电流模式环路的调节
- 格式:doc
- 大小:115.00 KB
- 文档页数:7
电流模式控制反激变换器反馈环路的设计
一、引言
电流模式控制(CMC)是一种新型的控制技术,越来越多地应用于调节系统。
它一般用于控制半导体变换器,例如反激变换器,称为电流模式控制反激变换器(CMC-M)。
CMC-M具有一定的优势,如精确控制、稳定性好、宽调节范围和低纹波等。
但是,由于反激变换器的结构,CMC-M的反馈环路设计非常重要,而且很多因素需要考虑,如反馈环路延迟、负载变化、快速反应和频率响应等。
因此,在CMC-M中,反馈环路的设计工作是重中之重。
本文旨在探讨电流模式控制反激变换器反馈环路的设计。
二、反馈环路延迟
由于CMC-M的控制结构,反馈环路延迟是一个重要问题,影响变换器的稳定性以及调节器的性能。
一般来说,存在反馈延迟会导致控制系统失去稳定。
因此,在实际的应用中,需要减小反馈延迟,以保证CMC-M系统的稳定。
反馈延迟主要取决于反馈环路器件的选择,一般来说,使用低延迟的放大器能够减小反馈延迟,从而提高系统的稳定性。
另外,还可以使用回路增益降低反馈环路延迟,确保系统的稳定性。
三、负载变化
在CMC-M系统中,负载变化也是一个重要因素,它会影响变换器的性能。
降压式DC-DC转换器中的恒定导通时间谷值电流模式控制newmaker恒频峰值电流控制方案使用两个环路从高输入电压产生低输出电压,分别是电压外环和电流内环。
在控制信号和输出信号之间存在最小相移,由此可以实现简单的补偿。
测量流过NMOS主开关的电感电流的典型方法是,当NMOS主开关导通时检测NMOS主开关上的压降,或者检测输入端和主开关的漏极之间的串联电阻上的压降。
在这两个检测方案中,电感电流检测过程中出现在开关节点上的寄生效应均能引发激振现象,因此在测量电感电流之前必须等待一段时间,即消隐时间。
在低占空比操作过程中,这使得主开关建立并保持导通的时间变少。
图A示出了主开关上的电感电流和电流感测信号,其由消隐时间和导通时间构成图A. 消隐时间指使用固定频率的峰值电流模式控制方案的降压降转换器中的主开关所能实现的最小导通时间在低占空比操作过程中,即在输出电压比输入电压小很多时,主开关的导通总是由内部时钟控制的,而且与反馈回路无关,因此存在最小导通时间,其将电路操作限制在较高的开关频率。
而且,由于建立时间的限制,在脉冲不够宽时不能感测电流。
消隐时间决定了主开关的导通时间,仅有很少的时间可用于电流感测。
在诸如手机和媒体播放器的便携式应用中,DSP内核需要0.9 V的输出电压。
为了减小电感的尺寸以及解决方案的整体尺寸,应使用较高的开关频率。
但是如果使用该控制方案,则在使用较高的开关频率时,很难由较高的输入电压生成低占空比的电压。
后沿调制控制方案的第二个缺点是其较差的瞬态响应。
图B示出了针对负载电流的正向变化和负向变化的瞬态响应的典型波形。
便携式应用中,在降低输出电容器的尺寸和成本的同时必须能够实现很快的瞬态响应。
在输出端出现负载电流的正向阶跃增加时,输出响应可能延迟一个时钟周期。
在负载电流的负向阶跃减小的情况中,转换器强行给出最小宽度高边导通时间,其由电流控制环的速度确定。
因此在负向负载瞬态变化的过程中,不可能实现最小延迟响应,而且还将发生严重的过冲和下冲瞬态现象。
开关电源电流控制模式工作原理1. 电流控制模式简介开关电源的电流控制模式是一种常见的控制方法,主要用于稳定和调节电源的输出电流。
通过检测电源的输出电流并对其进行相应的调节,可以确保输出电流保持在一个预设的范围内。
这种控制模式在各种电子设备和系统中得到了广泛应用,如计算机、通信设备、医疗设备等。
2. 反馈环路组成电流控制模式的开关电源通常包含一个反馈环路,用于将输出电流与预设值进行比较,并根据比较结果进行调节。
反馈环路主要由电流检测器、误差放大器、调节器、PWM比较器和开关管等元件组成。
3. 误差放大器误差放大器是反馈环路中的一个关键元件,用于放大输出电流与预设值之间的误差。
误差放大器的输出与输入成比例关系,当输出电流偏离预设值时,误差放大器的输出会相应地增加或减小,以驱动调节器进行相应的调节。
4. 调节器调节器是反馈环路中的另一个重要元件,它通常采用PID(比例-积分-微分)控制器或类似的控制器。
调节器接收误差放大器的输出信号,并根据预设的控制参数(如比例系数、积分系数和微分系数)计算出一个控制信号。
该控制信号用于调节PWM比较器的输出,从而控制开关管的通断时间。
5. PWM比较器PWM比较器是开关电源中的另一个关键元件,它根据调节器输出的控制信号和振荡器输出的三角波信号进行比较,产生一个脉宽调制信号。
该信号的脉冲宽度与控制信号的大小成比例关系,从而控制开关管的通断时间,进而调节输出电流的大小。
6. 开关管控制开关管是开关电源中的主要执行元件,用于控制电源的通断。
在电流控制模式下,开关管的通断时间由PWM比较器输出的脉宽调制信号控制。
当脉宽调制信号为高电平时,开关管导通,电能输出到负载;当脉宽调制信号为低电平时,开关管关断,停止电能输出。
通过调节脉宽调制信号的占空比(即高电平时间占一个周期的比例),可以调节输出电流的大小。
7. 输出电压调整在某些情况下,开关电源需要具备输出电压调整功能。
通过在反馈环路中引入输出电压检测和相应的调节机制,可以实现对输出电压的稳定和调节。
pfc电流控制环路PFC电流控制环路PFC(Power Factor Correction,功率因数校正)电路是现代电子设备中常用的一种电路,其作用是校正设备输入电流的功率因数,使其接近于1,并且减少谐波电流的产生。
在本文中,将重点介绍PFC电路中的电流控制环路。
电流控制环路是PFC电路中的一个重要组成部分,它主要负责对输入电流进行实时监测和调节,以确保输出电流稳定和功率因数接近于1。
在PFC电路中,常用的电流控制环路有两种类型:电流模式控制和电压模式控制。
电流模式控制是一种基于电流反馈的控制方法,它通过对输入电流进行实时监测,并与参考电流进行比较,然后调整开关管的导通时间,以实现输出电流的稳定。
在电流模式控制中,通常采用电流反馈回路和PID控制器来实现对输入电流的控制。
电流反馈回路可以通过电流传感器来实现,它能够将输入电流转换为电压信号,并反馈给控制器进行处理。
PID控制器则根据电流反馈信号和参考电流之间的差异来调整开关管的导通时间,以达到输出电流稳定的目的。
电压模式控制是一种基于电压反馈的控制方法,它通过对输出电压进行实时监测,并与参考电压进行比较,然后调整开关管的导通时间,以实现输出电流的稳定。
在电压模式控制中,通常采用电压反馈回路和PID控制器来实现对输出电压的控制。
电压反馈回路可以通过电压传感器来实现,它能够将输出电压转换为电压信号,并反馈给控制器进行处理。
PID控制器则根据电压反馈信号和参考电压之间的差异来调整开关管的导通时间,以达到输出电流稳定的目的。
无论是电流模式控制还是电压模式控制,其核心原理都是通过实时监测和调节电流或电压,来实现对输出电流的稳定控制。
这种控制方式可以有效地提高PFC电路的功率因数,并减少谐波电流的产生。
同时,电流控制环路还可以提供过流保护和短路保护等功能,以确保设备的安全运行。
在设计PFC电路时,需要根据实际需求选择合适的电流控制环路类型,并进行参数调整和稳定性分析。
浅谈平均电流模式的控制电路设计电流模式控制分为两种,一种是平均电流模式控制,一种是峰值电流模式控制。
其中平均电流被广泛运用。
而本篇文章就是针对于对平均电流模式的控制电路的设计进行一个研究。
1平均电流法控制回路设计平均电流法的特点:(1)平均电流法对电流有很高的放大效果。
平均电流可以很容易的就找到电流的设定值。
这个已经运用到对高功率因素控制电路中了,以一个小电感就可以得到小于百分之三的谐波畸变,同时电路模式可以从连续电路模式转化成不连续电路模式,而且还不会影响到平均电流法的正常使用;(2)平均电流法对噪声的抑制能力很强。
因为功率开关被时钟脉冲打开,这就造成了晶振幅度直接变为低值;(3)斜坡补偿是不会在平均电流法出现的,然而为了能够让电路的运行稳定,就必须在开关旁边限定环路的增益;(4)平均电流法的使用非常的广泛,它不仅可以控制BUCK和FLYBACK的出入电流,还可以控制BOOST和HLYBACK的输出电流。
当比较器中出现不合适的波形坡度的时候,谐波振荡就会因为功率开关再次出现。
峰值电流法指的是控制使用在外面加一个斜坡来防止这个现象的;而平均电流法指的是使用晶振幅度来提供补偿的坡度的。
因此,最适合解决谐波问题的方法是平均电流法。
由于平均电流模式中会出现谐波和限定开关附近电流放大器的增益,因此在设计电路的时候就必须遵照的守则就是:比较器中一个输入端的电感和电流降低的幅度不能够大于比较器另一端经侦幅度值的坡度。
而且用这个方法还可以间接的制定出最大电流环路增益的交越平率。
2平均电流法Boost电路的设计2.1平均电流法中电流环的设计。
因为平均电流模式必须是稳定使用的,所以就必须对电流环进行一定的相位补偿,而且在电流环的相位补偿的开关附近还要制定一个让电流环的得到稳定增益的设计。
以此才可以在低频零点的时候给电流环供给比较高的增益,才可以进一步的让平均电流控制工作。
不仅如此,开关平率附近的放大器增益的误差一定要和电感电流的降低幅度相符合。
开关电源中的电流型控制模式摘要:讨论了开关电源中电流反馈控制模式的工作原理、优缺点,以及与之有关的斜波补偿技术。
关键词:开关电源;电流型控制;斜波补偿1引言PWM型开关稳压电源是一个闭环控制系统,其基本工作原理就是在输入电压、内部元器件参数、外接负载等因素发生变化时,通过检测被控制信号与基准信号的差值,利用差值调节主电路功率开关器件的导通脉冲宽度,从而改变输出电压的平均值,使得开关电源的输出电压保持稳定。
以开关电源中的降压型变换为例(其它类型如正激型、推挽型等,均可由降压型派生得到),图1表示了该变换器的主电路的基本拓扑结构。
图1降压型开关电源根据选用不同的PWM控制模式,图1电路中的输入电压Uin、输出电压Uo、开关功率器件电流(可从A点采样)、输出电感电流(可从B或C点采样)均可作为控制信号,用于完成稳压调节过程。
目前在开关电源中广泛使用的控制方式是通过对输出电压或电流(功率开关器件或输出电感上流过的电流)进行采样,即形成2类控制方式:电压控制模式与电流控制模式。
2电流控制模式的工作原理图2为检测输出电感电流的电流型控制的基本原理框图。
它的主要特点是:将采样得到的电感电流直接反馈去控制功率开关的占空比,使功率开关的峰值电流直接跟随电压反馈电路中误差放大器输出的信号。
从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。
在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阈值。
电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电感电流的动态变化,电压外环只负责控制输出电压。
因此电流型控制模式具有比起电压型控制模式大得多的带宽。
图2检测输出电感电流的电流型控制原理框图实际电路以单端正激型电源为例,如图3所示。
误差电压信号Ue送至PWM比较器后,并不是像电压模式那样与振荡电路产生的固定三角波状电压斜波比较调宽,而是与一个变化的、峰值代表功率开关上的电流信号(由Rs上采样得到)的三角状波形信号(电感电流不连续)或矩形波上端叠加三角波合成波形信号(电感电流连续)比较,然后得到PWM脉冲关断时刻。
电流模式控制反激变换器反馈环路的设计首先要搞清系统稳定所必需的几个条件:系统稳定的原则:A,系统环路总增益在穿越频率(或叫剪切频率,截止频率,交越频率,带宽都是它)处的增益为1或0Db。
高的穿越频率能保正电源快速响应线性和负载的突变,穿越频率受到开关频率的限制,根据采样定理穿越频率必需小于开关频率的一半,因为开关频率可以在输出端开出来,但这个频率必须不被反馈环传递,否则系统将会振荡并如此恶性循环。
实际应用中一般取开关频率的1/4或1/5。
B,在系统在穿越频率处的总相位延迟必需小于(360-45)315度。
45度为相位裕量。
当相位裕量大于45度时,能提供最好的动态响应,高的相位裕量能阻尼振荡并缩短瞬态调节时间获得最少的过冲。
C,系统的开环增益曲线在穿越频率附近的斜率应为-1过0Db。
因为具有-1增益斜率的电路,相位延迟不会超过90度(这里指的是系统总的开环增益曲线)。
要满足上面的三个准则,必需知道如何计算系统中各环节的增益和相位延迟。
要知道如何计算必需先搞清楚以下几个概念:1.系统的传递函数:系统的传递函数定义为输出变动量除以输入变动量也叫增益。
每一部份的传递函数均为该部份的输出除以输入,也叫该部份的增益。
系统的增益即为各环节部份增益的乘积。
增益可以用数值方式表示也可以用Db(分贝)方式表示。
传递函数由幅值和相位因素组成(幅值也就是增益),并可以在博得图上分别以图形表示。
通常我们要把传输函数因式分解成各因式相乘的形式,以便于得到零点各极点。
2.极点:数学上,在传输函数方程中,当分母等于零时出现极点,在博得图上当增益以-1斜率开始递减时的点为一个极点。
3.零点:数学上,在传输函数方程中,当分子等于零时出现零点,在博得图上当增益以+1斜率开始递增时的点为零点,并伴随着90度的相位超前。
第二种零点,即右半平面零点,增益仍以+1斜率递增,它将引起90度的相位滞后而非超前,设计时应使系统的穿越频率大大低于右半平面零点。