高考数学复习ABC梯度练习 专题7.2一元二次不等式及其解法(含解析)
- 格式:doc
- 大小:347.70 KB
- 文档页数:8
第七章 不等式第二节 一元二次不等式及其解法A 级·基础过关|固根基|1.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x ≤0,B ={0,1,2,3},则A ∩B =( ) A .{1,2} B .{0,1,2} C .{1}D .{1,2,3}解析:选A ∵A=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x ≤0={x|0<x≤2}, ∴A ∩B ={1,2}.故选A.2.关于x 的不等式(mx -1)(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1m <x<2,则m 的取值范围是( ) A .(0,+∞) B .(0,2) C.⎝ ⎛⎭⎪⎫12,+∞D .(-∞,0)解析:选D 由不等式的解集形式知m<0.故选D.3.若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]解析:选A x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立, 只需a 2-3a≤4即可,解得-1≤a≤4.4.(2019届内蒙古包头模拟)不等式f(x)=ax 2-x -c>0的解集为{x|-2<x<1},则函数y =f(-x)的图象为( )解析:选C 由题意得⎩⎪⎨⎪⎧a<0,-2+1=1a ,-2×1=-ca,解得⎩⎪⎨⎪⎧a =-1,c =-2,则函数f(x)=-x 2-x +2,那么y =f(-x)=-x 2+x +2,结合选项可知选C.5.在关于x 的不等式x 2-(a +1)x +a<0的解集中至多包含2个整数,则实数a 的取值范围是( ) A .(-3,5) B .(-2,4) C .[-3,5]D .[-2,4]解析:选D 因为关于x 的不等式x 2-(a +1)x +a<0可化为(x -1)(x -a)<0, 当a>1时,不等式的解集为{x|1<x<a}; 当a<1时,不等式的解集为{x|a<x<1}, 当a =1时,不等式的解集为∅,要使不等式的解集中至多包含2个整数,则a≤4且a≥-2,所以实数a 的取值范围是a∈[-2,4],故选D.6.不等式2x +1<1的解集是________.解析:2x +1<1⇒2-(x +1)x +1<0⇒x -1x +1>0⇒x>1或x<-1.答案:{x|x>1或x<-1}7.已知函数f(x)=x 2+ax +b(a ,b∈R)的值域为[0,+∞),若关于x 的不等式f(x)<c 的解集为(m ,m +8),则实数c 的值为________.解析:因为函数f(x)=x 2+ax +b(a ,b∈R)的值域为[0,+∞),所以函数的最小值为0,可得Δ=a 2-4b =0,即b =14a 2.又因为关于x 的不等式f(x)<c 可化成x 2+ax +b -c<0,所以x 2+ax +14a 2-c<0,若不等式f(x)<c 的解集为(m ,m +8),也就是方程x 2+ax +14a 2-c =0的两根分别为x 1=m ,x 2=m +8,所以⎩⎪⎨⎪⎧x 1+x 2=-a ,x 1x 2=14a 2-c , 可得|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=64,即(-a)2-4⎝ ⎛⎭⎪⎫14a 2-c =64,解得c =16.答案:168.已知函数f(x)=-x 2+ax +b 2-b +1(a∈R,b∈R),对任意实数x 都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则a =________,b 的取值范围是________.解析:由f(1-x)=f(1+x),知f(x)的图象关于直线x =1对称,即a2=1,解得a =2.又因为f(x)开口向下,所以当x∈[-1,1]时,f(x)为增函数,所以f(x)min =f(-1)=-1-2+b 2-b +1=b 2-b -2. 又因为f(x)>0恒成立,即b 2-b -2>0成立, 解得b<-1或b>2.答案:2 (-∞,-1)∪(2,+∞)9.已知函数f(x)=ax 2+(b -8)x -a -ab ,当x∈(-∞,-3)∪(2,+∞)时,f(x)<0;当x∈(-3,2)时,f(x)>0.(1)求f(x)在[0,1]内的值域;(2)若ax 2+bx +c≤0的解集为R ,求实数c 的取值范围. 解:(1)因为当x∈(-∞,-3)∪(2,+∞)时,f(x)<0, 当x∈(-3,2)时,f(x)>0.所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根, 所以⎩⎪⎨⎪⎧-3+2=8-ba ,-3×2=-a -aba ,所以a =-3,b =5,所以f(x)=-3x 2-3x +18=-3⎝ ⎛⎭⎪⎫x +122+754.因为函数图象关于x =-12对称且抛物线开口向下,所以f(x)在[0,1]上为减函数,所以f(x)max =f(0)=18,f(x)min =f(1)=12,故f(x)在[0,1]内的值域为[12,18].(2)由(1)知不等式ax 2+bx +c ≤0可化为-3x 2+5x +c≤0,要使-3x 2+5x +c≤0的解集为R ,只需Δ≤0,即25+12c≤0,所以c≤-2512,所以实数c 的取值范围为⎝ ⎛⎦⎥⎤-∞,-2512. 10.解关于x 的不等式x 2-2ax +2≤0.解:对于方程x 2-2ax +2=0,因为Δ=4a 2-8,所以当Δ<0,即-2<a< 2 时,x 2-2ax +2=0无实根.又二次函数y =x 2-2ax +2的图象开口向上,所以原不等式的解集为∅;当Δ=0时,即a =± 2 时,x 2-2ax +2=0有两个相等的实根,当a =2时,原不等式的解集为{x|x =2},当a =-2时,原不等式的解集为{x|x =-2};当Δ>0,即a>2或a<- 2 时,x 2-2ax +2=0有两个不相等的实根,分别为x 1=a -a 2-2,x 2=a +a 2-2,且x 1<x 2,所以原不等式的解集为{x|a -a 2-2≤x ≤a + a 2-2}.综上,当a>2或a<- 2 时,解集为{x|a -a 2-2≤x ≤a + a 2-2};当a = 2 时,解集为{x|x =2};当a =-2时,解集为{x|x =-2};当-2<a<2时,解集为∅.B 级·素养提升|练能力|11.设f(x)满足f(-x)=-f(x),且在[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t 2-2at +1对所有的x∈[-1,1],当a∈[-1,1]时都成立,则t 的取值范围是( )A .-12≤t ≤12B .t ≥2或t≤-2或t =0C .t ≥12或t≤-12或t =0D .-2≤t≤2解析:选B 若函数f(x)≤t 2-2at +1对所有的x∈[-1,1]时都成立,由已知易得f(x)的最大值是1,∴1≤t 2-2at +1对a∈[-1,1]时都成立,即2ta -t 2≤0对a ∈[-1,1]都成立.设g(a)=2ta -t 2(-1≤a≤1),欲使2ta -t 2≤0恒成立,只需满足⎩⎪⎨⎪⎧g (-1)≤0,g (1)≤0⇒t ≥2或t =0或t≤-2.故选B.12.(一题多解)若不等式x 2+ax +1≥0对一切x∈⎝ ⎛⎦⎥⎤0,12 恒成立,则a 的最小值是( )A .0B .-2C .-52D .-3解析:选C 解法一:令f(x)=x 2+ax +1=⎝ ⎛⎭⎪⎫x +a 22+1-a 24⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎦⎥⎤0,12.当0<-a 2<12,即-1<a<0时,f(x)min =f ⎝ ⎛⎭⎪⎫-a 2=1-a 24,要使不等式x 2+ax +1≥0对一切x∈⎝ ⎛⎦⎥⎤0,12恒成立,只需1-a 24≥0,显然成立.当-a 2≥12,即a≤-1时,函数f(x)在⎝ ⎛⎦⎥⎤0,12上单调递减,f(x)min =f ⎝ ⎛⎭⎪⎫12=54+a2,同理,要使原不等式恒成立,需有54+a 2≥0,解得a≥-52,∴-52≤a ≤-1.当-a 2≤0,即a≥0时,函数f(x)在⎝ ⎛⎦⎥⎤0,12上单调递增,f(x)>f(0)=1>0恒成立. 综上,a 的取值范围是a≥-52,其最小值为-52.故选C.解法二:因为x∈⎝ ⎛⎦⎥⎤0,12,所以不等式x 2+ax +1≥0可化为a≥-x -1x ,令f(x)=-x -1x ,则f′(x)=-1+1x 2=(1-x )(1+x )x 2>0,所以f(x)在⎝ ⎛⎦⎥⎤0,12上单调递增,所以f(x)≤f ⎝ ⎛⎭⎪⎫12=-52,由题意得a≥-52,故a 的最小值为-52.故选C.13.(2019届云南昆明适应性检测)关于x 的不等式a≤34x 2-3x +4≤b 的解集为[a ,b],则b -a =________.解析:画出函数f(x)=34x 2-3x +4=34(x -2)2+1的图象,如图.可得f(x)min =f(2)=1,由图象可知,若a>1,则不等式a≤34x 2-3x +4≤b 的解集分两段区域,不符合已知条件,因此a≤1,此时a≤34x 2-3x +4恒成立.又不等式a≤34x 2-3x +4≤b 的解集为[a ,b],所以a≤1<b,f(a)=f(b)=b ,可得⎩⎪⎨⎪⎧34a 2-3a +4=b ,34b 2-3b +4=b ,由34b 2-3b +4=b ,化为3b 2-16b +16=0, 解得b =43或b =4.当b =43时,由34a 2-3a +4-43=0,解得a =43或a =83,不符合题意,舍去.所以b =4,此时a =0, 所以b -a =4. 答案:414.函数f(x)=x 2+ax +3.(1)当x∈R 时,f(x)≥a 恒成立,求实数a 的取值范围; (2)当x∈[-2,2]时,f(x)≥a 恒成立,求实数a 的取值范围; (3)当a∈[4,6]时,f(x)≥0恒成立,求实数x 的取值范围. 解:(1)因为当x∈R 时,x 2+ax +3-a≥0恒成立, 只需Δ=a 2-4(3-a)≤0,即a 2+4a -12≤0, 所以实数a 的取值范围是[-6,2].(2)当x∈[-2,2]时,设g(x)=x 2+ax +3-a≥0恒成立,分如下三种情况讨论(如图所示): ①如图①,当g(x)的图象恒在x 轴或x 轴上方且满足条件时,有Δ=a 2-4(3-a)≤0,即-6≤a≤2. ②如图②,g(x)的图象与x 轴有交点,但当x∈[-2,+∞)时,g(x)≥0,即⎩⎪⎨⎪⎧Δ≥0,x =-a 2≤-2,g (-2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )≥0,-a 2≤-2,4-2a +3-a≥0,可得⎩⎪⎨⎪⎧a ≥2或a≤-6,a≥4,a ≤73,解得a∈∅.③如图③,g(x)的图象与x 轴有交点, 但当x∈(-∞,2]时,g(x)≥0.即⎩⎪⎨⎪⎧Δ≥0,x =-a 2≥2,g (2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )≥0,-a2≥2,7+a≥0,可得⎩⎪⎨⎪⎧a ≥2或a≤-6,a≤-4,a≥-7.所以-7≤a≤-6,综上,实数a 的取值范围是[-7,2].(3)令h(a)=xa +x 2+3,当a∈[4,6]时,h(a)≥0恒成立.只需⎩⎪⎨⎪⎧h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x≤-3-6或x≥-3+ 6.所以实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).。
一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。
2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。
第2讲 一元二次不等式及其解法 考点一 一元二次不等式的解法【例1】 (2014·大连模拟)已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是________.解析 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3),∴a <0.且⎩⎪⎨⎪⎧1-ab a =2,-ba =-3,解得a =-1或13,∴a =-1,b =-3.∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32.答案 ⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫12,+∞规律方法 解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.【训练1】 (2013·江西卷改编)使不等式x <1x <x 2成立的x 的取值范围是________. 解析 当x >0时,原不等式可化为x 2<1<x 3,解得x ∈∅,当x <0时,原不等式可化为⎩⎨⎧x 2>1,x 3<1,解得x <-1.答案 (-∞,-1)考点二 含参数的一元二次不等式的解法【例2】 (2013·烟台期末)解关于x 的不等式:ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a 或x ≤-1.③当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即a >-2,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥2a ,或x ≤-1;当-2<a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a ≤x ≤-1;当a =-2时,不等式的解集为{x |x =-1};当a <-2时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤2a . 【训练2】 (1)(2013·重庆卷改编)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于________. (2)解关于x 的不等式(1-ax )2<1.(1)解析 法一 ∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2),∴x 1,x 2是方程x 2-2ax -8a 2=0的两根.由根与系数的关系知⎩⎨⎧x 1+x 2=2a ,x 1x 2=-8a 2, ∴x 2-x 1=(x 1+x 2)2-4x 1x 2=(2a )2-4(-8a 2)=15,又∵a >0,∴a =52.法二 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0, ∵a >0,∴不等式x 2-2ax -8a 2<0的解集为(-2a,4a ), 又∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2), ∴x 1=-2a ,x 2=4a .∵x 2-x 1=15, ∴4a -(-2a )=15,解得a =52. 答案 52(2)解 由(1-ax )2<1,得a 2x 2-2ax <0, 即ax (ax -2)<0,当a =0时,x ∈∅.当a >0时,由ax (ax -2)<0,得a 2x ⎝ ⎛⎭⎪⎫x -2a <0,即0<x <2a .当a <0时,2a <x <0.综上所述:当a =0时,不等式解集为空集;当a >0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <2a ;当a <0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a<x <0.考点三 一元二次不等式恒成立问题【例3】 已知函数f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解 (1)由题意可得m =0或⎩⎨⎧m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0.故m 的取值范围是(-4,0].(2)法一 要使f (x )<-m +5在[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,则0<m <67; 当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)⇒m -6<0, 所以m <6,所以m <0. 综上所述:m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. 法二 ∵f (x )<-m +5⇔m (x 2-x +1)<6, ∵x 2-x +1>0,∴m <6x 2-x +1对于x ∈[1,3]恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数.则g (x )在[1,3]上为减函数, ∴[g (x )]min =g (3)=67,∴m <67. 所以m 的取值范围是⎝ ⎛⎭⎪⎫-∞,67.【训练3】 (1)若关于x 的不等式ax 2+2x +2>0在R 上恒成立,则实数a 的取值范围是________.(2)(2014·淄博模拟)若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围是________.解析 (1)当a =0时,原不等式可化为2x +2>0,其解集不为R ,故a =0不满足题意,舍去;当a ≠0时,要使原不等式的解集为R , 只需⎩⎨⎧a >0,Δ=22-4×2a <0,解得a >12.综上,所求实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.(2)∵x ∈(0,2], ∴a 2-a ≥x x 2+1=1x +1x.要使a 2-a ≥1x +1x 在x ∈(0,2]时恒成立,则a 2-a ≥⎝ ⎛⎭⎪⎪⎫1x +1x max ,由基本不等式得x +1x ≥2,当且仅当x =1时,等号成立,即⎝ ⎛⎭⎪⎪⎫1x +1x max =12. 故a 2-a ≥12,解得a ≤1-32或a ≥1+32.答案 (1)⎝ ⎛⎭⎪⎫12,+∞ (2)⎝⎛⎦⎥⎤-∞,1-32∪⎣⎢⎡⎭⎪⎫1+32,+∞1.解不等式的基本思路是等价转化,分式不等式整式化,使要求解的不等式转化为一元一次不等式或一元二次不等式,进而获得解决.2.当判别式Δ<0时,ax 2+bx +c >0(a >0)解集为R ;ax 2+bx +c <0(a >0)解集为∅.二者不要混为一谈.3.含参数的不等式的求解,注意选好分类标准,避免盲目讨论. 4.对于恒成立问题,常用到以下两个结论: (1)a ≥f (x )恒成立⇔a ≥f (x )max ;(2)a ≤f (x )恒成立⇔a ≤f (x )min .思想方法6——数形结合思想在“三个二次”间关系的应用【典例】 (2012·福建卷)对于实数a 和b ,定义运算“*”;a *b =⎩⎨⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.解析 由定义可知:f (x )=(2x -1)*(x -1)=⎩⎨⎧(2x -1)2-(2x -1)(x -1),x ≤0,(x -1)2-(2x -1)(x -1),x >0,∴f (x )=⎩⎨⎧(2x -1)x ,x ≤0,-(x -1)x ,x >0.作出函数f (x )的图象,如图所示.由图可知,当0<m <14时,f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3. 不妨设x 1<x 2<x 3,易知x 2>0,且x 2+x 3=2×12=1, ∴0<x 2x 3<⎝⎛⎭⎪⎫x 2+x 322,即0<x 2x 3<14. 令⎩⎪⎨⎪⎧(2x -1)x =14,x <0,解得x =1-34或1+34(舍去).∴1-34>x 1>0,∴3-14>-x 1>0, ∴0<-x 1x 2x 3<3-116, ∴1-316<x 1x 2x 3<0. 答案 ⎝ ⎛⎭⎪⎫1-316,0【自主体验】1.已知函数f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析 由函数f (x )的图象可知(如下图),满足f (1-x 2)>f (2x )分两种情况:①⎩⎨⎧1-x 2≥0,x ≥0,1-x 2>2x⇒0≤x <2-1;②⎩⎨⎧1-x 2>0,x <0⇒-1<x <0. 综上可知:-1<x <2-1.答案 (-1,2-1)2.已知函数f (x )=⎩⎨⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析 画出f (x )=⎩⎨⎧2x -1,x >0-x 2-2x ,x ≤0的图象,如图.由函数g (x )=f (x )-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1). 答案 (0,1)基础巩固题组 (建议用时:40分钟)一、填空题1.(2014·长春调研)已知集合P ={x |x 2-x -2≤0},Q ={x |log 2(x -1)≤1},则(∁R P )∩Q =________.解析 依题意,得P ={x |-1≤x ≤2},Q ={x |1<x ≤3},则(∁R P )∩Q =(2,3]. 答案 (2,3]2.(2014·沈阳质检)不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.解析 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4.答案 (-∞,-4)∪(4,+∞)3.(2013·南通二模)已知f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2+3x ,x <0,则不等式f (x )<f (4)的解集为________.解析 f (4)=42=2,不等式即为f (x )<2.当x ≥0时,由x2<2,得0≤x <4;当x <0时,由-x 2+3x <2,得x <1或x >2,因此x <0. 综上,f (x )<f (4)的解集为{x |x <4}. 答案 {x |x <4}4.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是________.解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3). 答案 (2,3)5.(2014·南京二模)在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为________.解析 根据给出的定义得x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),又x ⊙(x -2)<0,则(x +2)·(x -1)<0,故这个不等式的解集是(-2,1). 答案 (-2,1)6.已知关于x 的不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,则a =________. 解析 由于不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,故-12应是ax-1=0的根,∴a =-2. 答案 -27.(2013·重庆卷)设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则a 的取值范围是________.解析 不等式8x 2-(8sin α)x +cos 2α≥0恒成立,所以Δ≤0,即Δ=(8sin α)2-4×8×cos 2α≤0,整理得2sin 2 α-cos 2α≤0,即4sin 2 α≤1,所以sin 2 α≤14,即-12≤sin α≤12,因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π,即α的取值范围是⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π. 答案 ⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π 8.(2014·福州期末)若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________.解析 原不等式即(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3. 答案 [-4,3] 二、解答题9.求不等式12x 2-ax >a 2(a ∈R )的解集. 解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3; ②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4. 综上所述,当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4. 10.(2014·长沙质检)已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.解 法一 f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增, f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1; ②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2, 由2-a 2≥a ,解得-1≤a ≤1.综上所述,所求a 的取值范围是[-3,1]. 法二 令g (x )=x 2-2ax +2-a ,由已知, 得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立, 即Δ=4a 2-4(2-a )≤0或⎩⎨⎧Δ>0,a <-1,g (-1)≥0.解得-3≤a ≤1.所求a 的取值范围是[-3,1].能力提升题组 (建议用时:25分钟)一、填空题1.(2013·新课标全国Ⅱ卷改编)若存在正数x 使2x (x -a )<1成立,则a 的取值范围是________.解析 不等式2x(x -a )<1可变形为x -a <⎝ ⎛⎭⎪⎫12x,在同一平面直角坐标系内作出直线y =x -a 与y =⎝ ⎛⎭⎪⎫12x 的图象,由题意,在(0,+∞)上,直线有一部分在曲线的下方.观察可知,有-a <1,所以a >-1. 答案 (-1,+∞)2.(2013·西安二模)在R 上定义运算:⎣⎢⎡⎦⎥⎤ab cd =ad -bc .若不等式⎣⎢⎡⎦⎥⎤x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,-12≤a ≤32.答案 323.(2014·铜陵一模)已知二次函数f (x )的二次项系数为a ,且不等式f (x )>0的解集为(1,2),若f (x )的最大值小于1,则a 的取值范围是________.解析 由题意知a <0,可设f (x )=a (x -1)(x -2)=ax 2-3ax +2a ,∴f (x )max =f ⎝ ⎛⎭⎪⎫32=-a 4<1,∴a >-4,故-4<a <0.答案 (-4,0)二、解答题4.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)若方程f (x )+6a =0有两个相等的根,求f (x )的解析式;(2)若f (x )的最大值为正数,求a 的取值范围.解 (1)∵f (x )+2x >0的解集为(1,3),f (x )+2x =a (x -1)(x -3),且a <0,因而f (x )=a (x -1)(x -3)-2x =ax 2-(2+4a )x +3a .①由方程f (x )+6a =0,得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15.由于a <0,舍去a =1,将a =-15代入①,得f (x )=-15x 2-65x -35.(2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝ ⎛⎭⎪⎫x -1+2a a 2-a 2+4a +1a 及a <0,可得f (x )的最大值为-a 2+4a +1a. 由⎩⎪⎨⎪⎧ -a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0.故当f(x)的最大值为正数时,实数a的取值范围是(-∞,-2-3)∪(-2+3,0).。
一元二次不等式及其解法【课标要求】熟练运用转化与化归的思想,反复思考一元二次不等式与二次函数的关系.【学习目标】(1).理解一元二次方程、一元二次不等式与二次函数的关系.(2).掌握图象法解一元二次不等式的方法.(3).培养数形结合、分类讨论思想方法.【重难点】一元二次不等式的解法.【知识回顾】1、二次方程ax2+bx+c=0(a≠0)在Δ=b2-4ac>0时,有两不等实根,此时对应的二次函数y=ax2+bx+c与x轴有两个公共点,Δ=0时,有两相等实根,此时,对应二次函数y=ax2+bx+c与x轴有一个公共点;当Δ<0时,没有实数根,此时,对应二次函数y=ax2+bx+c与x轴没有公共点.2、只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.“元”是未知数,“一元”就是含有一个未知数注意:(1)在一元二次不等式的表达式中,一定有条件a≠0,即二次项的系数不为零.(2)对于ax2+bx+c>0(或<0)的形式,如果不指明是二次不等式,那么它也可能是一次不等式,应特别注意分类讨论.3、利用二次函数图像解一元二次不等式设一元二次方程ax2+bx+c=0(a>0)的两个不等实根分别为x1,x2(x1<x2),则不等式ax2+bx+c>0(a>0)的解集为{x|x<x1或x>x2},不等式ax2+bx+c<0(a>0)的解集为{x|x1<x<x2}.当一元二次方程ax2+bx+c=0(a>0)的判别式Δ<0时,此方程无实数根,y=ax2+bx+c的图象位于x轴上方,所以ax2+bx+c>0的解集是R,而ax2+bx+c<0的解集是∅.注意:(1)上述给出的解集形式是在a>0的情况下的解集形式.若a<0,应将不等式两边同时乘-1,化为二次项系数大于0的一元二次不等式再解.(2)若ax2+bx+c=0(a>0)的判别式Δ=0,则方程有两个相等的实根,此时不等式ax2+bx+c>0(a>0)的解集为{x|x≠-b2a},ax2+bx+c<0(a>0)的解集为∅.一元二次不等式的解集、二次方程的根与二次函数的图象之间的关系见下表:x1,2=-b±Δ2ax1=x2=-b2a没有实数根|x<x或x>x{x|x≠-b2a}R4、解一元二次不等式的一般步骤:[方法规律总结]第一步,将一元二次不等式化为一端为0的形式(习惯上二次项系数大于0).第二步,求出相应二次方程的根,或判断出方程没有实根.第三步,画出相应二次函数示意草图,方程有根的将根标在图中.第四步,观察图象中位于x轴上方或下方的部分,对比不等式中不等号的方向,写出解集.5、含参一元二次不等式的解法解答含参数的不等式时,一般需对参数进行讨论,常见的有以下几种情况:(1)二次项系数含参数时,根据二次不等式化标准形式需要化二次项系数为正,所以要对参数符号进行讨论.(2)解“Δ”的过程中,若“Δ”表达式含有参数且参数的取值影响“Δ”符号,这时根据“Δ”符号确定的需要,要对参数进行讨论.(3)方程的两根表达式中如果有参数,必须对参数讨论才能确定根的大小,这时要对参数进行讨论.总之,参数讨论有三个方面:①二次项系数;②“Δ”;③根.但未必在这三个地方都进行讨论,是否讨论要根据需要而定.6、穿根法解高阶不等式解法:穿根法解高次不等式的步骤①将f(x)最高次项系数化为正数;②将f(x)分解为若干个一次因式的积或二次不可分因式的积;③将每一个一次因式的根标在数轴上,自上而下,从右向左依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根穿过);④观察曲线显现出的f(x)的值的符号变化规律,写出不等式的解集.7、分式不等式等)(或00<>++dcx bax 的解法 [方法规律总结]1.对于不等号一端为0的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.2.对于不等号右边不为零的较复杂的分式不等式,先移项、通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解. 8、一元二次不等式恒成立问题 [方法规律总结](1)ax 2+bx +c >0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧ a >0Δ<0;(2)ax 2+bx +c ≥0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧ a >0Δ≤0;(3)ax 2+bx +c <0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧a <0Δ<0;(4)ax 2+bx +c ≤0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧a <0Δ≤0.2.不等式有解问题(1)若ax 2+bx +c >0(a ≠0)有解,则a >0或⎩⎨⎧a <0,Δ>0.(2)若ax 2+bx +c ≥0(a ≠0)有解,则a >0,或⎩⎨⎧a <0,Δ≥0.【随堂练习一】1.不等式9x 2+6x +1≤0的解集是( )A .{x |x ≠-13}B .{x |-13≤x ≤13}C .∅D .{-13} 2.不等式3x 2-x +2<0的解集为( )A .∅B .RC .{x |-13<x <12}D .{x ∈R |x ≠16} 3.函数y =x 2+x -12的定义域是( ) A .{x |x <-4,或x >3} B .{x |-4<x <3} C .{x |x ≤-4,或x ≥3}D .{x |-4≤x ≤3}4.(2015·东北三校二模)设集合M={x|x2-2x-3<0,x∈Z},则集合M的真子集个数为()A.8 B.7 C.4 D.3 5.不等式x2-4x-5>0的解集是()A.{x|x≥5或x≤-1} B.{x|x>5或x<-1}C.{x|-1<x<5} D.{x|-1≤x≤5}6.已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则下图阴影部分表示的集合是()A.[-1,1)B.(-3,1]C.(-∞,-3)∪[-1,+∞)D.(-3,-1)7.不等式2x2+mx+n>0的解集是{x|x>3或x<-2},则m、n的值分别是() A.2,12 B.2,-2 C.2,-12 D.-2,-128.函数y=log 12(x2-1)的定义域是()A.[-2,-1)∪(1,2]B.[-2,-1)∪(1,2)C.[-2,-1)∪(1,2]D.(-2,-1)∪(1,2)9.已知集合A={x|3x-2-x2<0},B={x|x-a<0}且B A,则a的取值范围是()A.a≤1 B.1<a≤2 C.a>2 D.a≤2 10.已知集合A={x|x2-2x>0},B={x|log2(x+1)<1},则A∩B等于() A.(-∞,0) B.(2,+∞) C.(0,1) D.(-1,0)11、不等式x2+x-2<0的解集为________.12、不等式x2-4x+5<0的解集为________.13、不等式0≤x2-2x-3<5的解集为________【随堂练习二】1、若0<t<1,则不等式x2-(t+1t)x+1<0的解集是()A .{x |1t <x <t }B .{x |x >1t 或x <t }C .{x |x <1t 或x >t }D .{x |t <x <1t } 2.已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( ) A .{-1,0} B .{0,1} C .{-1,0,1} D .{0,1,2} 3.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解是( )A .x >5a 或x <-aB .x >-a 或x <5aC .5a <x <-aD .-a <x <5a4.不等式(x -2)2(x -3)x +1<0的解集为( )A .{x |-1<x <2或2<x <3}B .{x |1<x <3}C .{x |2<x <3}D .{x |-1<x <3}5.若{x |2<x <3}为x 2+ax +b <0的解集,则bx 2+ax +1>0的解集为( ) A .{x |x <2或x >3} B .{x |2<x <3} C .{x |13<x <12} D .{x |x <13或x >12}6.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4 D .a <-4或a >47.若f (x )=-x 2+mx -1的函数值有正值,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2 D .1<m <38.已知关于x 的不等式x 2-4x ≥m 对任意x ∈(0,1]恒成立,则有( ) A .m ≤-3 B .m ≥-3 C .-3≤m <0 D .m ≥-4 9.函数y =-x 2-3x +4x 的定义域为( )A .[-4,1]B .[-4,0)C .(0,1]D .[-4,0)∪(0,1]10.如果不等式2x 2+2mx +m4x 2+6x +3<1对一切实数x 均成立,则实数m 的取值范围是( )A .(1,3)B .(-∞,3)C.(-∞,1)∪(2,+∞) D.(-∞,+∞)11、解不等式:(1)2x-13x+1>0;(2)axx+1<0.12.当a为何值时,不等式(a2-1)x2+(a-1)x-1<0的解集是R?13、解关于x的不等式:x2+2x-3-x2+x+6<0。
7.2 一元二次不等式及其解法一、选择题1.不等式x -2x +1≤0的解集是( )A .(-∞,-1)∪(-1,2]B .(-1,2]C .(-∞,-1)∪[2,+∞)D .[-1,2] 解析 ∵x -2x +1≤0⇔⎩⎨⎧x +x -,x +1≠0⇔⎩⎨⎧-1≤x ≤2,x ≠-1,∴x ∈(-1,2]. 答案 B2. 若集合{},{}x A x x B xx-2=-1≤2+1≤3=≤0,则A B ⋂=( ) A. {}x x -1≤<0 B. {}x x 0<≤1 C. {}x x 0≤≤2 D.{}x x 0≤≤1解析 因为集合{},{}A x x B x x =-1≤≤1=0<≤2,所以A B ⋂={}x x 0<≤1,选B. 答案 B3.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( ). A .(2,3) B .(-∞,2)∪(3,+∞) C.⎝ ⎛⎭⎪⎫13,12D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3). 答案 A4. 已知全集U 为实数集R ,集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x +1x -m >0,集合∁U A ={y |y =x 13,x ∈[-1,8]},则实数m 的值为( )A .2B .-2C .1D .-1解析 集合∁U A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y =x 13,x ∈[-1,8]=[-1,2],故不等式x +1x -m >0,即不等式(x +1)(x -m )>0的解集为(-∞,-1)∪(m ,+∞),所以m =2. 答案 A5.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ). A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)解析 根据给出的定义得x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),又x ⊙(x -2)<0,则(x +2)(x -1)<0,故这个不等式的解集是 (-2,1). 答案 B6.对于实数x ,规定[x ]表示不大于x 的最大整数,那么不等式4[x ]2-36[x ]+45<0成立的x 的取值范围是( ).A.⎝ ⎛⎭⎪⎫32,152 B .[2,8] C .[2,8) D .[2,7]解析 由4[x ]2-36[x ]+45<0,得32<[x ]<152,又[x ]表示不大于x 的最大整数,所以2≤x <8. 答案 C7.设函数f (x )=⎩⎨⎧-2,x >0,x 2+bx +c ,x ≤0,若f (-4)=f (0),f (-2)=0,则关于x 的不等式f (x )≤1的解集为( ). A .(-∞,-3]∪[-1,+∞) B .[-3,-1] C .[-3,-1]∪(0,+∞)D .[-3,+∞)解析 当x ≤0时,f (x )=x 2+bx +c 且f (-4)=f (0),故其对称轴为x =-b2=-2,∴b =4.又f (-2)=4-8+c =0,∴c =4,当x ≤0时,令x 2+4x +4≤1有-3≤x ≤-1;当x >0时,f (x )=-2≤1显然成立,故不等式的解集为 [-3,-1]∪(0,+∞). 答案 C 二、填空题8.不等式|x +1|-|x -3|≥0的解集是________. 解析 原不等式等价于⎩⎨⎧x <-1,-x -1--x或⎩⎨⎧-1≤x ≤3,x +1--x 或⎩⎨⎧x >3,x +1-x -,解得1≤x ≤3或x >3,故原不等式的解集为{x |x ≥1}.答案 {x |x ≥1}9.已知函数f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析 由函数f (x )的图象可知(如下图),满足f (1-x 2)>f (2x )分两种情况:①⎩⎨⎧1-x 2≥0,x ≥0,1-x 2>2x⇒0≤x <2-1.②⎩⎨⎧1-x 2>0,x <0⇒-1<x <0.综上可知:-1<x <2-1. 答案 (-1,2-1)10.若关于x 的不等式x 2+12x -(12)n ≥0对任意n ∈N *在x ∈(-∞,λ]上恒成立,则实常数λ的取值范围是________. 解析 由题意得x 2+12x ≥(12)n max =12,∴x ≥12或x ≤-1.又x ∈(-∞,λ],∴λ∈(-∞,-1]. 答案 (-∞,-1]11.已知f (x )=⎩⎨⎧1x -2x,-x 2-x +x ,则不等式f (x )≤2的解集是________.解析 依题意得⎩⎨⎧1x -2≤2,x >2,或⎩⎨⎧-x 2-x +4≤2,x ≤2.解得x ∈(-∞,-2]∪[1,2]∪⎣⎢⎡⎭⎪⎫52,+∞.答案 (-∞,-2]∪[1,2]∪⎣⎢⎡⎭⎪⎫52,+∞12.若不等式2x -1>m (x 2-1)对满足-2≤m ≤2的所有m 都成立,则x 的取值范围为________.解析 (等价转化法)将原不等式化为:m (x 2-1)-(2x -1)<0.令f (m )=m (x 2-1)-(2x -1),则原问题转化为当-2≤m ≤2时,f (m )<0恒成立,只需⎩⎨⎧f -<0,f<0即可,即⎩⎨⎧-x 2--x -<0,x 2--x -<0,解得-1+72<x <1+32. 答案 ⎝ ⎛⎭⎪⎫-1+72,1+32 【点评】 本题用改变主元的办法,将m 视为主变元,即“反客为主”法,把较复杂问题转化为较简单问题、较常见问题来解决. 三、解答题13.已知f (x )=2x 2-4x -7,求不等式f x-x 2+2x -1≥-1的解集.解析 原不等式可化为2x 2-4x -7-x 2+2x -1≥-1,等价于2x 2-4x -7x 2-2x +1≤1,即2x 2-4x -7x 2-2x +1-1≤0, 即x 2-2x -8x 2-2x +1≤0. 由于x 2-2x +1=(x -1)2≥0. 所以原不等式等价于⎩⎨⎧x 2-2x -8≤0,x 2-2x +1≠0.即⎩⎨⎧-2≤x ≤4,x ≠1.所以原不等式的解集为{x |-2≤x <1或1<x ≤4}. 14.已知函数f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.思路分析 第(2)问将不等式f (x )<5-m ,x ∈[1,3]恒成立转化为m <g (x ),x ∈[1,3]上恒成立,再求g (x )的最小值即可. 解析 (1)由题意可得m =0或⎩⎨⎧m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0.故m 的取值范围为(-4,0].(2)∵f (x )<-m +5⇔m (x 2-x +1)<6, ∵x 2-x +1>0, ∴m <6x 2-x +1对于x ∈[1,3]恒成立,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=x 2-x +1,h (x )在x ∈[1,3]上为增函数. 则g (x )在[1,3]上为减函数, ∴[g (x )]min =g (3)=67,∴m <67.所以m 的取值范围为⎝⎛⎭⎪⎫-∞,67. 【点评】 本题体现了转化与化归思想,解这类问题一般将参数分离出来,转化为求构造函数的最值问题,通过求最值解得参数的取值范围.15.一个服装厂生产风衣,月销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x (元). (1)该厂月产量多大时,月利润不少于1 300元?(2)当月产量为多少时,可获得最大利润,最大利润是多少? 解析 (1)由题意知,月利润y =px -R , 即y =(160-2x )x -(500+30x ) =-2x 2+130x -500,由月利润不少于1 300(元),得-2x 2+130x -500≥1 300, 即x 2-65x +900≤0,解得20≤x ≤45.故该厂月产量20~45件时,月利润不少于1 300元. (2)由(1)得,y =-2x 2+130x -500=-2⎝ ⎛⎭⎪⎫x -6522+3 2252,由题意知,x 为正整数.故当x =32或33时,y 最大为1 612.所以当月产量为32或33件时,可获最大利润,最大利润为1 612元. 16.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解析 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1; (2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1;(3)当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0. ①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a;②当2a=-1,即a =-2时,原不等式等价于x =-1;③当2a <-1,即-2<a <0时,原不等式等价于2a≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.。
一元二次不等式及其解法1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式. 当a >0时,解集为 ;当a <0时,解集为 . 2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x 的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)一元二次不等式的解:3.(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f (x )g (x )的形式.(2)将分式不等式转化为整式不等式求解,如:f (x )g (x )>0 ⇔ f (x )g (x )>0; f (x )g (x )<0 ⇔ f (x )g (x )<0; f (x )g (x )≥0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0; f (x )g (x )≤0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0.(2014·课标Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( ) A.[-2,-1] B.[-1,2) C.[-1,1]D.[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1}D.{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b ,解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.故选B. 已知-12<1x <2,则x 的取值范围是( )A.-2<x <0或0<x <12B.-12<x <2C.x <-12或x >2D.x <-2或x >12解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D.不等式1-2xx +1>0的解集是 .解:不等式1-2xx +1>0等价于(1-2x )(x +1)>0,也就是⎝⎛⎭⎫x -12(x +1)<0,所以-1<x <12. 故填⎩⎨⎧⎭⎬⎫x |-1<x <12,x ∈R .(2014·武汉调研)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________. 解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈∅;若k <0,则只须38k <(2x 2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).类型一 一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎫-∞,-13,求关于x 的不等式(a -3b )x +b -2a >0的解集.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎫-∞,-13, 得a +b >0,且3b -2a a +b=-13,从而a =2b ,则a +b =3b >0,即b >0, 将a =2b 代入(a -3b )x +b -2a >0,得-bx -3b >0,x <-3,故所求解集为(-∞,-3). 点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b=-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时, ①当m =-2时,原不等式的解集为∅,不符合 ②当m =2时,原不等式的解集为R ,符合 (2)当m 2-4>0即m <-2或m >2时,x <1m -2.(3)当m 2-4<0即-2<m <2时,x >1m -2.类型二 一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0; (3)x 2-2x +1<0; (4)x 2-2x +2>0. 解:(1){x |x <3或x >4}. (2){x |-3≤x ≤1}. (3)∅.(4)因为Δ<0,可得原不等式的解集为R .(2013·金华十校联考)已知函数f (x )=⎩⎪⎨⎪⎧-x +1,x <0,x -1,x ≥0, 则不等式x +(x +1)f (x +1)≤1的解集是( )A.{x |-1≤x ≤2-1}B.{x |x ≤1}C.{x |x ≤2-1}D.{x |-2-1≤x ≤2-1} 解:由题意得不等式x +(x +1)f (x +1)≤1等价于①⎩⎪⎨⎪⎧x +1<0,x +(x +1)[-(x +1)+1]≤1 或 ②⎩⎪⎨⎪⎧x +1≥0,x +(x +1)[(x +1)-1]≤1, 解不等式组①得x <-1;解不等式组②得-1≤x ≤2-1. 故原不等式的解集是{x |x ≤2-1}.故选C.类型三 二次不等式、二次函数及二次方程的关系已知关于x 的不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},求实数b ,c 的值. 解:∵不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1}, ∴x 1=-5,x 2=1是x 2-bx +c =0的两个实数根,∴由韦达定理知⎩⎪⎨⎪⎧-5+1=b ,-5×1=c ,∴⎩⎪⎨⎪⎧b =-4,c =-5.已知不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的解集.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得 ⎩⎪⎨⎪⎧-ba =2+3,c a =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0. 代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0). 即6x 2+5x +1<0,∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1}; (2)当m ≠0时,不等式为m ⎝⎛⎭⎫x -1m (x -1)<0. ①当m <0,不等式为⎝⎛⎭⎫x -1m (x -1)>0, ∵1m <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m 或x >1. ②当m >0,不等式为⎝⎛⎭⎫x -1m (x -1)<0. (Ⅰ)若1m <1即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <1;(Ⅱ)若1m >1即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)若1m =1即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m与1大小的不确定性,对m <1、m >1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0, 当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a ,所以当a >0时,解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞; 当-2<a <0时,解集为⎣⎡⎦⎤2a ,-1; 当a =-2时,解集为{x |x =-1}; 当a <-2时,解集为⎣⎡⎦⎤-1,2a .类型五 分式不等式的解法(1)解不等式x -12x +1≤1.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0.x +22x +1≥0 ⇔ ⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0.得{xx >-12或x ≤-2}.※(2)不等式x -2x 2+3x +2>0的解集是 .解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2}, 故填{x|-2<x <-1或x >2}. 点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根,“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( )A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B={x |0<x ≤1}.故选B.(2)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A.类型六 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,则a 的最小值为( ) A.0 B.-2 C.-52D.-3解:不等式可化为ax ≥-x 2-1,由于x ∈⎝⎛⎦⎤0,12, ∴a ≥-⎝⎛⎭⎫x +1x .∵f (x )=x +1x 在⎝⎛⎦⎤0,12上是减函数, ∴⎝⎛⎭⎫-x -1x max=-52.∴a ≥-52.(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( ) A.1<x <3 B.x <1或x >3 C.1<x <2D.x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B.点拨:对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.∴x <-1或x >3.类型七 二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( ) A.a <-1B.a >1C.-1<a <1D.0≤a <1解法一:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1.解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.故选B.1.不等式x -2x +1≤0的解集是( )A.(-∞,-1)∪(-1,2]B.[-1,2]C.(-∞,-1)∪[2,+∞)D.(-1,2]解:x -2x +1≤0⇔()x +1()x -2≤0,且x ≠-1,即x ∈(-1,2],故选D.2.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <2,则m 的取值范围是( )A.m >0B.0<m <2C.m >12D.m <0解:由不等式的解集形式知m <0.故选D.3.(2013·安徽)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,则f (10x )>0的解集为( )A.{x |x <-1或x >lg2}B.{x |-1<x <lg2}C.{x |x >-lg2}D.{x |x <-lg2}解:可设f (x )=a (x +1)⎝⎛⎭⎫x -12(a <0),由f (10x )>0可得(10x +1)⎝⎛⎭⎫10x -12<0,从而10x <12,解得x <-lg2,故选D.4.(2013·陕西)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分), 则其边长x (单位:m )的取值范围是( ) A.[15,20] B.[12,25] C.[10,30]D.[20,30]解:设矩形的另一边为y m ,依题意得x 40=40-y40,即y =40-x ,所以x (40-x )≥300,解得10≤x ≤30.故选C.5.若关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,则实数a 的取值范围是( ) A.a <-12 B.a >-4 C.a >-12D.a <-4解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,则a <-4.故选D.6.若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是____________.解:∵x ∈(1,2),∴x -1>0.则x 2-kx +k -1=(x -1)(x +1-k )>0,等价于x +1-k >0,即k <x +1恒成立,由于2<x +1<3,所以只要k ≤2即可.故填(-∞,2].7.(2014·江苏)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.解:由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f (m )=2m 2-1<0,f (m +1)=2m 2+3m <0, 解得-22<m <0.故填⎝⎛⎭⎫-22,0. 8.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围.解:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2. 9.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3). (1)若方程f (x )+6a =0有两个相等的实根,求f (x )的解析式; (2)若f (x )的最大值为正数,求a 的取值范围. 解:(1)∵f (x )+2x >0的解集为(1,3), ∴f (x )+2x =a (x -1)(x -3),且a <0. 因而f (x )=a (x -1)(x -3)-2x =ax 2-(2+4a )x +3a.①由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.② 因为方程②有两个相等的实根,所以 Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15.由于a <0,舍去a =1,将a =-15代入①得f (x )的解析式f (x )=-15x 2-65x -35.(2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝⎛⎭⎫x -1+2a a 2-a 2+4a +1a ,及a <0,可得f (x )的最大值为-a 2+4a +1a.由⎩⎪⎨⎪⎧-a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0.故当f (x )的最大值为正数时,实数a 的取值范围是 (-∞,-2-3)∪(-2+3,0).10.解关于x 的不等式:a (x -1)x -2>1(a >0).解:(x -2)[(a -1)x +2-a ]>0,当a <1时有(x -2)⎝ ⎛⎭⎪⎫x -a -2a -1<0,若a -2a -1>2,即0<a <1时,解集为{x |2<x <a -2a -1}; 若a -2a -1=2,即a =0时,解集为∅; 若a -2a -1<2,即a <0时,解集为{x |a -2a -1<x <2}.。
【最新整理,下载后即可编辑】一元二次不等式解法专题一.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x<x 1} ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-b 2aRax 2+bx +c <0 (a>0)的解集 {x |x 1<x <x 2}Φ Φ例1 解下列不等式:(1)x x ≥-2414 (2)0822≥+--x x (3)0)3)(2(>-+x x例2 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =_____.例3(穿针引线法) 解不等式:(x-1)2(x+1)(x-2)(x+4)<0例4 不等式xx ->+111的解集为( )A .{x|x >0}B .{x|x≥1}C .{x|x >1}D .{x|x >1或x =0}解不等式化为+->,通分得>,即>,1x 000111122----xx x x x∵x 2>0,∴x-1>0,即x >1.选C . 例5 与不等式023≥--xx 同解得不等式是( )A .(x -3)(2-x)≥0 B.0<x -2≤1C .≥230--x xD .(x -3)(2-x)≤0练习1:1.不等式x 2-3x +2<0的解集为( ).A .(-∞,-2)∪(-1,+∞)B .(-2,-1)C .(-∞,1)∪(2,+∞)D .(1,2)答案 D2.(2011·广东)不等式2x 2-x -1>0的解集是( ).A.⎝⎛⎭⎪⎪⎫-12,1 B .(1,+∞)C .(-∞,1)∪(2,+∞) D.⎝⎛⎭⎪⎪⎫-∞,-12∪(1,+∞)故原不等式的解集为⎝⎛⎭⎪⎪⎫-∞,-12∪(1,+∞). 答案 D3.不等式9x 2+6x +1≤0的解集是( ). A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-13 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-13 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-13≤x ≤13D .R答案 B4.若不等式ax 2+bx -2<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-2<x <14,则ab =( ).A .-28B .-26C .28D .26答案 C5.函数f (x )=2x 2+x -3+log 3(3+2x -x 2)的定义域为________. 解析依题意知⎩⎪⎨⎪⎧2x 2+x -3≥0,3+2x -x 2>0,解得⎩⎪⎨⎪⎧x ≤-32或x ≥1,-1<x <3.∴1≤x <3.故函数f (x )的定义域为[1,3).答案 [1,3) 6.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.[审题视点] 对x 分x ≥0、x <0进行讨论从而把f (x )>3变成两个不等式组. 解由题意知⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得:x >1.故原不等式的解集为{x |x >1}.例不等式<的解为<或>,则的值为7 1{x|x 1x 2}a axx -1A aB aC aD a .<.>.=.=-12121212分析可以先将不等式整理为<,转化为 0()a x x -+-111[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}可知-<,即<,且-=,∴=.a 10a 12a 1112a - 选C .例解不等式≥.8 237232x x x -+- 解 先将原不等式转化为3723202x x x -+--≥即≥,所以≤.由于++=++>,---+-+++-2123212314782222x x x x x x x x 002x x 12(x )022∴不等式进一步转化为同解不等式x 2+2x -3<0,即(x +3)(x -1)<0,解之得-3<x <1.解集为{x|-3<x <1}. 说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题. 练习21.(x+4)(x+5)2(2-x)3<0.2.解下列不等式(1);22123+-≤-x x 127314)2(22<+-+-x x x x3.解下列不等式1x 5x 2)2(;3x 1x 1+>+-≤-)(4.解下列不等式()()12log 6log 1log )2(;08254)1(21212121≥-++≥+⋅-+x x x x5解不等式1)123(log 2122<-+-x x x .。
2014年高考数学复习ABC 梯度练习 专题7.2一元二次不等式及其解法(含解析)
1.不等式组
错误!未找到引用源。
的解集是( )
A .
错误!未找到引用源。
B .
错误!未找到引用源。
C .
错误!未找到引用源。
D .
错误!未找到
引用源。
2.不等式2
620x x +-≤的解集是( )
A. ⎭⎬⎫⎩⎨⎧≤≤-
2132|x x B. ⎭⎬⎫⎩
⎨⎧
≤≤-3221|x x C. ⎩
⎨⎧-
≤3
2
|x x ,或⎭⎬⎫≥21x D. ⎩
⎨
⎧
-≤21|x x ,或⎭
⎬⎫
≥32x
3.不等式(1)(2)0x x +-<的解集为( ) A .{}|12x x -<< B .{}|12x x x <->或 C .
{}|12x x <<
D .
{}|21x x -<<
【答案】A
4.若集合A={
}
∅=<+-01/2
ax ax x ,则实 数a 的取值集合为 ( ) A.{}40/<<a a B.{}40/<≤a a C.{}40/≤<a a D. {}40/≤≤a a
5.若集合B B A a x a x x B x x x A ==+--=<-=I 且}0)1)((|{},3)2(|{,则实数a 的取值范围是 A .31<<-a B . 1<a<4 C .0<a<3 D . 0<a<4
6.不等式(1)(3)0x x -->的解( )
A .(1,3)
B .[1,3]
C .(,1)(3,)-∞+∞U
D .{|13}x x x ≠≠且
7.不等式2
20x x +-<的解集为___________.
9.若不等式2
20ax bx ++>的解集为11,23⎛⎫
-
⎪⎝
⎭,则a b -=________.
【B 组能力拔高】
1.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2
-bx -a <0的解集是( ).
A .(2,3)
B .(-∞,2)∪(3,+∞)
C.⎝ ⎛⎭⎪⎫13,12
D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭
⎪⎫12,+∞
3.已知不等式b
ax x +-2
>0的解集为(-1,2),m 是a 和b 的等比中项,那么3
3223b a a m += A .3
B .-3
C .-1
D .1
6.若不等式022>+-a ax x ,对R x ∈恒成立,则关于t 的不等式13
21
22<<-++t t t a
a 的解集为 ( )
A .}21{<<t t
B .}12{<<-t t
C .}22{<<-t t
D .}23{<<-t t
9.若1,a <-则不等式1()0x a x a ⎛⎫
--
< ⎪⎝⎭
的解集为 .
11.已知错误!未找到引用源。
.
(1)当不等式错误!未找到引用源。
的解集为错误!未找到引用源。
时, 求实数错误!未找到引用源。
的值; (2)若对任意实数错误!未找到引用源。
, 错误!未找到引用源。
恒成立, 求实数错误!未找到引用源。
的取值范围.
12.已知命题:“{|11}x x x ∀∈-≤≤,都有不等式20x x m --<成立”是真命题。
(I )求实数m 的取值集合B ;
(II )设不等式()()320x a x a ---<的解集为A ,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.。