实验五逆境对植物组织的伤害
- 格式:doc
- 大小:38.00 KB
- 文档页数:2
实验一植物叶绿素含量的测定(分光光度法)(张宪政,1992)一、原理根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。
根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。
当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。
各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。
如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。
这就是吸光度的加和性。
今欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A,并根据叶绿素a、b及类胡萝卜素在该波长下的吸光系数即可求出其浓度。
在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。
高等植物中叶绿素有两种:叶绿素a 和b,两者均易溶于乙醇、乙醚、丙酮和氯仿。
叶绿素a和叶绿素b的比值反映植物对光能利用效率的大小,比值高则大,则反之。
二、材料、仪器设备及试剂试剂:1)95%乙醇(或80%丙酮)三、实验步骤称取剪碎的新鲜样品0.2~0.3g,加乙醇10ml,提取直至无绿色为止。
把叶绿体色素提取液倒入光径1cm的比色杯内,以95%乙醇为空白,在波长663nm和645nm下测定吸光度。
四、实验结果按计算丙酮法(Arnon法)【可以用于丙酮乙醇混合法和80%丙酮提取法的计算】叶绿素a的含量(mg/g)=(12.71⨯OD663 – 2.59⨯OD645)V/1000*W叶绿素b的含量(mg/g)=(22.88OD645 – 4.67OD663) V/1000*W 叶绿素a、b的总含量(mg/g)=(8.04⨯OD663 +20.29⨯OD645) V/1000*W 按Inskeep公式叶绿素a的含量(mg/g)=(12.63⨯OD663 – 2.52⨯OD645)V/1000*W叶绿素b的含量(mg/g)=(20.47OD645 – 4.73OD663) V/1000*W叶绿素a、b的总含量(mg/g)=(7.90⨯OD663 + 17.95⨯OD645) V/1000*W注:1、叶绿素a和叶绿素b的比值反映植物对光能利用率【1】比如阳生植物叶绿素a和叶绿素b的比值较大【2】阴生植物叶绿素a和叶绿素b的比值较小2、丙酮-------熔点:-94℃;沸点:56.48℃;是一种无色透明液体,有特殊的辛辣气味易溶于水和甲醇、乙醇、乙醚、氯仿、吡啶等有机溶剂.下一步实验方法比较【1】95%乙醇直接提取(√)【2】95%乙醇加热提取(冯瑞云,1985)【3】无水酒精和80%丙酮等体积混合提取实验二、不良环境对植物细胞膜的伤害((张宪政,1992))一、原理植物组织在受到各种不利的环境条件(如干旱、低温、高温、盐渍和大气污染)危害时,细胞膜的结构和功能首先受到伤害,细胞膜透性增大。
逆境胁迫对植物生理生化代谢的影响20093391 魏晓明农学0901摘要:对植物产生伤害的环境称为逆境,又称胁迫。
常见的逆境有寒冷、干旱、高温、盐渍等。
逆境会伤害植物,严重时会导致植物死亡。
逆境对植物的伤害主要表现在细胞脱水、膜系统受破坏,酶活性受影响,从而导致细胞代谢紊乱。
有些植物在长期的适应过程中形成了各种各样抵抗或适应逆境的本领,在生理上,以形成胁迫蛋白、增加渗透调节物质(如脯氨酸含量)、提高保护酶活性等方式提高细胞对各种逆境的抵抗能力。
关键词:逆境胁迫,抗逆性,相对电导率,脯氨酸,丙二醛,样品,细胞膜透性,过氧化物酶活性,叶绿素,可溶性糖。
前言:植物细胞膜起调节控制细胞内外物质交换的作用,它的选择透性是其最重要的功能之一。
当植物遭受逆境伤害时,细胞膜受到不同程度的破坏,膜的透性增加,选择透性丧失,细胞内部分电解质外渗。
膜结构破坏的程度与逆境的强度、持续的时间、作物品种的抗性等因素有关。
因此,质膜透性的测定常可作为逆境伤害的一个生理指标,广泛应用在植物抗性生理研究中。
当质膜的选择透性被破坏时细胞内电解质外渗,其中包括盐类、有机酸等,这些物质进入环境介质中,如果环境介质是蒸馏水,那么这些物质的外渗会使蒸馏水的导电性增加,表现在电导率的增加上。
植物受伤害愈严重,外渗的物质越多,介质导电性也就越强,测得的电导率就越高(不同抗性品种就会显示出抗性上的差异)。
在植物胁迫处理过程中,叶绿素含量会下降,可以把叶绿素含量下降看作是胁迫发展中由功能性影响到器质性伤害的一个中间过程。
过氧化物酶是植物体内普遍存在的、活性较高的一种酶,他与呼吸作用、光合作用及生长素的氧化等都有密切关系,在植物生长发育过程中,他的活性不断变化,因此测量这种酶,可以反映某一时期植物体内代谢的变化。
植物体内的碳素营养状况以及农产品的品质性状,常以糖含量作为重要指标。
植物为了适应逆境条件,如干旱、低温,也会主动积累一些可溶性糖,降低渗透势和冰点,以适应外界环境条件的变化。
植物组织中丙二醛(MDA)含量的测定一、原理植物器官衰老或在逆境下遭受伤害,往往发生膜脂过氧化作用,丙二醛(MDA)是膜脂过氧化的最终分解产物,其含量可以反映植物遭受逆境伤害的程度。
MDA从膜上产生的位置释放出后,可以与蛋白质、核酸反应,从而丧失功能,还可使纤维素分子间的桥键松驰,或抑制蛋白质的合成。
因此,MDA的积累可能对膜和细胞造成一定的伤害。
丙二醛(MDA)是常用的膜脂过氧化指标,在酸性和高温度条件下,可以与硫代巴比妥酸(TBA)反应生成红棕色的三甲川(3,5,5—三甲基恶唑-2,4。
二酮),其最大吸收波长在532nm。
但是测定植物组织中MDA时受多种物质的干扰,其中最主要的是可溶性糖,糖与TBA显色反应产物的最大吸收波长在450nm,但532nm处也有吸收。
植物遭受干旱、高温、低温等逆境胁迫时可溶性糖增加,因此测定植物组织中MDA—TBA反应物质含量时一定要排除可溶性糖的干扰。
低浓度的铁离子能够显著增加TBA与蔗糖或MDA显色反应物在532、450nm处的吸光度值,所以在蔗糖、MDA与TBA显色反应中需一定量的铁离子,通常植物组织中铁离子的含量为每克千重100—300ug·g-1,根据植物样品量和提取液的体积,加入Fe3+的终浓度为0.5umol·L-1。
二、方法直线回归法MDA与TBA显色反应产物在450nm波长下的吸光度值为零。
不同浓度的蔗糖(0—25mmol·L-1)与TBA显色反应产物在450nm的吸光度值与532nm和600nm处的吸光度值之差成正相关,配制一系列浓度的蔗糖与TBA显色反应后,测定上述三个波长的吸光度值,求其直线方程,可求算糖分在532nm处的吸光度值。
UV-120型紫外可见分光光度计的直线方程为:Y532=-0.00198十0.088D450 (44—1)D450、D532、D600分别代表450、532和600nm波长下的吸光度值。
逆境生理指标的测定要求:选三个指标一、植物组织中超氧物歧化酶活性的测定催化下列反应: 2 +2H + → H 2O 2 + O 2 反应产物H 2O 2可被过氧化氢酶进一步分解或被过氧化物酶利用。
因此SOD 有保护生物体免受活性氧伤害的能力。
已知此酶活力与植物抗逆性及衰老有密切关系,故成为植物逆境生理学的重要研究对象。
原理本实验依据超氧化物歧化酶抑制氮蓝四唑(NBT )在光下的还原作用来确定酶活性大小。
在有可被氧化物质存在下,核黄素可被光还原,被还原的核黄素在有氧条件下极易再氧化而产生 , 可将氮蓝四唑还原为蓝色的化合物,蓝色化合物在560nm 处有最大吸收,而SOD 可清除 从而抑制了蓝色化合物的形成。
因此光还原反应后,反应液蓝色愈深说明酶活性愈低,反之酶活性愈高。
据此可以计算出酶活性大小。
试剂0.05mol/L 磷酸缓冲液(pH7.8);130mmol/L 甲硫氨酸(Met )溶液:称1.9399g Met 用磷酸缓冲液定容至100ml ;750μmol/L 氮蓝四唑溶液:称取0.06133g NBT 用磷酸缓冲液定容至100ml 避光保存; 100μmol/L EDTA-Na 2溶液:取0.03721g EDTA -Na 2用磷酸缓冲液定容至100ml ;20μmol/L 核黄素溶液:取0.00753g 核黄素用磷酸缓冲液定容至1000ml 避光保存(当天配制)。
方法1、酶液提取 取一定部位的植物叶片(视需要定,去叶脉)0.5g 于预冷的研钵中,加1ml 磷酸缓冲液在冰浴下研磨成浆,加缓冲液使终体积为5ml 。
取2~3ml 于10000rpm 下离心10分钟,上清液即为SOD 粗提液。
2、显色反应 取5ml 试管(或指形管,要求透明度好)7支,3支试管为测定管,另4支为对照管,按表1加入各溶液。
混匀后将1支对照管置暗处,其他各管置于4000lx 日光灯下反应20min (要求各管受光情况一致,反应室的温度高时反应时间可以缩短,温度低时反应时间可适当延长(温度范围30~37℃)。
《植物生理学实验》课程大纲一、课程概述课程名称(中文):植物生理学实验(英文):Plant Physiology Experiments课程编号:18241054课程学分:0.8课程总学时:24课程性质:专业基础课前修课程:植物学、生物化学、植物生理学二、课程内容简介植物生理学是农林院校各相关专业的重要学科基础课,是学习相关后续课程的必要前提,也是进行农业科学研究和指导农业生产的重要手段和依据。
本实验课程紧密结合理论课学习内容,加深学生对理论知识的理解。
掌握植物生理学的实验技术、基本原理以及研究过程对了解植物生理学的基本理论是非常重要的。
本大纲体现了植物生理学最实用的技术方法。
实验内容上和农业生产实践相结合,加强学生服务三农的能力。
实验手段和方法上,注重传统、经典技术理论与现代新兴技术的结合,提高学生对新技术、新知识的理解和应用能力。
三、实验目标与要求植物生理学实验的基本目标旨在培养各专业、各层次学生有关植物生理学方面的基本研究方法和技能,包括基本操作技能的训练、独立工作能力的培养、实事求是的科学工作态度和严谨的工作作风的建立。
开设植物生理学实验课程,不仅可以使学生加深对植物生理学基本原理、基础知识的理解,而且对培养学生分析问题、解决问题的能力和严谨的科学态度以及提高科研能力等都具有十分重要的作用。
要求学生实验前必须预习实验指导和有关理论,明确实验目的、原理、预期结果,操作关键步骤及注意事项;实验时要严肃认真专心操作,注意观察实验过程中出现的现象和结果;及时将实验结果如实记录下来;实验结束后,根据实验结果进行科学分析,完成实验报告。
四、学时分配植物生理学实验课学时分配实验项目名称学时实验类别备注植物组织水势的测定3学时验证性叶绿体色素的提取及定量测定3学时验证性植物的溶液培养及缺素症状观察3学时验证性植物呼吸强度的测定3学时设计性红外CO2分析仪法测定植物呼吸速率3学时设计性选修植物生长物质生理效应的测定3学时验证性植物种子生活力的快速测定3学时验证性1果实、蔬菜中有机酸含量测定3学时设计性植物抗逆性的鉴定3学时设计性改良半叶法测定植物的光合速率6学时综合性选修植物生理综合演示实验3学时综合、设计性演示合计36学时注:本实验课程总计0.8学分,合24学时,安排8次实验,其中验证性实验占62.5%,综合性、设计性实验占37.5%。
植物生物学实验(植物生理)教案实验一多酚氧化酶活性测定(3学时)一、实验目的:掌握测定多酚氧化酶活性的方法;了解多酚氧化酶的特性二、实验原理:多酚氧化酶是一种含铜的氧化酶,能使一元酚和二元酚氧化生成醌。
醌有颜色,在525nm下有最大光吸收,通过分光光度法测定反应体系颜色变化可测定酶活性。
三、器材与试剂低温离心机、s22pc分光光度计、儿茶酚、pH 7.2磷酸缓冲液四、实验内容:1.称取马铃薯0.5克,加入2.5mL pH 7.2磷酸缓冲液,少许PVP,研磨匀浆,转移到离心管,再用2.5mL pH 7.2磷酸缓冲液冲洗研钵,合并提取液。
4℃ 4000rpm离心15分钟,上清液即为粗酶液。
2.在试管中,加入2.5mL pH 7.2磷酸缓冲液,1.5mL 儿茶酚以及1mL 粗酶液,空白调零以1mL磷酸缓冲液代替粗酶液。
3.A值测定:加入粗酶液后迅速混匀,立刻于525nm下测定反应体系的A值,每隔30秒记录一次,共记录5次。
4.计算酶活力。
按下式计算 PPO活性=U/min gFWA值增加0.001定义为一个酶活力单位。
五、实验报告:计算所测材料的PPO活性。
选择A值变化均匀的三组数值求平均值。
实验二植物耐盐生理指标测定(9学时)一、实验目的:1、了解盐胁迫的机理以及植物的耐盐机制2、了解植物盐处理的方法3、掌握植物体内脯氨酸含量测定的原理和方法4、掌握过氧化物酶活性的测定原理和方法5、掌握丙二醛含量的测定方法6、掌握基本的数据统计方法二、实验原理植物在盐胁迫下,植物可通过积累一定量的脯氨酸降低水势, 维持植物体内的水分平衡, 保证植物的正常生长。
脯氨酸本身是一种水溶性最大的氨基酸,它可以防止原生质体的水分散失,在植物细胞生理干旱时,它的增加有助于细胞或组织保持水分。
用磺基水杨酸提取植物样品时,脯氨酸便游离于磺基水杨酸的溶液中,然后用酸性茚三酮加热处理后,溶液即成红色,色素的深浅即表示脯氨酸含量的高低。
植物组织MDA 含量测定一、目的要求1.掌握植物组织MDA 含量测定的原理及具体测量步骤;2.深化理解MDA 与逆境和衰老的关系,理解植物组织MDA 含量测定的意义; 3.了解膜脂过氧化、氧自由基和MDA 形成的关系;4.能够根据待测材料的具体情况设计实验步骤测定MDA 含量; 5.学习分光光度计,低温离心机等仪器的使用方法。
二、实验原理植物遭受逆境胁迫或衰老时,体内会发生一系列生理生化变化,如核酸和蛋白质含量下降、叶绿素降解、光合作用降低,活性氧平衡失调及内源激素平衡失调等。
活性氧代谢失调直接导致植物体内活性氧的大量积累,从而引发或加剧膜脂过氧化作用,造成细胞膜系统的损伤,严重时会导致植物细胞死亡。
膜脂过氧化的产物有二烯轭合物、脂类过氧化物、丙二醛、乙烷等。
其中丙二醛(Malondialdehyde ,MDA )是膜脂过氧化最重要的产物之一,它的产生还能加剧膜的损伤。
因此在植物衰老生理和抗性生理研究中,MDA 含量是一个常用指标,可通过测定MDA 了解膜脂过氧化的程度,以间接测定膜系统受损程度以及植物的抗逆性。
MDA 在高温及酸性环境下可与2-硫代巴比妥酸(TBA )反应,产生红棕色的产物3,5,5-三甲基恶唑2,4-二酮(Trimet —nine ),又名三甲川,该物质在532nm 处有最大光吸收,在600nm 处有最小光吸收。
由于TBA 也可与其它物质反应,并在532nm 处有吸收,为消除硫代巴比妥酸与其它物质反应的影响,同时测定600nm 下的吸光度,利用532nm 与600nm 下的吸光度的差值计算MDA 的浓度。
即:A 532-A 600=ε·C·L式中,A 532和A 600分别表示532nm 和600nm 处的吸光度值,C 是MDA 浓度,L 为比色杯厚度,ε=155L·mmol -1·cm -1。
TBA MDA 3,5,5-三甲基恶唑2,4-二酮需要指出的是,植物组织中糖类物质可能对MDA-TBA 反应有干扰作用。
实验三电导率仪法测定离体植物叶片的抗逆性一实验目的进一步认识细胞膜系统的结构和功能;掌握电导率仪法测定离体植物叶片抗逆性的原理与方法。
二实验原理植物抗逆性是指植物在长期系统发育中逐渐形成的对逆境的适应和抵抗能力。
在同样的逆境条件下,有些植物(或品种)不受害或受害很轻,有些植物则受害较重。
植物组织受到逆境伤害时,由于膜的功能受损或结构破坏而透性增大,细胞内各种水溶性物质不同程度的外渗,将植物组织浸入无离子水中,水的电导率将因电解质的外渗而加大,膜伤害越重,电解质外渗越多,电导率的增加也越大。
故可用电导率仪测定外液的电导率而得知伤害程度,从而反映植物的抗逆性强弱。
三实验材料植物离体叶片四设备与试剂电导率仪、真空泵(附真空干燥剂)、恒温水浴锅、水浴试管架、20ml具塞刻度试管、打孔器(或双面刀片)、10ml移液管(或定量加液器)、试管架、电炉、镊子、剪刀、搪瓷盘、记号笔、去离子水、滤纸、塑料纱网(约3cm2)。
五实验步骤(一)容器的洗涤电导率仪法对水和容器的洁净度要求严格,所用容器必须用去离子水彻底清洗干净,倒置于洗净而垫有洁净滤纸的搪瓷盘中备用。
水的电导率要求为1~2μS/cm。
为了检查试管是否洁净,可向试管中加入1~2ml电导率在1~2μS/cm的新制去离子水,用电导率仪测定是否仍维持原电导率。
(二)实验材料的处理分别在正常生长和逆境胁迫的植株上取同一叶位的功能叶若干片。
若没有逆境胁迫的植株,可取正常生长的植株叶片若干,分成2份,用纱布擦净表面灰尘。
将一份放在-20度左右的温度下冷冻20分(或置40度左右的恒温箱中处理30分)进行逆境胁迫处理。
另一份裹入潮湿的纱布中放置在室温下作对照。
(三)测定将处理组叶片与对照组叶片用离子水冲洗2次,再用洁净滤纸吸净表面水分。
用6~8mm 的打孔器避开主脉打取叶圆片(或切割成大小一致的叶块),每组叶片打取叶圆片60片,分装在3支洁净的刻度试管中,每管放20片。
在装有叶圆片的各试管中加入10ml的去离子水,并将大于试管口径的塑料纱网放入试管距离液面1cm处,以防止叶圆片在抽气时翻出试管。
1.1 供应材料。
小麦种子;主要试剂:0.1% HgCl2,TTC,3%磺基水杨酸(SSA),冰乙酸,茚三酮,PBS(pH=7.8) ,0.6%TBA(用0.6% TCA配制), PBS (pH=6.8,内含1mMHA),0.1%Ti(SO4)2[用20%(v/v) H2SO4配制] ,PBS, (pH=5.8,内含0.1mmol/ LEDTA, 1%PVP), POD反应混合液(10 mmol/L愈创木酚,5 mmol/L H2O 2 ,用PBS溶解),PPO反应混合液( 20 mmol/L邻苯二酚,用PBS溶解)5%三氯乙酸,PBS (pH=7.7) ,4 mM DTNB (用0.1M pH=6.8PBS现配)。
主要仪器:分光光度仪,离心机,试管,微量加样器,研钵等。
1.21 Pro脯氨酸是水溶性最大的氨基酸,具有很强的水合能力,其水溶液具有很高的水势。
脯氨酸的疏水端可和蛋白质结合,亲水端可与水分子结合,蛋白质可借助脯氨酸束缚更多的水,从而防止渗透胁迫条件下蛋白质的脱水变性。
因此脯氨酸在植物的渗透调节中起重要作用,而且即使在含水量很低的细胞内,脯氨酸溶液仍能提供足够的自由水,以维持正常的生命活动。
正常情况下,植物体内脯氨酸含量并不高,但遭受干旱等胁迫时体内的脯氨酸含量明显增加,它在一定程度上反映植物受环境干旱胁迫的情况,以及植物对水分和盐分胁迫的忍耐及抵抗能力。
1.22 MDA植物器官衰老或在逆境下遭受伤害,往往发生膜脂过氧化作用,丙二醛(MDA)是膜脂过氧化的最终分解产物,从膜上产生的位置释放出后,与蛋白质、核酸起反应修饰其特征;使纤维素分子间的桥键松驰,或抑制蛋白质的合成。
MDA的积累可能对膜和细胞造成一定的伤害,它在一定程度上也反映了植物受环境干旱胁迫的情况。
1.23 抗氧化酶植物体内存在着一套负责清除活性氧所产生的抗氧化系统,在植物正常生长情况下,它使活性氧的产生和清除处于动态平衡状态,在逆境诸如干旱胁迫下,这种平衡被打破。
实验五、植物抗逆性鉴定----外渗电导法实验五、植物抗逆性鉴定----外渗电导法植物生存的环境条件是经常变化的,在植物的一生中,约有90%的时间是处在不利的环境条件下。
寒冷、干旱、高温、盐碱等是常见的自然灾害,随着现代工业的发展,又出现了大气、土壤和水体污染等灾害。
此外,还有病虫侵染和杂草的危害。
这些不良的环境条件统称为逆境,它对植物的生理过程和生长发育可造成各种危害,轻则生长发育不良,重则绝产或死亡。
对于农作物来说,逆境条件是限制产量的重要因素,据Boyer(1982)对美国8种主要农作物的统计,由于病、虫、杂草等生物胁迫造成的减产不过10%,而70%左右的减产是来自气象和土壤因素引起的理化环境胁迫。
因此,研究植物在逆境条件下的生理反应及其忍耐或抵抗能力,采取有效措施提高植物的抗逆性,对于进一步发展农业生产,具有十分重要的意义。
逆境伤害以及植物在逆境条件下的生理反应是多种多样的,近年来人们采用各种方法,进行了广泛的研究,从生态、形态、生理、生化等方面,提出了一些有关植物抗性的鉴定指标和研究方法。
其中一些已在理论研究和生产实践中得到了普遍的承认和广泛的应用。
本实验介绍其中的外渗电导法。
[原理]细胞膜不仅是分隔细胞质和胞外环境的屏障,而且也是细胞与环境发生物质交换的主要通道,又是细胞感受环境变化刺激的部位。
细胞膜的选择透性是其维持生理功能的最重要的条件之一。
各种逆境伤害都会造成质膜选择透性的改变或丧失,例如低温、冰冻、干旱脱水等导致的细胞膜机械损伤以及逆境和衰老过程中的膜脂过氧化作用,都可以增大细胞膜通透性。
因此,细胞质膜透性的测定常作为植物抗性研究中的一个重要生理指标。
当质膜的选择透性因逆境伤害而明显改变或丧失时,细胞内的物质(尤其是电解质)大量外渗,从而引起组织浸泡液的电导率发生变化,通过测定外渗液电导率的变化,就可反映出质膜的伤害程度和所测材料抗逆性的大小。
Dexter (1930)首先用电导法测定了植物的抗冻性,经过不断地改进和完善,目前已得到广泛应用。
《植物生理学实验》教学大纲课程名称:植物生理学实验实验学时:32学分:1学分适应专业:本科生物科学专业一、实验的地位、目的植物生理学实验是生物科学本科专业重要的专业基础课和必修课,独立设置课程,单独考核。
通过做实验加深学生对植物生理学基础理论的理解,掌握植物生理学研究中一些基本的实验方法和实验技术,更重要的是训练同学们操作技能,锻炼学生的动手能力,培养学生的观察能力、综合能力和创新能力,增强学生分析问题和解决问题的能力,促进创造性思维的形成。
二、实验教材与指导书实验教材:《植物生理学实验》,赵世杰等编著,中国农业出版社,2015年版;教学参考书:《现代植物生理学实验指南》,中国科学院上海植物生理研究所,科学出版社,1999;《植物生理学实验指导》,张志良,瞿伟菁主编,高等教育出版社,2003三、考核方式及成绩评定1、考核方式:综合考核实验成绩,包括实验报告成绩、笔试成绩和平时成绩2、期末考试形式、时间及分值考试形式:技能测试;考试时间:100分钟。
3、成绩组成:平时成绩占50%,其中出勤考核占10%,上课表现占10%,实验报告成绩占30%;期末课程考核成绩占50%四、实验项目开设表共有10个实验,其中选8个实验必做材料2 植物组织水势的测定必做液体交换法测定植物水势,掌握测定方法的原理和操作方法。
3 植物根系活力的测定必做采用TTC法测定。
4 叶绿素的提取分离及理化性质选做练习叶绿体色素的提取方法,验证理化性质。
5 叶绿素的定量测定必做用分光光度计定量测定叶绿素a、b和类胡萝卜素含量,掌握叶绿素计的测定原理和使用方法。
6 植物组织中可溶性蛋白质含量的测定必做考马斯亮蓝染色法测定植物组织中蛋白质的含量。
7 生长素对植物的影响必做利用幼苗芽鞘的生长可被生长素特异地诱导这一特性可用以测定生长素类物质,掌握生长素物质的生物特性及其与植物生长的关系8 植物组织逆境伤害程度的测定(MDA含量)必做利用电导仪测定处理液电导度的变化,确定各种逆境对植物的伤害程度,并了解细胞膜透性与受伤害程度的关系9 植物组织中过氧化物酶活性的测定必做通过测定植物过氧化物酶活性,了解某一组织其再植物体内的带些变化,掌握愈创木酚法测定过氧化物酶。
植物组织M D A含量测定 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT植物组织MDA含量测定一、目的要求1.掌握植物组织MDA含量测定的原理及具体测量步骤;2.深化理解MDA与逆境和衰老的关系,理解植物组织MDA含量测定的意义;3.了解膜脂过氧化、氧自由基和MDA形成的关系;4.能够根据待测材料的具体情况设计实验步骤测定MDA含量;5.学习分光光度计,低温离心机等仪器的使用方法。
二、实验原理植物遭受逆境胁迫或衰老时,体内会发生一系列生理生化变化,如核酸和蛋白质含量下降、叶绿素降解、光合作用降低,活性氧平衡失调及内源激素平衡失调等。
活性氧代谢失调直接导致植物体内活性氧的大量积累,从而引发或加剧膜脂过氧化作用,造成细胞膜系统的损伤,严重时会导致植物细胞死亡。
膜脂过氧化的产物有二烯轭合物、脂类过氧化物、丙二醛、乙烷等。
其中丙二醛(Malondialdehyde,MDA)是膜脂过氧化最重要的产物之一,它的产生还能加剧膜的损伤。
因此在植物衰老生理和抗性生理研究中,MDA含量是一个常用指标,可通过测定MDA了解膜脂过氧化的程度,以间接测定膜系统受损程度以及植物的抗逆性。
MDA在高温及酸性环境下可与2-硫代巴比妥酸(TBA)反应,产生红棕色的产物3,5,5-三甲基恶唑2,4-二酮(Trimet—nine),又名三甲川,该物质在532nm处有最大光吸收,在600nm处有最小光吸收。
由于TBA也可与其它物质反应,并在532nm处有吸收,为消除硫代巴比妥酸与其它物质反应的影响,同时测定600nm 下的吸光度,利用532nm 与600nm 下的吸光度的差值计算MDA 的浓度。
即:A 532-A 600=ε·C·L式中,A 532和A 600分别表示532nm 和600nm 处的吸光度值,C 是MDA 浓度,L 为比色杯厚度,ε=155L·mmol -1·cm -1。
实验五逆境对植物组织的伤害
—电导率法检测植物细胞质膜透性和愈创木酚法测定过氧化物酶活性
一、实验目的:1.了解研究植物抗逆生理的实验方法,学会使用DDS-11A型电导率仪,掌握绝对电导率和相对电导率的概念;2.熟悉植物组织过氧化物酶活性的测定方法,学会分光光度计的“动力学”测量程序
二、实验原理:(P78和P97)
三、实验材料:绿豆幼苗
四、实验步骤:
1.材料处理:10株幼苗为一组分别置于45℃(纯水最好预热至该温度)和室温中(在上课之前请先处理好材料,以课堂小组为单位)。
2.电导率的测定:2h后小心取出幼苗,冷却至室温后测定浸出液和纯水的电导率。
(不必测材料煮沸后的电导率)
3.过氧化物酶(POD)活性测定P97
3.1POD的提取:材料1g,加入KH2PO4冰浴研磨成匀浆,低温4000rpm离心15min,收集上清液,定容至25mL,低温保存
3.2POD的测定:先在分光光度计的“动力学”或“时间扫描”程序上设置好参数取比色杯2个,1个将对照液放入参比杯按照程序调零,另一个比色杯拉出加入20μL酶液,再加入1mL KH2PO4 ,最后加入3mL反应混合液,立即测量。
❖723G型分光光度计“动力学”测定
❖【3
按“
按“
按“ENT”后,出现:
测量出图谱后,按“ESC”返回到界面:
按“3”进入活性测量功能,出现如下界面:
按“SET”进行具体设置,按“ENT”可得出相应值。
按“4”进入图谱处理功能,出现如下界面:
其中按“1”可见原始图谱,按“2”可进行峰谷检测,按“3”通过横纵坐标的缩
放可达到图谱缩放功能,方便观察图谱。
按“4”具有具体的实验查询功能。
思考题
1.电导率的测定主要有哪些影响因素?
2.相对电导率和绝对电导率的概念?
3.请说出电导率和电导度的概念区别。
4.温度和CO2会影响电导度的测定结果吗?在操作中应注意什么?
5.影响酶提取、纯化和活性测定的因素有哪些?
6.测定时酶活性的测定应当定在什么时间范围内?测定植物组织过氧化物酶活性的意义与用途。
7.请分析比较两种处理下绿豆幼苗的膜透性及过氧化物酶活性。