:256÷64=4(天).答:甲、乙、丙三组合作这批儿童玩具要4天完成.第二讲比和比例第二讲比和比例在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关.在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断.成正比或反比的量中都有两种相关联的量.一种量(记作x)变化时另一种量(记作y)也随着变化.与这两个量联系着,有一个不变的量(记为k).在判断变量x与y是否成正、反比例时,我们要紧紧抓住这个不变量k.如成正比例;如果k是y与x的积,即在x变化时,y与x的积不变:xy=k,那么y与x成反比例.如果这两个关系式都不成立,那么y与x不成(正和反)比例.下面我们从最基本的判断两种量是否成比例的例题开始.例1 下列各题中的两种量是否成比例?成什么比例?①速度一定,路程与时间.②路程一定,速度与时间.③路程一定,已走的路程与未走的路程.④总时间一定,要制造的零件总数和制造每个零件所用的时间.⑤总产量一定,亩产量和播种面积.⑥整除情况下被除数一定,除数和商.⑦同时同地,竿高和影长.⑧半径一定,圆心角的度数和扇形面积.⑨两个齿轮啮合转动时转速和齿数.⑩圆的半径和面积.(11)长方体体积一定,底面积和高.第二讲比和比例(12)正方形的边长和它的面积.(13)乘公共汽车的站数和票价.(14)房间面积一定,每块地板砖的面积与用砖的块数.(15)汽车行驶时每公里的耗油量一定,所行驶的距离和耗油总量.分析以上每题都是两种相关联的量,一种量变化,另一种量也随着变化,那么怎样来确定这两种量成哪种比例或不成比例呢?关键是能否把两个两种形式,或只能写出加减法关系,那么这两种量就不成比例.例如①×零件数=总时间,总时间一定,制造每个零件用的时间与要制造的零件总数成反比例.③路程一定,已走的路程和未走的路程是加减法关系,不成比例.解:成正比例的有:①、⑦、⑧、(15)成反比例的有:②、④、⑤、⑥、⑨、(11)、(14)不成比例的有:③、⑩、(12)、(13).例2 一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间之比依次是4∶5∶6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?分析要求此人走完全程用了多少时间,必须根据已知条件先求出此人走上坡路用了多少时间,必须知道走上坡路的速度(题中每小时行3千米)和上坡路的路程,已知全程60千米,又知道上坡、平路、下坡三段路程比是1∶2∶3,就可以求出上坡路的路程.解:上坡路的路程:走上坡路用的时间:第二讲比和比例上坡路所用时间与全程所用时间比:走完全程所用时间:例3 一块合金内铜和锌的比是2∶3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比?分析要求新合金内铜和锌的比,必须分别求出新合金内铜和锌各自的重量.应该注意到铜和锌的比是2∶3时,合金的重量不是36克,而是(36-6)克.铜的重量始终没有变.解:铜和锌的比是2∶3时,合金重量:36-6=30(克).铜的重量:新合金中锌的重量:36-12=24(克).新合金内铜和锌的比:12∶24=1∶2.答:新合金内铜和锌的比是1∶2.例4 师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个?工作量与工作效率成正比例.解法1:设师傅加工x个,徒弟加工(168-x)个.5x=168×9-9x,14x=168×9,x=108.168-x=168-108=60(个).答:师傅加工108个,徒弟加工60个.=60(个),(徒弟).考方法可求出两人各用了多少分钟.然后用师、徒每分钟各自的效率,分别乘以540就是各自加工零件的个数.解法4:按比例分配做:例5 洗衣机厂计划20天生产洗衣机1600台,生产5天后由于改进技术,效率提高25%,完成计划还要多少天?分析这是一道比例应用题,工效和工时是变量,不变量是计划生产5天后剩下的台数.从工效看,有原来的效率1600÷20=80台/天,又有提高后的效率80×(1+25%)=100台/天.从时间看,有原来计划的天数,要求效率提高后还需要的天数.根据工效和工时成反比例的关系,得:提高后的效率×所需天数=剩下的台数.解法1:设完成计划还需x天.1600÷20×(1+25%)×x=1600-1600÷20×580×1.25×x=1600-400100x=1200x=12.答:完成计划还需12天.解法2:此题还可以转化成正比例.根据实际效率是原来效率的1+25因为工效和工时成反比例,所以实际与原来所需时间的比是4∶5,如果设实际还需要x天,原来计划的天数是20-5=15天,根据实际与原来时间的比等于实际天数与原来天数的比,可以用正比例解答.设完成计划还需x天.5x=60,x=12.解法3:(按工程问题解)设完成计划还需x天.例6 一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?画出图便于解题:解法1:BC的长:182÷13=14(厘米),BD的长:14+13=27(厘米),从图中看出AB长就是原长方形的宽,AD与AB的比是14∶5,AB与BD的比是5∶(14-5)=5∶9,原长方形面积是42×15=630(平方厘米).答:原长方形面积是630平方厘米.解法2:设原长方形长为14x,宽为5x.由图分析得方程(14x-13)× 13-5x×13=182,9x=27,x=3.则原长方形面积(14×3)×(5×3)=630(平方厘米).例4、例5、例6是综合性较强的题,介绍了几种不同解法.要求大家从不同角度、综合、灵活运用所学知识,多角度去思考解答应用题,从而提高自己思维判断能力.习题二习题二1.一块长方形的地,长和宽的比是3∶2,长比宽多24米,这块地的面积是多少平方米?2.一块长方形的地,长和宽的比是3∶2,长方形的周长是120米,求这块地的面积?3.水果店运来橘子、苹果共96筐,橘子和苹果筐数的比是5∶3,求橘子、苹果各是多少筐?4.化肥厂计划生产化肥1400吨,由于改进技术5天就完成了计划的25%,照这样计算,剩下的任务还需多少天完成?5.小强买了一件上衣和两条裤子,小明买了同样价钱的上衣和裤子各一件,他们用去钱数的比是4∶3,已知一件上衣7元,求一条裤子多少元?页,这时已读的页数与剩下页数的比是3∶7,小刚再读多少页就能读完这本书?7.甲、乙两车由A、B两地同时出发相向而行,甲乙两车速度比是2∶8.“长江”号轮船第一次顺流航行21公里又逆流航行4公里,第二次在同一河流中顺流航行12公里,逆流航行7公里,结果两次所用的时间相等.求顺水船速与逆水船速的比.习题二解答2.120÷2=60(米),36×24=864(平方米).3.5+3=8,4.设剩下的任务还需x天完成.25%x=75%×5,x=15.5.设一件上衣与一条裤子的价钱之比是1∶x,则小强和小明用去钱数的比是:3(1+2x)=4(1+x),3+6x=4+4x,2x=1,7.设乙车行完全程用x小时.8.顺水船速∶逆水船速=(21-12)∶(7-4)=3∶1.第三讲分数、百分数应用题(一)第三讲分数、百分数应用题(一)分数、百分数应用题是小学数学的重要内容,也是小学数学重点和难点之一.一方面它是在整数应用题基础上的继续和深化;另一方面,它有其本身的特点和解题规律.因此,在这类问题中,数量之间以及“量”、“率”之间的相依关系与整数应用题比较,就显得较为复杂,这就给正确地选择解题方法,正确解答带来一定困难.为了学好分数、百分数应用题的解法必须做好以下几方面工作.①具备整数应用题的解题能力.解答整数应用题的基础知识,如概念、性质、法则、公式等仍广泛用于分数、百分数应用题.②在理解、掌握分数的意义和性质的前提下灵活运用.③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件.它可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理.④学会多角度、多侧面思考问题的方法.分数百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法同时,不断地开拓解题思路.例1 (1)本月用水量比上月节约7%,可以联想到哪些关系?①上月用水量与单位“1”的关系.②本月节约用水量与上月用水量的7%的关系.③本月用水量与上月用水量的(1-7%)的关系.(2)蓝墨水比红墨水多20%,可以联想到哪些关系?①红墨水与单位“1”的关系.②蓝墨水比红墨水多出的量与红墨水的20%的关系.③蓝墨水与红墨水的(1+ 20%)的关系.(3)已看的页数比未看的页数多15%,可以联想哪些关系?①未看的页数与单位“1”的关系.②已看的与未看的页数的差与未看页数的15%的关系.③已看的页数与未看的页数的(1+15%)的关系.事书是多少页?分析每天看15页,4天看了15×4=60页.解题的关键是要找出解:①看了多少页?15×4=60(页).②看了全书的几分之几?③这本书有多少页?答:这本故事书是 150页.分析要想求这本书共有多少页,需要找条件里的多21页,少6页,剩下 172页所对应的百分率.也就是说,要从这三个量里找出一个能明确占全书的几分之几的量.画线段图:答:这本故事书共有264页.例4 惠华百货商场运到一批春秋西服,按原(出厂)价加上运费、营知售价是123元,求出厂价多少元?相当于123元,如上图可以得出解答:答:春秋西服每套出厂价是108元.克,收完其余部分时,又刚好装满6筐,求共收西红柿多少千克?与百分率”的关系已经直接对应,求每筐的千克数的条件完全具备.解:其余部分是总千克数的几分之几:西红柿总数共装了多少筐:每筐是多少千克:共收西红柿多少千克:综合算式:答:共收西红柿384千克.解法2:(以下列式由学生自己理解)答:共收西红柿384千克.水泥没运走.这批水泥共是多少吨?分析上图中有3个相对各自讨论范围内的单位“1”(“全部”、“余下”、“又余下”).依据逆向思路可以得出,最后剩下的15吨对应的是下”的吨数90吨(即“余下”含义中的1个单位是90吨).这90吨恰是“全例7 某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他秒?分析与解答这是一个追及问题,因此求追上所花时间必须求出相距距离及它们速度差.相距距离是因为车上之人与小偷反向走了10秒钟产生的.而速度差是易求的.所以追上所花时间是答:追上小偷要110秒.例8 A有若干本书,B借走一半加一本,剩下的书,C借走一半加两本,再剩下的书,D第三讲分数、百分数应用题(一)借走一半加3本,最后A还有2本书,问A原有多少本书.答:A原有50本书.解法2:用倒推法解.分析 A剩下的2本应是C借走后剩下的一半差3本,所以 C借走后还综合算式:答:A原有50本书.习题三习题三比苹果少1440千克,运来橘子多少千克?2.有两袋米,甲袋比乙袋少18千克.如果再从甲袋倒入乙袋6千克,3.一本书,已看了130页,剩下的准备8天看完.如果每天看的页数苹果?每天各吃了几个苹果?5.古希腊杰出的数学家丢番图的墓碑上有一段话:“他生命的六分之一是幸福的童年.再活十二分之一脸上长起了细细的胡须,他结了婚还没有孩子,又度过了七分之一.再过了五年,他幸福地得到了一个儿子.可这孩子光辉灿烂的寿命只有他父亲的一半.儿子死后,老人在悲痛中活了四年,也结束了尘世的生涯”.你能根据这段话推算出丢番图活了多少岁?多少岁结的婚吗?6.一瓶酒精,当用去酒精的一半后,连瓶共重700克;如只用去酒精多少台?习题三解答1.①苹果重量占总重量的几分之几?③总重量是多少千克?④运来橘子多少千克?2.①倒米后甲袋比乙袋少多少千克?18+6×2=30(千克).②倒米后甲袋比乙袋少几分之几?③倒米后乙袋有米多少千克?④原来乙袋有米多少千克?80-6=74(千克).⑤原来甲袋有米多少千克?74-18=56(千克).4.共买苹果:=605(台).第四讲分数、百分数应用题(二)在解题过程中,除了要利用上一讲中所说的一些技巧和方法(如画线段示意图等)之外,还要注意在解题过程中量的转化.例如,在解题过程的不同阶段,有时需把不同的量看成单位1,即要把单位1进行“转化”;有时,在解题过程中需把相等的量看成完全一样,即其中之一可“转化”为另一.通过这样的转化,往往能使解题思路清晰,计算简便.几?而问题“女工人数比男工人数少几分之几”是把男工人数看作单位“1”.解答这题必须转化单位“1”.说明:“1”倍量的转换引起了“百分率”的转化,其规律是,甲数是修路程的比是4∶3,还剩50O米没修,这条路全长多少米?分析此题条件中既有百分率又有比,可以把比转化成百分率,按分数应用题解答.第二天与第一天所修路程的比是4∶3.即第二天修的占4份,第一天米相对应的百分率,进而求出全长有多少米.=1200(米).答:全长是1200米.相等,求两个班各分到多少皮球?单位“1”不一致,因此一班与二班分到的皮球之间缺乏统一的倍数关系,率”转化,才能做此题.二班的球数相当于一班的几分之几.总球数120就和两个班的百分率之和相对应,求出一班分到多少皮球.二班分到的球占一班的几分之几:二班分到多少皮球:120-72=48(个).答:一班分到72个皮球,二班分到48个皮球.第四讲分数、百分数应用题(二)倍题,就可求出二班分到多少球.一班分到的占二班几分之几:二班分到多少球:一班分到多少球:120-48=72(个).一班与二班分到皮球数的比:问两班。
级上册习题一解答第二讲数数与计数(一)习题二习题二解答第三讲数数与计数(二)习题三习题三解答第四讲认识简单数列习题四习题四解答第五讲自然数列趣题习题五习题五解答第六讲找规律(一)习题六习题六解答第七讲找规律(二)习题七习题七解答第八讲找规律(三)习题八习题八解答第九讲填图与拆数习题九习题九解答第十讲考虑所有可能情况(一)习题十习题十解答第十一讲考虑所有可能情况(二)习题十一习题十一解答第十二讲仔细审题习题十二习题十二解答第十三讲猜猜凑凑习题十三习题十三解答第十四讲列表尝试法习题十四习题十四解答第十五讲画图凑数法习题十五习题十五解答下册第一讲机智与顿悟习题一习题一解答第二讲数数与计数习题二习题二解答第三讲速算与巧算习题三习题三解答第四讲数与形相映习题四习题四解答第五讲一笔画问题习题五习题五解答第六讲七座桥问题习题六习题六解答第七讲数字游戏问题(一)习题七解答第八讲数字游戏问题(二)习题八习题八解答第九讲整数的分拆习题九习题九题答第十讲枚举法习题十习题十解答第十一讲找规律法习题十一习题十一解答第十二讲逆序推理法习题十二习题十二解答第十三讲画图显示法习题十三习题十三解答第十四讲等量代换法习题十四习题十四解答第十五讲等式加减法习题十五习题十五解答附录第一讲重量的认识习题一习题一解答第二讲长度的认识习题二习题二解答第三讲时间的认识(上)习题三习题三解答第四讲时间的认识(下)习题四习题四解答华罗庚学校数学课本:二年级上册第一讲速算与巧算一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1.等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2.等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算. 102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.习题一1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5习题一解答1.解:(1)18+28+72=18+(28+72)=18+100=118(2)87+15+13=(87+13)+15=100+15=115(3)43+56+17+24=(43+17)+(56+24)=60+80=140(4)28+44+39+62+56+21=(28+62)+(44+56)+(39+21)=90+100+60=2502.解:(1)98+67=98+2+65=100+65=165(2)43+28=43+7+21=50+21=71或43+28=41+(2+28)=41+30=71(3)75+26=75+25+1=100+1=1013.解:(1)82-49+18=82+18-49=100-49=51(2)82-50+49=82-1=81(减50再加49等于减1)(3)41-64+29=41+29-64=70-64=64.解:(1)99+98+97+96+95=100×5-1-2-3-4-5=500-15=485(每个加数都按100算,再把多加的减去)或99+98+97+96+95=97×5=485(2)9+99+999=10+100+1000-3=1110-3=11075.解:(1)5+6+7+8+9=7×5=35(2)5+10+15+20+25+30+35=20×7=140(3)9+18+27+36+45+54=(9+54)×3=63×3=189(4)12+14+16+18+20+22+24+26=(12+26)×4=38×4=1526.解:(1)53+49+51+48+52+50=50×6+3-1+1-2+2+0=300+3=303(2)87+74+85+83+75+77+80+78+81+84=80×10+7-6+5+3-5-3+0-2+1+4=800+4=8047.解:方法1:原式=21+21+21+15=78方法2:原式=21×4-6=84-6=78方法3:原式=(1+2+3+4+5+6)×3+15=21×3+15=63+15=78第二讲数数与计数(一)数学需要观察.大数学家欧拉就特别强调观察对于数学发现的重要作用,认为“观察是一件极为重要的事”.本讲数数与计数的学习有助于培养同学们的观察能力.在这里请大家记住,观察不只是用眼睛看,还要用脑子想,要充分发挥想像力.例1 数一数,图2-1和图2-2中各有多少黑方块和白方块?解:仔细观察图2-1,可发现黑方块和白方块同样多.因为每一行中有4个黑方块和4个白方块,共有8 行,所以:黑方块是:4×8=32(个)白方块是:4×8=32(个)再仔细观察图2-2,从上往下看:第一行白方块5个,黑方块4个;第二行白方块4个,黑方块5个;第三、五、七行同第一行,第四、六、八行同第二行;但最后的第九行是白方块5个,黑方块4个.可见白方块总数比黑方块总数多1个. 白方块总数:5+4+5+4+5+4+5+4+5=41(个)黑方块总数:4+5+4+5+4+5+4+5+4=40(个)再一种方法是:每一行的白方块和黑方块共9个.共有9行,所以,白、黑方块的总数是:9×9=81(个).由于白方块比黑方块多1个,所以白方块是41个,黑方块是40个.例2 图2-3所示砖墙是由正六边形的特型砖砌成,中间有个“雪花”状的墙洞,问需要几块正六边形的砖(图2-4)才能把它补好?3 3 3 3 3=33 3 3 3 3=33 3 3 3 3=3。
华罗庚学校数学课本电子版第一讲认识图形(一)1.这叫什么?这叫“点”。
用笔在纸上画一个点,可以画大些,也可以画小些。
点在纸上占一个位置。
2.这叫什么?这叫“线段”。
沿着直尺把两点用笔连起来,就能画出一条线段。
线段有两个端点。
3.这叫什么?这叫“射线”。
从一点出发,沿着直尺画出去,就能画出一条射线。
射线有一个端点,另一边延伸得很远很远,没有尽头。
4.这叫什么?这叫“直线”。
沿着直尺用笔可以画出直线。
直线没有端点,可以向两边无限延伸。
5.这两条直线相交。
两条直线相交,只有一个交点。
6.这两条直线平行。
两条直线互相平行,没有交点,无论延伸多远都不相交。
7.这叫什么?这叫“角”。
角是由从一点引出的两条射线构成的。
这点叫角的顶点,射线叫角的边。
角分锐角、直角和钝角三种。
直角的两边互相垂直,三角板有一个角就是这样的直角。
教室里天花板上的角都是直角。
锐角比直角小,钝角比直角大。
习题一1.点(1)看,这些点排列得多好!(2)看,这个带箭头的线上画了点。
2.线段下图中的线段表示小棍,看小棍的摆法多有趣!(1)一根小棍。
可以横着摆,也可以竖着摆。
(2)两根小棍。
可以都横着摆,也可以都竖着摆,还可以一横一竖摆。
(3)三根小棍。
可以像下面这样摆。
3.两条直线哪两条直线相交?哪两条直线垂直?哪两条直线平行?4.你能在自己的周围发现这样的角吗?第二讲认识图形(二)一、认识三角形1.这叫“三角形”。
三角形有三条边,三个角,三个顶点。
2.这叫“直角三角形”。
直角三角形是一种特殊的三角形,它有一个角是直角。
它的三条边中有两条叫直角边,一条叫斜边。
3.这叫“等腰三角形”。
它也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫“腰”,另外的一条边叫“底”。
4.这叫“等腰直角三角形”或叫“直角等腰三角形”。
它既是直角三角形,又是等腰三角形。
5.这叫“等边三角形”。
它的三条边一样长(相等),三个角也一样大(相等)。
二、认识四边形1.这叫“四边形”。
四边形有四条边,部有四个角。
2.这叫“等腰梯形”。
它是一种特殊的四边形,它的上下两边平行,左右两边相等。
平行的两边分别叫上底和下底,相等的两边叫腰。
3.这叫“平行四边形”。
它的两组对边分别平行而且相等,两组对角分别相等。
4.这叫“长方形”。
它的两组对边分别平行而且相等,四个角也都是直角。
5.这叫“菱形”。
菱形的四条边都相等,对角分别相等。
6.这叫“正方形”。
正方形的四条边都相等,四个角都是直角。
三、认识圆和扇形1.这叫“圆”。
圆是个很美的图形。
圆中心的一点叫圆心,圆心到圆上一点的连线叫圆的半径,过圆心连接圆上两点的连线叫圆的直径。
直径把圆分成相等的两部分,每一部分都叫“半圆”。
2.这叫“扇形”。
圆的一部分叫“圆弧”。
由一条圆弧和两条半径构成的图形叫“扇形”。
习题二1.用橡皮筋在钉子板上套出各种图形。
2.观察周围的物体,你还能发现哪些图形?如:第三讲认识图形(三)1.这叫“长方体”。
长方体有六个面,十二条棱,八个顶点。
长方体的面一般是长方形,也可能有两个面是正方形。
互相垂直的三条棱分别叫做长方体的长、宽、高。
2.这叫“正方体”。
正方体有六个面,十二条棱,八个顶点。
正方体的每个面都是同样大的正方形,所以它的十二条棱长都相等。
3.这叫“圆柱”。
圆柱的两个底面是完全相同的圆。
4.这叫“圆锥”。
圆锥的底面是圆。
5.这叫“棱柱”。
这个棱柱的上下底面是三角形。
它有三条互相平行的棱,叫三棱柱。
6.这叫“棱锥”。
这个棱锥的底面是四边形。
它有四条棱斜着立起来,所以叫四棱锥。
7.这叫“三棱锥”。
因为它有四个面,所以通常又叫“四面体”。
它的每个面都是三角形。
8.这叫“球体”。
简称“球”。
球有球心,球心到球面上一点的连线叫球的半径。
习题三看看摸摸,并在自己周围寻找具有这些形状的物体。
1.长方体2.正方体3.圆柱4.圆锥5.棱锥6.球第四讲数一数(一)例1 数一数,下图中有几个正方形、几个等边三角形、几个圆?例2 数一数,下图中共有多少点?1+3+6+9+12=31共有31个点。
例3 数一数,下图中有几条线段?照下面的方法数:3+2+1=6(条)。
例4 数一数,下图中有几个锐角?照下面的方法数:3+2+1=6(个)。
习题四1.数一数,下图中有几个锐角?几个直角?几个钝角?2.数一数,下图中有几个等边三角形?有几个等腰三角形?有几个直角三角形?有几个等腰直角三角形?3.数一数,下图中有几个正方形?有几个长方形?有几个平行四边形?几个四边形?4.数一数,下图中共有多少点?5.数一数,下图中共有几条线段?6.下图中共有10条线段,你能把它们都找出来吗?7.数一数,下图中有几个锐角?8.下图中共有10个角,你能把它们都找出来吗?习题四解答1.图中有3个锐角、3个直角、3个钝角。
2.图中有1个等边三角形、4个等腰三角形、2个直角三角形、1个等腰直角三角形。
3.图中有2个正方形、3个长方形、5个平行四边形、6个四边形。
4.图中共有41个点。
1+4+8+12+16=41(个)。
5.图中共有3条线段。
2+1=3(条)。
6.数线段的方法如下:4+3+2+1=10(条)。
7.图中共3个锐角。
8.数角的方法如图:4+3+2+1=10第五讲数一数(二)数复杂的图形需要较强的观察能力,要细心,做到不重不漏。
例1 数一数,右图中有多少个三角形?照书上的方法数,共4个三角形。
例2 数一数,右图中共有多少个三角形?照书上的方法数,共8个三角形。
例3 数一数,右图中共有多少个正方形?照书上的方法数,共有10个正方形4+5+1=10(个)。
例4 数一数,右图中共有多少个长方形?照书上的方法数共有5个长方形。
习题五1.数一数,右图中有几个三角形?2.数一数,右图中有几个三角形?3.右图中有8个三角形,请你把它们都找出来。
4.数一数,右图中有几个长方形?5.下图有7个长方形,请你都找出来。
6.数一数,右图中有几个正方形?7.左图中共有14个正方形,请你都找出来。
8.数一数,右图中共有几个正方形,几个三角形?9.数一数,左图中有几个圆?10.右图中共有27个三角形,请你都找出来。
11.数一数,右图中共有多少个三角形?习题五解答1.图中有2个三角形。
2.图中有3个三角形。
3.可以像下面这样找。
4.图中有3个长方形。
5.6.图中有5个正方形。
7.8.图中有5个正方形、16个三角形。
9.图中有6个圆。
10.图中共27个三角形。
11.图中共有44个三角形。
其中最大的2个、次大的6个、次小的12个、最小的24个。
第六讲动手画画例1 画点用铅笔在纸上画点。
例2 画线段先画两个端点,再使尺子的一边与两点靠近。
左手按住尺子,右手拿铅笔沿着尺子边从一点画到另一点。
例3 画直线把尺子放在纸上,用左手按住,用右手拿着笔从左往右画。
(虽然画出的只是一段,但可以把它想像成是向两端延伸得很远很远)例4 画直角左手按住三角板,右手拿着铅笔沿三角板的两条直角边可画出直角。
例5 画圆习题六1.画点(1)随意画(2)照图画2.画线(1)随意画(2)用尺比着画线段(看成线段)3.画角(1)随意画(2)用三角板画一个直角、三个锐角。
4.画长方形和正方形(在方格纸上画)。
5.使用三角板和圆规画出各种图样。
6.同学们合作,利用小棍(或粉笔)和细绳,在地面上画大圆。
一人把线的一端按在地上不动,另一人把小棍(或粉笔)捆在细绳上,让细绳时刻拉紧转圈,这时小棍(或粉笔)就能在地上画出一个大圆。
第七讲摆摆看看例1 用两根火柴棍,摆成一个锐角、一个直角、一个钝角。
例2 用四根火柴棍摆出两条平行直线,再摆出两条相交直线。
例3 用火柴棍摆出一个三角形、一个正方形、一个菱形、一个长方形、一个平行四边形、一个等腰梯形、一个五边形、一个六边形、一个八边形。
例4 用三根火柴棍可以摆出一个三角形,如图。
(1)再加两根火柴棍,摆出两个三角形。
(2)再加两根,摆出三个三角形来。
(3)再加两根,摆出五个三角形来。
解摆一个三角形必需三根火柴棍,这样计算,摆两个三角形就需要六根。
但是现在只给你增加两根,却要求你用五根摆出两个三角形,可见必有一根火柴棍要供两个三角形公用才行。
同样道理,再加两根后共七根要摆三个三角形还差两根,所以必须有两根公用。
再给两根后共九根火柴棍,要摆五个三角形。
摆法如图所示。
可以看出九根火柴棍摆出了三个“正立”的小三角形,同时中间还出现了一个“倒立”的小三角形,它并没有额外需要增加火柴棍。
而且最外面的六根火柴棍又形成了一个大三角形。
所以这九根火柴棍共摆出了五个三角形。
习题七1.用两根小木棍,摆成一个很小的锐角,然后慢慢地挪动一根,使锐角渐渐变大。
如果继续转动小棍,将会出现什么角?2.如右图所示,用火柴棍摆了五个三角形。
(1)拿掉哪三根,就可以变成一个三角形?(2)拿掉哪两根,就可变成两个三角形?(3)拿掉哪一根,就可变成三个三角形?3.如右图所示,用火柴棍摆了五个正方形。
(1)请你拿掉两根,剩下三个正方形。
(2)请你拿掉两根,剩下两个正方形。
4.如下图所示,用火柴棍摆了六个三角形。
如果拿掉三根火柴棍就变成了三个三角形,应该拿掉哪三根?试试看。
5.如右图所示,用16根火柴棍摆了四个正方形。
你能用15根、14根、13根火柴棍也分别摆成四个小正方形吗?摆摆看。
习题七解答1.慢慢转动小棍的过程中锐角逐渐变大,之后出现直角,直角再变大随之出现钝角。
2.3.4.5.第八讲做做想想例(1)用下图中那样的三根小木棍,摆出一个三角形,并用橡皮泥粘住。
(2)再用如下图中那样长的三根小木棍,看能不能摆出一个三角形?(3)想想:随便拿三根小棍就能摆出一个三角形来吗?什么样的三根小棍才一定能摆出一个三角形?解(1)图中给的三根小棍,可以摆出一个三角形。
(2)图中给的三根小棍,不能摆出三角形。
(3)得出结论:①三根小棍中,如果其中两根较短的小棍接起来还没有余下的那根长棍长,就摆不成三角形。
②三根棍中,如果两根较短的接起来比最长的那根棍还长,用它们就能摆成一个三角形。
③可见在一个给出的三角形中,两边之和必大于第三边。
习题八1.(1)用三根一样长的小棍,摆成一个等边三角形,再用橡皮泥粘住。
(2)用两根一样长的小棍和一根较短的小棍,摆成一个等腰三角形,再用橡皮泥粘住。
(3)想想:一个等边三角形必定是一个等腰三角形,对吗?反过来说,每个等腰三角形都是等边三角形,对吗?2.(1)用图示的三根小棍摆成一个直角三角形,再用橡皮泥粘住。
(注意,这三根小棍的长度不是随意的,若用半根火柴棍当尺子去量,它们的长度数,即量的次数分别是3、4和5)第一根:第二根:第三根:(2)若改用长度数是2、4和5的三根小棍,还能摆成直角三角形吗?(3)再改用长度为4、4和5的三根小棍,还能摆成直角三角形吗?再改用三根长度分别是3、4和6的小棍,能摆成一个直角三角形吗?(4)想想:通过动手做,你是否看出:在这三种情况中,只有长度数是3、4和5的小棍才能摆出一个直角三角形,你对此感到奇妙吗?3.如图所示,这里的四根小棍中两根较长的长度相等,两根短的长度也相等。