《线性代数A》自测题1
- 格式:doc
- 大小:182.50 KB
- 文档页数:6
线性代数试题(A )一、选择题:(每小题3分,共18分)2、2、A 、B 均为n 阶方阵,则以下表达正确的是__ _ (A ) AB=BA (B ) AB=0,则A=0或B=0 (C ) ()111---=B A AB (D ) ()T T TA B AB =3、设矩阵A 的秩是r , 则(A )A 中没有等于零的1-r 阶子式 (B )A 中至少有一个r 阶子式不等于零 (C )A 中有不等于零的1+r 阶子式 (D )A 中没有等于零的r 阶子式4、已知 )3,2,1(=a )31,21,1(=b ,且b a T A = 则4A =(A ) 27÷÷÷÷÷÷øöççççççèæ1233321231211(B )÷÷÷÷÷÷øöççççççèæ1233321231211 (C )9 (D) 81 5、设A 是可逆矩阵,*A 是A 的伴随矩阵,则*-=A A A A 1)( *-=A A B 1)( *--=A AA C 11)( 11)()(-*-=A A D6、与对角矩阵D = úúúûùêêêëé211 相似的矩阵是 (A) úúúûùêêêëé100020101. (B) úúúûùêêêëé200110001. (C) úúúûùêêêëé200010011. (D) úúúûùêêêëé-111021001 二、填空题:(每小题4分,共20分)1、设A , B 为三阶矩阵, 2=A ,41=B , 则12-)(BA = 2、行列式8040703362205010的值为 3、设A 是n 阶方阵,若3-=n A R )(,则0=AX 的基础解系所含向量的个数为4、k= 时,向量)5,,1(k =b 能由向量)1,1,2(),2,3,1(21-=a -=a 线性表出。
厦门大学网络教育2008-2009学年第一学期《线性代数》模拟试卷( A )卷一、单项选择题(每小题3分,共24分).1. 若111221226a a a a =,则121122212020021a a a a --的值为( ). A .12; B. -12; C. 18; D. 0. 2. 设A B 、为同阶方阵,则下面各项正确的是( ).A.若0AB =, 则0A =或0B =;B.若0AB =,则0A =或0B =;C.22()()A B A B A B -=-+;D.若A B 、均可逆,则111()AB A B ---=.3. 若方程组12312302403690x t x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 的基础解系含有两个解向量,则 t =( ). A .2; B .4; C .6; D .8.4. 已知方程组A x b =对应的齐次方程组为0Ax =,则下列命题正确的是( ).A .若0Ax =只有零解,则Ax b =一定有唯一解;B .若0Ax =有非零解,则Ax b =一定有无穷解;C .若Ax b =有无穷解,则0Ax =一定有非零解;D .若Ax b =有无穷解,则0Ax =一定只有零解.5. 设12, u u 是非齐次线性方程组Ax b =的两个解,则以下结论正确的是( ).A .12u u +是Ax b =的解;B .12u u -是Ax b =的解;C .1ku 是Ax b =的解(1k ≠);D .12u u -是0Ax =的解. 6. 设123,,a a a 线性相关,则以下结论正确的是( ).A .12,a a 一定线性相关;B .13,a a 一定线性相关;C .12,a a 一定线性无关;D .存在不全为零的数123,,k k k ,使得1122330k a k a k a ++=.7. 若20000101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与200010001B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦相似,则x =( ). A .-1; B .0; C .1; D .2.8. 二次型f(x 1,x 2,x 3)=32232221x x 12x 3x 3x +++是( ).A. 正定的;B. 半正定的;C. 负定的;D. 不定的.二、填空题(每小题4分,共24分)1. 设802020301A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,*A 为A 的伴随矩阵,则*A =_________. 2. 非齐次线性方程组m n A x b ⨯=有唯一解的充分必要条件是_________.3. 设方程组123131232 1 2 53(8)8x x x x x x x a x ++=⎧⎪+=⎨⎪+++=⎩,当a 取__________时,方程组无解.4. 设向量组1(1,3,)a k =-,2(1,0,0)a =,3(1,3,2)a =-线性相关,则k =_________.5. 二次型3231212322213214225),,(x x x x x tx x x x x x x f +-+++=为正定二次型,则t 的取值范围是_____________.6. 3阶方阵A 的特征值分别为1,-2,3,则21()A -的特征值为_________.三、计算题(共38分).1. (10分) 计算行列式 3112513420111533D ---=---.2. (10分) 求123221343A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的逆矩阵1A -.3. (10分)求向量组)11,9,5,8(),2,1,1,3(),10,7,1,1(),1,1,1,2(4321=--=-==αααα的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示.4. (8分)已知111131111A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求A 的特征值. 四、证明题(每小题7分,共14分).1. 设列矩阵12(,,,)T n X x x x = 满足1T X X =,E 为n 阶单位阵,2T H E XX =-,证明: H 是对称阵,且T HH E =.2. 证明二次型22256444f x y z xy xz =---++是负定的.答案:一.1.A 1211121112111112222122212221212220220(1)22122021a a aa a a a a a a a a a a a a =-=-==--2. B 由矩阵的理论可得选项B3. C 基础解系含有两个解向量3()2()1r A r A ⇒-=⇒=,12312324006369000A t t ⎛⎫⎛⎫ ⎪ ⎪=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,6t =时,()1r A =4. C 当()()r A r A =时,Ax b =有解5. D 1212()2A u u Au Au b b b +=+=+=,因此12u u +不是Ax b =的解, 下面的选项类似讨论6. D 由线性相关的定义可得选项D7. B 相似矩阵具有相同的特征值8.D f 的矩阵是100036063A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,A 的各阶主子式为:1110a =>,103003=>,10003613366270063A ==⋅⋅-⋅=-<,因此f 为不定的 二.1.16 8022016124301A ==-=, 33***416A A A E A AA A ====⇒=2. n A r =)( 由方程组解的理论可得3. 0 方程组无解可得()(,)r A r A b ≠11211121112110120111011153880223001a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥→--→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--⎣⎦⎣⎦⎣⎦,(,)3r A b =,当0a =时,()2r A =。
线性代数试卷及答案-CAL-FENGHAI.-(YICAI)-Company One1《线性代数A 》试题(A 卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:23的一组标准正34《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分)56二、填空题(每小题3分,共18分)1、 256;2、 132465798⎛⎫ ⎪--- ⎪ ⎪⎝⎭; 3、112211221122000⎛⎫⎪- ⎪ ⎪-⎝⎭; 4、 ; 5、 4; 6、 2 。
三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法:231211201012010*******121011411033110331023211027210027810027801141010144010144001103001103001103---⎛⎫⎛⎫⎛⎫⎪⎪⎪-−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎪⎪⎪−−→--−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭―――――(6分)所以1278144103X A B -⎛⎫⎪==-- ⎪ ⎪⎝⎭.―――――(8分)四.解:对向量组12345,,,,ααααα作如下的初等行变换可得:1234511143111431132102262(,,,,)21355011313156702262ααααα--⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪=→ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭7111431021*******113100000000000000000000--⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭――――(5分) 从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩12345{,,,,}ααααα=2(8分)且3122ααα=-,4123ααα=+,5122ααα=--――――(10分) 五.解:对方程组的增广矩阵进行如下初等行变换:221121121121110113011311101112002421120113400(2)(1)42p p p p p p p p p p p p p p p p p p p p p ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+--+⎝⎭⎝⎭⎝⎭-⎛⎫ ⎪−−→------- ⎪ ⎪-+-+⎝⎭(分)(1) 当10,(2)(1)0,p p p -≠-+-≠且时即1,2,p p ≠≠-且时系数矩阵与增广矩阵的秩均为3,此时方程组有唯一解.――――(5分)(2) 当1,p =时系数矩阵的秩为1,增广矩阵的秩为2,此时方程组无解.――――(6分)(3) 当2,p =-时此时方程组有无穷多组解. 方程组的增广矩阵进行初等行变换可化为81122112211221211033301112111033300001011011180000------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-−−→-−−→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭--⎛⎫⎪−−→------ ⎪ ⎪⎝⎭(分)故原方程组与下列方程组同解:132311x x x x -=-⎧⎨-=-⎩ 令30,x =可得上述非齐次线性方程组的一个特解0(1,1,0)T ξ=--;它对应的齐次线性方程组132300x x x x -=⎧⎨-=⎩的基础解系含有一个元素,令31,x =可得1(1,1,1)T ξ=为该齐次线性方程组的一个解,它构成该齐次线性方程组的基础解系.此时原方程组的通解为001101,,.k k k k ξξ+这里为任意常数――――(12分)六.解:(1)由于A的特征多项式2124||222(3)(6)421I A λλλλλλ----=-+-=+----故A 的特征值为13λ=-(二重特征值),36λ=。
第一章 行《线性代数》单元自测题列式专业 班级 姓名 学号一、填空题:1.设12335445i j a a a a a 是五阶行列式中带有负号的项,则i =____2____;j =_____1____。
2. 在四阶行列式中,带正号且包含因子23a 和31a 的项为_____44312312a a a a __。
3. 在五阶行列式中,项2543543112a a a a a 的符号应取_______+ ___。
4. 在函数xx x x x x f 21123232101)(=中,3x 的系数是 1- ____。
5. 行列式=600300301395200199204100103____2000______。
一、 计算下列各题:1.设4321630211118751=D ,求44434241A A A A +++的值 解:根据行列式展开定理的推论,有44434241A A A A +++4424432342224121A a A a A a A a ⋅+⋅+⋅+⋅==02.计算ab b a b a ba 00000000000 解:由行列式展开定理有abb a b a b a 000000000000 1110)1(-+⋅-⨯=n a b a b a a 11000)1(-+⋅-⨯+n n b a b a b bn n n b a 1)1(+-+=3.计算n 222232222222221解:n222232222222221)加到各列上第二列乘(1-nn n ⨯--202001200200021)1(-=)1(2022020120002-⨯-n n n)!2(2-⋅-=n4.计算ab b b b a b b bb a b bb b a解:ab b b b a b b b b a b b b b a各行加到第一行上abbbb a b b b b a b bn a b n a b n a b n a)1()1()1()1(-+-+-+-+ab b b b a b b bb a b b n a 1111])1([⋅-+=一列从第二列开始各列减第ba b b a b b a b b n a ---⋅-+00000001])1([1)(])1([--⋅-+=n b a b n a5.设51234555533325422221146523D =,求3132333435,A A A A A +++。
自测卷一 一、单项选择题1.设A ,B 均为n 阶可逆矩阵,则 ( )()A . B A +可逆;()B . kA 可逆(k 为常数);()C . AB 可逆;()D . 111)(---=BA AB .2.设A 是4阶矩阵,且A 的行列式0=A ,则A 中( ). ()A . 必有一列元素全为0; ()B . 必有两列元素成比例;()C . 必有一列向量是其余列向量的线性组合; ()D . 任意列向量是其余列向量的线性组合.3.设A 是65⨯矩阵,而且A 的行向量线性无关,则( ). ()A . A 的列向量线性无关;()B . 线性方程组B AX =的增广矩阵A 的行向量线性无关;()C . 线性方程组B AX =的增广矩阵A 的任意四个列向量线性无关; ()D . 线性方程组B AX =有唯一解.4.设n 阶矩阵A 非奇异(n 2≥),A 的伴随矩阵是*A ,则 ( ) 成立.()A . A A A n 1**)(-=; ()B . A AA n 1**)(+=;()C . A AA n 2**)(-=; ()D . A AA n 2**)(+=.5.对n 元方程组( ).()A . 若AX=0只有零解,则AX=b 有唯一解; ()B . AX=0有非零解的充要条件是0=A ;()C . AX=b 有唯一解的充要条件是r (A )=n ;()D . 若AX=b 有两个不同的解,则AX=0有无穷多解.二、填空题1.已知11111321--x 是关于x 的一次多项式,该式中x 的系数为2.已知矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=k k k k 111111111111A ,且A 的秩()3=A r ,则=k .3.已知线性方程组⎪⎩⎪⎨⎧=+=+-=+a y x y x y x 25320有解,则=a .4.设A 是n 阶矩阵,0≠A ,*A 是A 的伴随矩阵.若A 有特征值λ,则()1*2-A必有一个特征值是 . 5.若二次型()322123222132122,,x ax x x x x x x x x f ++++=是正定二次型,则a的取值范围是 .三.设n 阶矩阵A 和B 满足条件:AB B A =+. ⑴ 证明:E A -是可逆矩阵,其中E 是n 阶单位. ⑵ 已知矩阵⎪⎪⎪⎭⎫⎝⎛-=200012031B ,求矩阵A . 四.当a 、b 为何值时,线性方程组()⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++12323122043214324324321ax x x x b x x a x x x x x x x x 有唯一解,无解,有无穷多组解,并求出有无穷多组解时的通解. 五. 设⎪⎪⎪⎭⎫⎝⎛---=122113221A ,求A 的特征值与特征向量. 六. 利用初等行变换求下列矩阵的列向量组的一个最大无关组:⎪⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125 七. 若二次型323121232221222x x x x x x x x x f βα+++++=经正交变换后可变为标准形23222y y +,求α,β.并求出该正交变换.八. 已知三维线性空间的一组基底为()0111,,=α,()1012,,=α,()1103,,=α求向量()002,,=β在上述基底下的坐标.九.设A 是n 阶矩阵,如果存在正整数k ,使得O A =k (O 为n 阶零矩阵),则称A 是n阶幂零矩阵.求证:⑴. 如果A 是n 阶幂零矩阵,则矩阵A 的特征值全为0. ⑵. 如果O A ≠是n 阶幂零矩阵,则矩阵A 不与对角矩阵相似.自测题一答案一、单项选择题1. C 2. C 3.B 4.C 5. D 二、填空题(每小题3分,共15分。
线性代数(A)试题及答案免费下载(每小题3分,将答案的序号填在下面的表格里)1.若行列式01011212=-k k ,则k 的值为022332....D C B A 或或-- 2.设B A ,都是n 阶可逆矩阵,则下列各式成立的是B A B A A +=+.B A AB B =.111---=B A AB C )(.111---+=+B A B A D )(.3. 若行列式 1321321321=c c c b b b a a a ,则行列式321321321222a a a b b b c c c 的值是2211....D C B A --4. 设B A ,为3阶方阵,且221==B A ,,则 =-)(12A B T322816....D C B A5. 设矩阵=000010001A ,则它的秩=)(A R 3210....D C B A6. 设A ,B 是n 阶可逆矩阵,则分块矩阵00B A 的逆矩阵是 ???? ??--0011A B A .????--1100A B B .--0011B A C .???? ??--1100B A D .7. 下列说法正确的是A .任何矩阵经过初等行变换都可化为单位矩阵B .任何初等矩阵都是可逆矩阵C .任何非零方阵的行列式都不为零D .任何向量组的最大无关组都是唯一的 8.设A 是可逆矩阵,则矩阵方程B XA =的解为111---AB D BA C B A B BA A ....9. 下列说法不正确的是.A 相似矩阵有相同的特征值.B 任意1+n 个n 维向量必线性相关.C n 元齐次线性方程组0=AX 有非零解的充要条件是n A R <)( .D n 阶方阵可对角化的充要条件是它有n 个不同的特征值10.二次型2221212x x x x f +-=的矩阵是-1021.A--1111.B-000010021.C ????? ??--000011011.D1. 四阶行列式000403002001000的值为2. 若向量组=????? ??=????? ??=10031121321ααα,,k 线性相关,则k 的值为 3. 向量组=????? ??=????? ??-=211302111321ααα,,的秩为 4. 设A 为实对称矩阵,=3211p 与??--=k p 412分别是属于A 的不同特征值1λ与2λ的特征向量,则其中k 的值是5. 若43?矩阵A 的秩是3=)(A R ,则齐次线性方程组O AX =的基础解系所含向量的个数为6. 若3阶可逆矩阵A 的特征值分别为1,-1,2,则其逆矩阵1-A 的特征值为7. 设向量组321ααα,,线性无关,则向量组321211αααααα+++,,线性(填无关或相关)8. 若矩阵????? ??=x A 10100002与??-=10000002y B 相似,则y x ,分别为 9.矩阵=1200330000100021A 的逆矩阵为三、解答题(8分)设T XX A AB +=,其中----=????? ??-=111111111111B X , 求矩阵A四、解答题(8分)求向量组=13211α,??????? ??=21322α,-=22133α,=52404α,的秩及其一个极大无关组。
线性代数试题1及答案一. 填空题(每空3分,共15分)1. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111c b a c b a c b a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111d b a d b a d b a B 且4=A ,1=B 则=+B A 20 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围是44 t -3. A 为3阶方阵,且21=A ,则=--*12)3(A A 2716-4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是0,21====n n λλλ5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 n二. 选择题(每题3分,共15分)6. 设线性方程组⎪⎩⎪⎨⎧=+=+--=-0322313221ax cx bc bx cx ab ax bx ,则下列结论正确的是(A ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则(C )成立(A) B A B A +=+ (B) BA AB =(C) BA AB = (D) 111)(---+=+B A B A8. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=331332123111131211232221a a a a a a a a a a a a B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010100012P 则(C )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB (D ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ⨯矩阵,r A r =)(<n ,那么A 的n 个列向量中(B ) (A )任意r 个列向量线性无关 (B) 必有某r 个列向量线性无关(C) 任意r 个列向量均构成极大线性无关组(D) 任意1个列向量均可由其余n -1个列向量线性表示三. 计算题(每题7分,共21分)11. 设⎪⎪⎪⎭⎫⎝⎛=300041003A 。
第一章 行列式(√)1.若111213212223313233a a a a a a d a a a =,则131211232221333231a a a a a a d a a a =. 2.互换行列式的任意两行,行列式值不变. ( ) 3.排列631254的逆序数是6. ( )4.对角行列式的值等于其所有对角元素的乘积. ( )5.分块对角阵的行列式等于对角线上各方块行列式之积.( )6.设A 为3阶方阵,2A =,则12TA A =__________. 7.逆序数()21n τ= _____________. 8.排列32514的逆序数是: . 9.排列631254的逆序(631254)t = 8 .10.设四阶行列式1112224333444pa b c p a b c D p a b c p a b c =,则第四列的代数余子式之和 = 0 .11.设3312243,0311A tB ⨯-⎛⎫ ⎪=≠ ⎪ ⎪-⎝⎭且AB=0,则t = 3 . 12.设a 、b 为实数,则当a =___且b =___时,010000=--a b ba13.==343332312423222143211111x x x x x x x x x x x x D __________________________. 14.设D 为一个三阶行列式,第三行元素分别为-1,2,3,其余子式分别为1,2,1,则D ____________=.15.设211111401D-=-,ijA为D中元素ija的代数余子式,则313233A A A++=_______.16.sin coscos sinαααα-=_____________.17.00102000n=_____________.18.设211111401D-=-,ijA为D中元素ija的代数余子式,则313233A A A++=_______.19.若D是n阶行列式,下列说法中错误的是()..A D与T D相等;.B若D中有两行元素成比例,则D等于零;.C若D中第i行除()j i,元外都为零,则D等于()j i,元与它的代数余子式的乘积;.D D的某一行元素与另一行的对应元素的余子式乘积之和为零.20.行列式349571214-的元素23a的代数余子式23A为()A. 3B.3-C.5D.5-21.方程111012λλλλ-=的实根个数为()A. 0B. 1 .C 2 .D 3 22.23.计算行列式2111121111211112D=;1311131113D=;21111351925D=;1411141114D=;21111241416D =;0100421523132131---;1000313333133331;3112513420111533D ---=---;=aa a a 111111111111 24.设3351110243152113------=D D 的()j i ,元的代数余子式记作ijA ,求 34333231223A A A A +-+25.设 3142313150111235------=D .D 的()j i ,元的余子式记作ijM ,求14131211M M M M -+-.26.设 4001030100214321=D ,D 的()j i ,元的代数余子式记作ij A , 求14131211A A A A +++.。
线性代数A答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--线性代数模拟题一.单选题.1.下列( A )是4级偶排列.(A ) 4321; (B) 4123; (C) 1324; (D) 2341. 2. 如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111324324324a a a a a a a a a a a a D ---=, 那么=1D ( B ).(A ) 8; (B) 12-; (C) 24; (D) 24-.3. 设A 与B 均为n n ⨯矩阵,满足O AB =,则必有( C ).(A )O A =或O B =; (B )O B A =+;(C )0=A 或0=B ; (D )0=+B A .4. 设A 为n 阶方阵)3(≥n ,而*A 是A 的伴随矩阵,又k 为常数,且1,0±≠k ,则必有()*kA 等于( B ).(A )*kA ; (B )*1A k n -; (C )*A k n ; (D )*1A k -. 5.向量组s ααα,....,,21线性相关的充要条件是( C ) (A )s ααα,....,,21中有一零向量(B) s ααα,....,,21中任意两个向量的分量成比例 (C) s ααα,....,,21中有一个向量是其余向量的线性组合 (D) s ααα,....,,21中任意一个向量都是其余向量的线性组合6. 已知21,ββ是非齐次方程组b Ax =的两个不同解,21,αα是0=Ax 的基础解系,21,k k 为任意常数,则b Ax =的通解为( B ) (A) 2)(2121211ββααα-+++k k ; (B) 2)(2121211ββααα++-+k k(C) 2)(2121211ββββα-+++k k ; (D) 2)(2121211ββββα++++k k7. λ=2是A 的特征值,则(A 2/3)-1的一个特征值是(B )(a)4/3 (b)3/4 (c)1/2 (d)1/48. 若四阶矩阵A 与B 相似,矩阵A 的特征值为1/2,1/3,1/4,1/5,则行列式|B -1-I|=( B )(a)0 (b)24 (c)60 (d)1209. 若A 是( A ),则A 必有A A ='.(不清楚A '表示什么,如果是转置矩阵,选A)(A )对角矩阵; (B) 三角矩阵; (C) 可逆矩阵; (D) 正交矩阵. 10. 若A 为可逆矩阵,下列( A )恒正确.(A )()A A '='22; (B) ()1122--=A A ;(C) [][]111)()(---''='A A ; (D) [][]'=''---111)()(A A . 二.计算题或证明题1. 设矩阵⎪⎪⎪⎭⎫⎝⎛----=3241223k kA (1)当k 为何值时,存在可逆矩阵P ,使得P -1AP 为对角矩阵(2)求出P 及相应的对角矩阵。
线性代数(A 卷)一﹑选择题(每小题3分,共15分)1。
设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A )AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D )A B B A +=+2。
如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( )(A) n (B) s (C ) n s - (D) 以上答案都不正确 3。
如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8--4。
设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么( )(A) 2331A ⎛⎫=⎪-⎝⎭ (B) 2241A ⎛⎫= ⎪-⎝⎭ (C) 2121A ⎛⎫= ⎪-⎝⎭(D) 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则( ) (A ) A 的行向量组和列向量组均线性相关 (B )A 的行向量组线性相关,列向量组线性无关 (C ) A 的行向量组和列向量组均线性无关 (D )A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分)1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2。
设100210341A -⎛⎫⎪=- ⎪⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5。
设A 为正交矩阵,则A = ;6。
设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7。
《线性代数A 》自测试卷1
一、选择题(本题共5小题,每小题2分,共10分)
1. 若三阶行列式822232
1
332
21
13
21
=---c c c a b a b a b a a a ,则行列式=3
2
1
321
321
c c c b b b a a a (A ) 4. (B )-4. (C ) 8. (D )-8. 【 】 2. 设A 为n m ⨯矩阵,齐次线性方程组0=Ax 仅有零解充分条件是 (A )A 的列向量组线性无关. (B )A 的列向量组线性相关.
(C )A 的行向量组线性无关. (D )A 的行向量组线性相关. 【 】 3. 设向量组1α,2α,3α线性无关,向量组1α,2α,4α线性相关,则 (A )1α必可由2α,3α,4α线性表示. (B )2α必不可由1α,3α,4α线性表示. (C )4α必可由1α,2α,3α线性表示.
(D )4α必不可由1α,
2α,3α线性表示. 【 】 4. 假设A 是n 阶方阵,其秩n r <,那么在A 的n 个行向量中 (A )必有r 个行向量线性无关. (B )任意r 个行向量都线性无关.
(C )任意r 个行向量都构成极大线性无关组.
(D )任何一个行向量都可由其他r 个行向量线性表示. 【 】
5. 设β=Ax 是含有6个未知量的非齐次线性方程组,
321,,ξξξ是齐次线性方程组0=Ax 的 线性无关的解,η是线性方程组β=Ax 的解,且3)(=A R ,321,,k k k 为任意常数,则
β=Ax 的通解为
(A )ηξξξ+---332211k k k . (B )ηξξξ-++332211k k k .
(C )ηξξξ+++321 . (D )ηξξξ+++32211k k . 【 】 二、判断题(正确的打√,错误的打×。
本题共5小题,每小题1分,满分5分)
1. 设A ,B ,C 均为 n 阶矩阵,且O A ≠,若AC AB = ,则C B =. 【 】
2. 设A ,B 为 n 阶可逆方阵,且满足C ABX =,则C A B X 11--=. 【 】
3. 设A 为43⨯矩阵,则4)(=A R . 【 】
4. 四个3维向量一定线性相关. 【 】 5.若向量β可由向量组21,αα线性表示,则向量组21,,ααβ线性相关. 【 】 三、填空题(本题共5小题,每小题2分,共10分)
1. 设矩阵⎪⎪⎪
⎭
⎫ ⎝⎛-=040012301011A ,则)(A R = .
2. 设⎪⎪⎪⎭
⎫ ⎝⎛-=400012013A ,则A 1-= .
3. 增广矩阵⎪⎪⎪
⎭
⎫ ⎝⎛-310050102001对应的线性方程组b Ax =的解是 .
4. 设A 为 n 阶方阵,|A|=2,则*--A A 3)2
1
(1= .
5. 设矩阵⎪⎪⎪⎪
⎪⎭
⎫
⎝⎛=k k k k A 1
11111111
111,且)(A R =3,则k =__________.
四、解答题(本题共7小题,每小题10分,共70分)
1.计算行列式的值215272954
1732142------=D .
2. 已知⎪⎪⎭⎫ ⎝⎛-=112301A ,⎪⎪⎪⎭
⎫
⎝⎛--=214021031B ,⎪
⎪⎭⎫ ⎝⎛=131742C ,求C AB T -3.
3.已知B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=101111010A ,⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡--=350211B ,求矩阵X .
4.求齐次方程组⎪⎩⎪
⎨⎧=+++=+-+=++-0
4303320424321
43214321x x x x x x x x x x x x 的一个基础解系.
5.求非齐次方程组 ⎪⎩⎪
⎨⎧=+++=+-+=+++5
1123242715524321
43214321x x x x x x x x x x x x 的一个解、通解及对应的齐次方程
组的基础解系.
6. 问λ取何值时,非齐次线性方程组⎪⎩⎪
⎨⎧-=++-=++-=++2
23321
321321x x x x x x x x x λλλλ
(1)有唯一解?(2)无解?(3)有无穷多解?在有无穷多解时求出其通解.
7.已知向量组A :
⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3974,
2331,
1312,
30214321a a a a
(1)求向量组A 的秩,并讨论它的线性相关性; (2)求向量组A 的一个最大无关组; (3)用最大无关组表示其余向量. 五、证明题(本题满分5分)
已知向量组1234,,,αααα线性无关,112212334,,,b b b αααααα=+=-=+ 434b αα=-,讨论:向量组1234,,,b b b b 线性相关性。