期末复习解三角形教师版
- 格式:docx
- 大小:144.84 KB
- 文档页数:5
解直角三角形一、教育目标(一)知识与技能使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感态度与价值观 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、重、难点重点:直角三角形的解法. 难点:三角函数在解直角三角形中的灵活运用. 三、教学过程(一)明确目标1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sin ;cos ;t an ;cot b a b a B B B B c c a b ====; sin ;cos ;tan ;cot a b a bA A A A c c b a====如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二)整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.(三)重点、难点的学习与目标完成过程1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题例1 在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c=287.4,∠B=42°6′,解这个三角形.分析:解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解:(1)∠A=90°-∠B =90°-42°6′=47°54′,(2)cos ,aB c=∴a=c . cosB=28.74×0.7420≈213.3.(3) sin bB c=,∴b=c·sinB=287.4×0.6704≈192.7.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例2 在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. 在学生独立完成之后,选出最好方法,教师板书.(1)104.0tan 5.07620.49a b α=≈≈查表得A=78°51′;(2)∠B=90°-78°51′=11°9′(3)104.0sin ,.sin 0.9812106a a A c c A =∴==≈ .注意:例1中的b 和例2中的c 都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些.但先后要查两次表,并作一次加法(或减法).4.巩固练习解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.(四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.出示图表,请学生完成注:上表中“√”表示已知。
解三角形知识清单常用的主要结论有:(1)A+B+C=1800 ⑵任意两边之和大于第三边,任意两边之差小于第三边. ⑶等边对等角:a b A B =⇔=; 大边对大角:a b A B >⇔>⑷12ABC S ∆=底×高=1()2r a b c ++(其中r 是内切圆半径) 1sin 2ab C == ⑸2sin sin sin a b cR A B C===(正弦定理) ⑹22222cos ,a b c bc A b =+-= (余弦定理)课前预习1.已知ab c b a c b a ABC 3,,222=-+∆且三边长分别为,求___6__π=∠C2.在ABC ∆中,如果sin A ∶sin B ∶sin C =5∶6∶8,那么此三角形最大角的余弦值是-1/3.3.在ABC ∆中,a 、b 分别为角A 、B 的对边,若60B =︒,75C =︒,8a =,则边b 的长等于 64 4.已知:在⊿ABC 中,BCb c cos cos =,则此三角形为等腰三角形 5.在△ABC 中,角A 、B 、C 的对边分别为,,,,3,1,3a b c A a b π===则c =2.6.在△ABC 中,a ,b ,c 分别是A ∠,B ∠,C ∠的对边,且2223b c bc a ++=则A ∠等于56π7.在ABC V 中,45,B =52,5c b ==,则a 等于58.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为300,600,则塔高为4003米9.在ABC ∆中,,2,a x b ==,45B =,若这个三角形有两解,则x 的取值范围是222x << 10.在ABC ∆中,已知内角3A π=,边23BC =.设内角B x =,面积为y .(1) 求函数()y f x =的解析式和定义域;y=32sin (2x+6π)-3(0<x<32π)(2) 求y 的最大值.3典型例题例1.正弦定理与余弦定理在∆ABC 中,若 ()()3a b c c b a bc +++-=,则A =60.变式1:在∆ABC 中,若a=6,4c =,60A =,则b =__27________.变式2:在∆ABC 中,若 2b =,30A = ,105C = ,则此三角形的周长为_1226++_________. 变式3:已知a 、b 、c 是△ABC 中∠A 、∠B 、∠C 的对边,S 是△ABC 的面积.若a =4,b =5,S =53,求c 的长度.21或61例2.三角形中的几何计算在∆ABC 中,3AB AC ==,2BC =,B ∠的平分线交过点A 且与BC 平行的线于点D .求∆ABD 的面积.32变式1:已知ABC △的周长为21+,且sin sin 2sin A B C +=.(I )求边AB 的长;1(II )若ABC △的面积为1sin 6C ,求角C 的度数.3π 变式2:△ABC 中,,3,3A BC π==则△ABC 的周长为6sin()33B π++.例3.解三角形的实际应用某观察站B 在城A 的南偏西20的方向,由A 出发的一条公路走向是南偏东40,在B 处测得公路上距B31km 的C 处有一人正沿公路向A 城走去,走了20km 之后到达D 处,此时B ,D 间的距离为21km 。
第28章解直角三角形(单元复习课)教学任务分析问题1:在Rt △ABC 中,∠C=90°则(1)∠A 、∠B 的关系是_________, (2)_____,,的关系是c b a(3)边角关系是________________________________________________________________________________问题2:你能根据上述边角关系得到30°、45°、60°角的三角函数值吗?填写下表。
问题3:同角的三角函数之间有什么关系?互余的两角呢?问题4:锐角的正弦值是怎样随着角度数的变化而变化的?余弦、正切呢?其锐角三角函数值的范围分别是什么? 2、组织交流,总结要点;3、板书教师总结知识结构图(多媒体展示)。
【学生活动】 1、学生反思回顾知识点,回答和完成导学案中的问题及三个表格;2、绘制出自己总结的知识结构图;3、交流展示自己总结的知识结构图及自主学习的成果;4、看听记教师的总结。
用数学的意识。
帮助学生学会用数学的思考方法解决实际问题,引发认知冲突,激发学生学习兴趣。
【媒体应用】1、展示反思回顾的问题;2、展示导学案中提出的问题;3、展示师生共同总结的本章本章要点和本章知识结构图。
活动三 基础训练,查补缺漏: 【基础闯关】1、Rt △ABC 中,∠C=90°若SinA= 时,tanA= 。
2、Rt △ABC 中,∠C=90°,若AC=3BC ,则CosA= 。
3、菱形ABCD 中对角线AC 交BD 于点O ,且AC=8,BD=6,则下列结论中正确的为( )A 、Sin ∠ADB=B 、Cos ∠DAB=C 、tan ∠DBA =D 、tan ∠ADB=4、计算: (1)(2)丨Sin45°- 1丨-【教师活动】 1、操作多媒体出示问题。
2、组织学生交流和点评,得出正确答案。
【学生活动】 1、尝试完成练习,有困难的同学可以合作完成; 2、参与交流展示及点评。
第3讲三角函数的图象与性质最新考纲 1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性;2。
理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。
知识梳理1。
用五点法作正弦函数和余弦函数的简图(1)正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),错误!,(π,0),错误!,(2π,0).(2)余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),错误!,(π,-1),错误!,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)函数y=sin x y=cos x y=tan x图象定义域R R{x错误!错误!值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数1。
判断正误(在括号内打“√”或“×")(1)由sin错误!=sin 错误!知,错误!是正弦函数y=sin x(x∈R)的一个周期。
( )(2)余弦函数y=cos x的对称轴是y轴.()(3)正切函数y=tan x在定义域内是增函数.( )(4)已知y=k sin x+1,x∈R,则y的最大值为k+1。
( )(5)y=sin|x|是偶函数。
()解析(1)函数y=sin x的周期是2kπ(k∈Z).(2)余弦函数y=cos x的对称轴有无穷多条,y轴只是其中的一条.(3)正切函数y=tan x在每一个区间错误!(k∈Z)上都是增函数,但在定义域内不是单调函数,故不是增函数。
(4)当k〉0时,y max=k+1;当k<0时,y max=-k+1.答案(1)×(2)×(3)×(4)×(5)√2。
(2015·四川卷)下列函数中,最小正周期为π的奇函数是( )A。
y=sin错误!B。
y=cos错误!C.y=sin 2x+cos 2xD.y=sin x+cos x解析y=sin错误!=cos 2x是最小正周期为π的偶函数;y=cos错误!=-sin 2x是最小正周期为π的奇函数;y=sin 2x+cos 2x=2sin错误!是最小正周期为π的非奇非偶函数;y=sin x+cos x=错误!sin错误!是最小正周期为2π的非奇非偶函数.答案B3。
人教版数学八年级上册《第十二章全等三角形》期末高分突破卷附解析教师版一、单选题(每题3分,共30分)(共10题;共30分)1.(3分)如图,△ABC△△A'B'C',则△C的度数是()A.107°B.73°C.56°D.51°【答案】B【解析】【解答】解:∵△ABC△△A'B'C',∴△B'=△B=51°,∴△C=180°-△A-△B=180°-56°-51°=73°.故答案为:B.【分析】根据全等三角形的性质得出△B'=△B=51°,再根据三角形内角和定理得出△C=180°-△A-△B,即可得出答案.2.(3分)如图,在ΔABC中,∠C=90°,AD平分∠CAB,若AB=10,CD=3,则△ABD的面积是()A.9B.12C.15D.24【答案】C【解析】【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=3,∴ΔABD的面积=12AB·DE=12×10×3=15.故答案为:C.【分析】过点D作DE△AB于E,由角平分线的性质可得DE=CD=3,然后根据三角形的面积公式进行计算.3.(3分)如图,用直尺和圆规作图,以点O为圆心,适当长为半径画弧,分别交OB,OA于点E、D,再分别以点E、D为圆心,大于12ED的长为半径画弧,两弧交于点C,连接OC,则△ODC△OEC的理由是()A.SSS B.SAS C.AAS D.ASA【答案】A【解析】【解答】解:连接EC,CD.在△ODC和△OEC中,{OE=OD OC=OC EC=DC,∴△ODC△△OEC(SSS).故答案为:A.【分析】由作图可知OE=OD,CE=CD,结合OC为公共边,根据SSS可证△ODC△△OEC.4.(3分)如图,要测量中心湖两岸相对两点A,B的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再在BF的垂线DG上取点E,使点A,C,E在一条直线上,可得△ABC△△EDC.判定全等的依据是()A.SSS B.SAS C.ASA D.HL 【答案】C【解析】【解答】解:在△ABC和△EDC中{∠ABC=∠EDC=90°BC=CD∠BCA=∠DCE,∴△ABC△△EDC(ASA),依据是两角及这两角的夹边对应相等.故答案为:C.【分析】根据ASA证明△ABC△△EDC.5.(3分)如图,在△ABC和△DEF中,AB=DE,△A=△D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.△B=△E C.BC=EF D.△C=△F【答案】C【解析】【解答】解:A、在△ABC与△DEF中,{AB=DE ∠A=∠D AC=DF,∴△ABC△△DEF(SAS),故A不符合题意;B、在△ABC与△DEF中,{∠B=∠E AB=DE ∠A=∠D,∴△ABC△△DEF(ASA),故B不符合题意;C、在△ABC与△DEF中,BC=EF,AB=DE,△A=△D ∴不能判断△ABC△△DEF,故C符合题意;D、在△ABC与△DEF中,{∠C=∠F ∠A=∠D AB=DE,∴△ABC△△DEF(AAS),故D不符合题意.故答案为:C.【分析】根据全等三角形的判定定理逐项进行判断,即可得出答案.6.(3分)如图,在△ABO和△CDO中,OA=OB=a,OC=OD=b,∠AOB与∠COD互补,连接AC、BD,E是BD的中点,下列结论正确的是()A.AD=BC B.AC=2OEC.∠BOD=2∠AOC D.|a−b|<OE<a+b【答案】B【解析】【解答】解:连接AD 、BC ,∵OA=OB,OC=OD,∴AD=BC需满足的条件是△AOD△ △BOC,∴∠AOB与∠COD不一定相等,∴∠AOD与∠BOC不一定相等,∴△AOD与△BOC不一定全等,∴AD与BC不一定相等,故A错误;作DF//OB交OE 的延长线于点F ,则∠F=∠BOE,∵E是BD 的中点,∴DE=BE,在△DFE和△BOE中,{∠F=∠BOE∠DEF=∠BEODE=BE,∴△DFE△ △BOE(AAS),∴DF=OB=OA,∵∠AOB+∠COD=180°,∴∠AOC+∠BOD=180°,∵∠FDO+∠BOD=180°,∴∠FDO=∠AOC,在△FDO和△AOC中,{DF=OA∠FDO=∠AOCDO=OC,∴△FDO△ △AOC(SAS),∴FO=AC,∴FO=2OE,∴AC=2OE,故B正确;∵∠AOC+∠BOD=180°,∴∠BOD=2∠AOC需满足的条件是∠AOC=60°,显然与已知条件不符,∴∠BOD不一定等于2∠AOC,故C错误;∵|DF−OD|<FO<DF+OD,且DF=OB=a,OD=b,∴|a−b|<2OE<a+b,∴12|a−b|<OE<12(a+b),故D错误,故答案为:B.【分析】连接AD、BC,AD=BC需满足的条件是△AOD△△BOC,由△AOB与△COD不一定相等,可推导出△AOD与△BOC不一定相等,则△AOD与△BOC不一定全等,可判断A错误;作DF△OB交OE的延长线于点F,则△F=△BOE,可证明△DFE△△BOE,则DF=OB=OA,再证明△FDO△△AOC,得FO=AC=2OE,可判断B正确;由△AOC+△BOD=180°,可知△BOD=2△AOC需满足的条件是△AOC=60°,与已知条件不符,可判断C错误;由|DF−OD|<FO<DF+OD,得|a−b|<2OE<a+b,则12|a−b|<OE<12(a+b),可判断D错误.7.(3分)如图,△ABC≌△ADE,∠BAC=80°,∠B=40°,则∠E的度数为()A.40°B.50°C.60°D.80°【答案】C【解析】【解答】解:∵△ABC≌△ADE,∴∠E=∠C,在△ABC中,∠BAC=80°,∠B=40°,∴∠E=∠C=180°−80°−40°=60°,故答案为:C.【分析】根据全等三角形的性质可得∠E=∠C,再利用三角形的内角和可得∠E=∠C=180°−80°−40°=60°。
第 1 页解三角形正弦定理和余弦定理复习学案一、正、余弦定理解三角形的基本问题例1 在△ABC 中,(1)已知a =3,b =2,B =45°,求A 、C 、c ;(2)已知sin A ∶sin B ∶sin C =(3+1)∶(3-1)∶10,求最大角.点拨 (1)已知两边及其中一边对角,先利用正弦定理求出角A ,再求其余的量. (2)先由sin A ∶sin B ∶sin C =a ∶b ∶c ,求出a ∶b ∶c ,再由余弦定理求出最大角.解 (1)由正弦定理及已知条件有3sin A =2sin 45°,得sin A =32,∵a >b ,∴A >B =45°,∴A =60°或120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =2sin 75°sin 45°=6+22,当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =2sin 15°sin 45°=6-22(2)根据正弦定理可知a ∶b ∶c =sin A ∶sin B ∶sin C =(3+1)∶(3-1)∶10, ∴边c 最大,即角C 最大.设a =(3+1)k ,b =(3-1)k ,c =10k ,则cos C =a 2+b 2-c 22ab =(3+1)2+(3-1)2-(10)22(3+1)(3-1)=-12.∵C ∈(0,π),∴C =2π3回顾归纳 已知三角形的两边和其中一边的对角,应用正弦定理解三角形时,有时可能出现一解、两解或无解情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍.►变式训练1 (1)△ABC 中,AB =1,AC =3,∠C =30°,求△ABC 的面积;(2)已知a 、b 、c 是△ABC 中∠A 、∠B 、∠C 的对边,S 是△ABC 的面积.若a =4,b =5,S =53,求c 的长度.解 (1)1sin 30°=3sin B ,∴sin B =32,∴B =60°或120°,当B =60°时,A =90°,∴BC =2,此时,S △ABC =32.当B =120°时,A =30°,∴S △ABC =12×3×1×sin 30°=34.综上,△ABC 的面积为32或34.(2)∵S =12ab sin C ,∴sin C =32,于是C =60°或C =120°.当C =60°时,c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =21,∴c =21;当C =120°时,c 2=a 2+b 2-2ab cos C =a 2+b 2+ab =61, ∴c =61.∴c 的长度为21或61. 二、正、余弦定理在三角形中的应用例2 在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长.已知b 2=ac 且a 2-c 2=ac -bc .第 2 页(1)求∠A 的大;(2)求b sin Bc 的值.点拨 (1)利用cos A =b 2+c 2-a22bc 求解;(2)利用正弦定理对代数式b sin Bc进行转化.解 (1)∵b 2=ac 且a 2-c 2=ac -bc ,∴a 2-c 2=b 2-bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12,∴A =60°.(2)方法一 在△ABC 中,由正弦定理得:sin B =b sin A a ,∵b 2=ac ,∴b a =cb.∴sin B =b sin A a =c ·sin A b ,∴b sin B c =sin A =sin 60°=32.方法二 在△ABC 中,由面积公式得:12bc sin A =12ac sin B∵b 2=ac ,∴bc sin A =b 2sin B ,∴b sin B c =sin A =sin 60°=32.回顾归纳 (1)在三角形的三角变换中,正、余弦定理及勾股定理是解题的基础.如果题目中同时出现角及边的关系,往往要利用正、余弦定理化成仅含边或仅含角的关系.(2)要注意利用△ABC 中A +B +C =π,以及由此推得的一些基本关系式:sin(B +C )=sinA ,cos(B +C )=-cos A ,tan(B +C )=-tan A ,sin B +C 2=cos A2等,进行三角变换的运算.►变式训练2 在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 2B +C 2-cos 2A =72.(1)求∠A 的度数;(2)若a =3,b +c =3,求b 、c 的值.解 (1)∵B +C =180°-A ,∴B +C 2=90°-A2.由4sin 2B +C 2-cos 2A =72,得4cos 2A 2-cos 2A =72,即2(1+cos A )-(2cos 2 A -1)=72.整理得4cos 2A -4cos A +1=0.∴cos A =120°<A <180°,∴A =60°.(2)由A =60°,根据余弦定理得cos A =b 2+c 2-a 22bc ,即b 2+c 2-a 22bc =12.∴b 2+c 2-a 2=bc ,∵a =3,∴b 2+c 2-bc =3.又b +c =3,∴b 2+c 2+2bc =9,∴bc =2.由⎩⎪⎨⎪⎧ b +c =3bc =2,解得⎩⎪⎨⎪⎧ b =1c =2或⎩⎪⎨⎪⎧b =2c =1. 三、正、余弦定理在实际问题中的应用例3 A 、B 、C 是一条直路上的三点,AB =BC =1 km ,从这三点分别遥望一座电视发射塔P ,A 见塔在东北方向,B 见塔在正东方向,C 见塔在南偏东60°方向.求塔到直路的距离.解如图所示,过C、B、P分别作CM⊥l,BN⊥l,PQ⊥l,垂足分别为M、N 、Q.设BN=x,则PQ=x,PA=2x.∵AB=BC,∴CM=2BN=2x,PC=2x.在△PAC中,由余弦定理得AC2=PA2+PC2-2PA·PC·cos 75°,即4=2x2+4x2-42x2·624-,解得x2=2(43)13+,过P作PD⊥AC,垂足为D,则线段PD的长为塔到直路的距离.在△PAC中,由于12AC·PD=12PA·PC·sin 75°,得PD020sin7522sin752P A P C xAC⋅⋅⋅==,=2(43)62753213413+++⋅⋅=(km).答塔到直路的距离为75313+km.回顾归纳(1)解斜三角形应用题的程序是:①准确地理解题意;②正确地作出图形(或准确地理解图形);③把已知和要求的量尽量集中在有关三角形中,利用正弦定理和余弦定理有顺序地解这些三角形;④根据实际意义和精确度的要求给出答案.(2)利用解斜三角形解决有关测量的问题时,其关键在于透彻理解题目中的有关测量术语.►变式训练3如图所示,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,设乙船按方位角为θ的方向沿直线前往B处救援,求sin θ的值.解在△ABC中,AB=20,AC=10,∠BAC=120°,由余弦定理知:BC2=AB2+AC2-2AB·AC·cos 120°=202+102-2×20×10×12⎛⎫-⎪⎝⎭=700.∴BC=107第3 页第 4 页由正弦定理得sin sin A B B C A C B B A C=∠∠,∴sin ∠ACB=A B B C·sin ∠BAC=·sin 120°=7.∴cos ∠ACB=7.∴sin θ=sin(∠ACB+30°)=sin ∠ACB ·cos 30°+cos ∠ACB ·sin 30°=7×2+7×12=14,.课堂小结:1.正弦定理揭示了三角形的两边和对角的关系,因此,可解决两类问题: (1)已知两角和其中任一边,求其他两边和一角,此时有一组解. (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他解,其解不确定. 2.余弦定理揭示了三角形中两边及其夹角与对应边的关系,是勾股定理的推广,它能解决以下两个问题:(1)已知三边,求其他三角,其解是唯一的.(2)已知两边及它们的夹角,求第三边及其他两角,此时也只有一解.3.正、余弦定理将三角形的边和角有机地联系起来,从而使三角形与几何产生了联系,为求与三角形有关的量(如面积、外接圆、内切圆)提供了理论基础,也是判断三角形形状、证明三角形中有关等式的重要依据.课后作业一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135° C .45° D .以上答案都不对答案 C 解析 sin B =b ·sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 答案 C 解析 cos A cos B >sin A sin B ⇔cos(A +B )>0,∴A +B <90°,∴C >90°,C 为钝角.3.(2008·福建)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3答案 D 解析 ∵(a 2+c 2-b 2)tan B =3ac , ∴a 2+c 2-b 22ac ·tan B =32,即cos B ·tan B =sin B =32.∵0<B <π,∴角B 的值为π3或2π3.4.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49第 5 页答案 D 解析 S △ABC =12AC ×AB ×sin 60°=12×16×AB ×32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ×AC cos 60°=552+162-2×16×55×12=2 401∴BC =49.5.(2012·广东东莞模拟)△ABC 中,下列结论:①a 2>b 2+c 2,则△ABC 为钝角三角形;②a 2=b 2+c 2+bc ,则A 为60°;③a 2+b 2>c 2,则△ABC 为锐角三角形;④若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =1∶2∶3.其中正确的个数为( )A .1B .2C .3D .4答案 A 解析 ①由a 2>b 2+c 2知A 为钝角,①正确;②由a 2=b 2+c 2+bc 知A =120°,②错;③由a 2+b 2>c 2,仅能判断C 为锐角,A 、B 未知,③错;④由A ∶B ∶C =1∶2∶3,知A =π6,B =π3,C =π2,∴sin A ∶sin B ∶sin C =12∶32∶1=1∶3∶2,④错.所以仅①正确.二、填空题6.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦是方程5x 2-7x -6=0的根,则此三角形的面积是________.答案 6 cm 2解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35得sin θ=45,∴S =12×3×5×45=6 (cm 2).7.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A=______.答案 2393.解析 由S =12sin A =121×c ×32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13.∴a sin A =13sin 60°=2393. 8.一艘船以20 km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1 h 后船在C 处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 等于________.解析 如图所示,sin 45sin 30BCAC =,∴BC=sin 30A C ×sin 45°=20122⨯, (km).9.(2012·广东广州一模)已知△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,且a =2,第 6 页cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.解 (1)∵cos B =35>0,且0<B <π,∴sin B =1-cos 2B =45由正弦定理得a sin A =b sin B ,sin A =a sin B b =2×454=25.(2)∵S △ABC =12ac sin B =4,∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×3517,∴b =17.10.在△ABC 中,已知AB =463,cos B =66,AC 上的中线BD =5,求sin A 的值.解 设E 为BC 的中点.连接DE ,则DE ∥AB ,且DE =12AB =263,设BE =x .在△BDE 中利用余弦定理可得:BD 2=BE 2+ED 2-2BE ·ED cos ∠BED ,5=x 2+83+2×263×66x ,解得x =1,x =-73(舍去).故BC =2,从而AC 2=AB 2+BC 2-2AB ·BC ·cos B =283AC =2213.又sin B =306,故2sin A =2213306,sin A =7014.11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 2A +B2-cos 2C =72.(1)求角C 的大小; (2)求△ABC 的面积.解 (1)∵A +B +C =180°,由4sin 2A +B 2-cos 2C =72,得4cos 2C 2-cos 2C =72, ∴4·1+cos C 2-(2cos 2C -1)=72,整理,得4cos 2C -4cos C +1=0,解得cos C =12,∵0°<C <180°,∴C =60°.(2)由余弦定理得c 2=a 2+b 2-2ab cos C , 即7=a 2+b 2-ab ,∴7=(a +b )2-3ab , 由条件a +b =5,得7=25-3ab ,ab =6,∴S △ABC =12ab sin C =12×6×32=332.。
高中-《解三角形中面积(周长)最值的求法(教师版)》解三角形中面积(周长)最值的求法一、考法解法命题特点分析:在正余弦定理的运用中,有一类题目值得关注。
这类题有一个相同的特点,即知道三角形的一条边和边所对的角,求三角形面积(或周长)的最值(或范围),但在解题方法的选择上有值得考究的地方。
解题方法荟萃:求三角形面积(或周长)的最值(或范围),一般可有两种思路去解决:(1)用余弦定理+基本不等式;(2)用正弦定理+三角函数的取值范围。
二、典型题剖析例1:在三角形ABC中,角A、B、C的对边分别为a、b、c,且cosA=1,a=4.(1)若b+c=6,且b<c,求b、c的值;(2)求三角形ABC的面积的最大值。
解析】解(1):由余弦定理a^2=b^2+c^2-2bccosA,得bc=8;又因为b+c=6且b<c,解方程组得b=2,c=4.解(2):由余弦定理a^2=b^2+c^2-2bccosA,得16=b^2+c^2-bc;又因为b^2+c^2≥2bc,所以bc≤15/32.又因为sinA=√3/2,所以bcsinA≤2/3,所以三角形面积S=1/2bcsinA≤1/3√3.当b=c时,三角形面积取得最大值,为1/3√3.例2:在三角形ABC中,角A、B、C所对的边分别为a、b、c,a=2,向量a=(sin(A-B),1),b=(1,sinB-sinC),且a⊥b。
(1)求角A;(2)求三角形ABC面积的取值范围。
解析】解(1):因为a⊥b,所以sin(A-B)×1+(sinB-sinC)×1=0,即sinAcosB-cosAsinB+sinB-sinAcosB-cosAsinB=0.化简得sinB=2cosAsinB,因为si nB≠0,所以cosA=1/2,又因为0°<A<180°,所以A=60°。
解(2):由正弦定理2R=a/sinA,又b+c=120°,所以S=1/2bc×sinA=(2RsinB)×(2RsinC)×sin60°/4R^2sinA=√3sinBsinC /2sinA。
……………………装………期末复习解三角形教师版 一、单选题
1.在ΔA B C 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若a sin A =b sin B +(c −b )sin C ,则角A 的值为( )
A. π
6 B. π
4 C. π
3 D. 2π
3 【答案】C
2.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若ABC 的面积为222
4
a b c +-,
则C = A.
2π B. 3π C. 4π D. 6
π 【答案】C
3.在△A B C 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b =5,C =60∘,且△A B C 的面积为5 3,则△A B C 的周长为( )
A. 8+ 21
B. 9+ 21
C. 10+ 21
D. 14 【答案】B
4.在△A B C 中,cos C
2
=
5
5
,B C =1,A C =5,则A B =
A. 4 2
B. 30
C. 29
D. 2 5 【答案】A
5.在△A B C 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若sin 2B −sin 2C −sin 2A = 3sin A sin C ,则B 的大小为( )
A. 30°
B. 60°
C. 120°
D. 150° 【答案】D
6.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,
已知a =b =6
A π
∠=,
则B ∠=( )
A .
4π B .4
π或34π
C .3π或23π
D .3
π
【答案】B
7.如图所示,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m,则树的高度为( )
A. B. C. D. 【答案】A
8.在ABC ∆中,若c b a +=2,C B A sin sin sin 2
⋅=,则ABC ∆一定是
A.钝角三角形
B.正三角形
C.等腰直角三角形
D.非等腰三角形 【答案】B
试卷第2页,总5页
……外………………○9.8.已知△ABC 中,三个顶点的坐标分别为A (5,-1),B (1,1),C (2,3),则△ABC 的形状为( )
A .等边三角形
B .直角三角形
C .等腰直角三角形
D .钝角三角形 【答案】B
10.在△ABC 中,135B = ,15C = ,5a =,则此三角形的最大边长为( ) A.35 B.34 C.24
【答案】C
11.在△ABC 中,bc c b a ++=222,则A 等于( ) A .60° B .45° C .120° D .30°
【答案】C 12.
离为
向,这时船与灯塔的距后,看见灯塔在正西方海里
的方向航行方向,后来船沿南偏东偏东某船开始看见灯塔在南906030.5︒︒
海里230.A 海里330.B 海里345.C 海里245.D
【答案】B
第II 卷(非选择题)
二、填空题
13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a = 7,b =2,A =60°,则sin B =___________,c =___________. 【答案】
21
7
3 14.ΔA B C 的两边长为2,3,其夹角的余弦为13
,则其外接圆半径为__________.
【答案】
9 28
15.如图,在平面四边形A B C D 中,∠A =45°,∠B =60°,∠D =150°,A B =2B C =8,则四边形A B C D 的面积为__________.
【答案】24−4 3
16.如图所示,在ΔA B C 中,D 是边B C 中点,且cos ∠A D C =cos C =1
3,则A C
C D 的值等于________.若
A D =3,则A
B =______________.
…………○……○…………装…………○…
【答案】 32 . 17.
三、解答题
17.在△ABC 中,a =7,b =8,cos B = –1
7. (Ⅰ)求∠A ;
(Ⅱ)求AC 边上的高. 【答案】(1) ∠A =π
3 (2) AC 边上的高为
3 32
18.在ΔA B C 中,角A ,B ,C 对边分别为a ,b ,c ,且满足b c =1,a 2−b c =(b −c )2 (1)求ΔA B C 的面积;
(2)若cos B cos C =1
4,求ΔA B C 的周长. 【答案】(1) 3
4
(2)3
19.在ΔA B C 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos A =− 10
10
,b = 2,c = 5.
(1)求a ;
(2)求cos (B −A )的值. 【答案】(1) a =3. (2) cos (B −A )=
210
. 20.在ΔA B C 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =b cos C +c sin B . (1)求角B ;
(2)若b =2 2,求ΔA B C 的面积最大值. 【答案】(1)B =450(2)2 2+2
21.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,且cos sin a B b A c +=. (Ⅰ)求角A 的大小; (Ⅱ)若a =
ABC ∆的面积为
1
2
,求b c +的值. 【答案】(1)4
A π
=.
(2)2b c +=.
22.在ΔA B C 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a −b =1,2cos 2A +B 2
−cos 2C =1,
3sin B =2sin A .
(1)求角C 的大小;
试卷第4页,总5页
……○…………装※※请※※不※※○……(2)求c
b 的值.
【答案】(1)π
3
;(2) 72
23.在ΔA B C 中,角A ,B ,C 的对边分别为a ,b ,c ,a =b (sin C +cos C )。
(1)求角B 的大小;
(2)若a =1,b = 2,求ΔA B C 的面积。
【答案】(1)π
4;(2)
1+ 34
24.在ΔA B C 中,内角A ,B ,C 所对的边分别为a ,b ,c ,向量m = sin B +sin C ,sin A +sin B ,n
= sin B −sin C ,sin A ,且m
⊥n . (1)求角C 的大小;
(2)求sin A +sin B 的取值范围.
【答案】(1)C =2π
3;(2)sin A +sin B 的取值范围是 3
2,1 .
25.)在△ABC 中,a 2+c 2=2b 2,其中a ,b ,c 分别为角A ,B ,C 所对的边长. (1)求证:B≤3
π; (2)若4
B π
=
,且A 为钝角,求A .
【答案】 (1)见解析; (2)58
A π=
. 26.如图:某快递小哥从A 地出发,沿小路A B →B C 以平均时速20公里/小时,送快件到C 处,已知B D =10(公里),∠D C B =450,∠C D B =300,ΔA B D 是等腰三角形,∠A B D =1200. (1) 试问,快递小哥能否在50分钟内将快件送到C 处?
(2)快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路A D →D C 追赶,若汽车平均时速60公里/小时,问,汽车能否先到达C 处?
【答案】(1)不能(2)能
27.27.如图,开发商欲对边长为1km 的正方形A B C D 地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路E F (点E 、F 分别在B C 、C D 上),根据规划要求ΔE C F 的周长为2km .
○…………线…………○……_
…………内…………○…………装…………○…
(1)设
,试求α+β的大小;
(2)欲使
的面积最小,试确定点E 、F 的位置.
【答案】(1)α+β=π
4;(2)当B E =D F = 2−1时,ΔA E F 的面积最小.。