一元二次二元一次基本不等式章节综合检测提升试卷(一)含答案高中数学
- 格式:doc
- 大小:399.50 KB
- 文档页数:9
第二章测评(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式-x 2-5x+6≥0的解集为( ) A.{x|-6≤x ≤1} B.{x|2≤x ≤3}3,或x ≤2} D.{x|x ≥1,或x ≤-6}-x 2-5x+6≥0可化为x 2+5x-6≤0,即(x+6)(x-1)≤0,解得-6≤x ≤1,故不等式的解集为{x|-1}.2.已知A={x|x 2-2x>0},B={x |x -3x -1<0},则A ∪B=( )A.{x|1<x<2}B.{x|2<x<3}0,或x>1} D.{x|x<0,或1<x<2}A={x|x>2,或x<0},B={x|1<x<3}, B={x|x<0,或x>1}.,他现在已存有60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A.30x-60≥400B.30x+60≥400 60≤400 D.30x+40≤400x 月后所存的钱数为y ,则y=30x+60,由于存的钱数不少于400元,故不等式为30x+60≥400. 1<b ,则下列结论正确的是( ) A.1>1b B.b a >1 C.a 2<b 2 D.ab<a+bA,若a=-2,b=2,则不成立, 若a=-2,b=2,则不成立, 对于C,若a=-2,b=2,则不成立, 对于D,∵a<1<b ,∴a-1<0,b-1>0, ∴(a-1)(b-1)<0,即ab-a-b+1<0, 1<a+b ,∴ab<a+b ,故D 成立.5.设函数y=4x+1x -1(x<0),则y ( ) A.有最大值3 B.有最小值3 -5 D.有最大值-5x<0,∴-x>0.∴y=4x+1x -1=-[(-4x )+1-x ]-1≤-4-1=-5,当且仅当x=-12时,等号成立.∴y 有最大值-5.a ∈R ,且a 2+a<0,那么a ,a 2,-a 的大小关系为 ( )A.a 2>a>-aB.-a>a 2>a 2 D.a 2>-a>aa 2+a<0,即a (a+1)<0,所以-1<a<0,因此-a>a 2>0,有-a>a 2>a.故选B . a>0,b>0,且2a+b=2,则ab 的最大值为( ) A.1B.√22C.1D.√2a>0,b>0,且2a+b=2,∴ab=12×(2a ·b )≤12×(2a+b 2)2=12,当且仅当2a=b ,且2a+b=2,即a=12,b=1时,取得最大值12.故选A .a 和b (a<b ),其全程的平均速度为v ,则( )A.v=a+b 2B.v=√abC.a<v<√abD.√ab <v<a+b 2S ,往返的速度分别为a=St 1,b=St 2(a<b ),则其全程的平均速度为v=2St 1+t 2=S a +S b=21a +1b<√ab ,又v>a ,故a<v<√ab .9.已知正实数a ,b 满足4a+b=30,使得1a +1b 取最小值时,实数对(a ,b )是( ) B.(6,6) C.(10,5) D.(7,2) 解析:∵a ,b>0,∴1a +1b =130(4a+b )(1a +1b )=1305+b a +4a b≥130(5+2√4)=310,当且仅当{ba =4ab ,4a +b =30时,取“=”. 5,b=10.ax 2+5x+b>0的解集是{x|2<x<3},则不等式bx 2-x-a>0的解集是( ) A.{x |-12<x <13}B.{x |x <-13,或x >12}3,或x>-2} D.{x|-3<x<-2}ax 2+5x+b>0的解集是{x|2<x<3},所以a<0,且方程ax 2+5x+b=0的实数根为2和3,所以{2+3=-5a,2×3=ba,解得a=-1,b=-6.所以不等式bx 2-x-a>0为-6x 2-x+1>0,即6x 2+x-1<0,解得-12<x<13.所以不等式bx 2-x-a>0的解集是x |-12<x<13. 答案:A 11.已知函数y=x 2-3x+2(x<-2),则函数y ( )A.有最小值-2B.有最小值2 -2 D.有最大值-6x<-2,<0,令x+2=t ,则t<0.∵y=x 2-3x+2, ∴y=(t -2)2-3t=t 2-4t+1t=t+1t -4=-[(-t )+(-1t )]-4≤-2-4=-6,当且仅当t=1t ,且t<0,即t=-1,从而有x=-3时取最大值-6.故选D .0,b>0,则下列不等式中不一定成立的是( )A.a+b+√ab ≥2√2 B.2aba+b ≥√ab C.22√ab≥a+bD.(a+b )(1a +1b )≥4a>0,b>0,∴a+b+√ab≥2√ab +√ab≥2√2,当且仅当a=b ,且2√ab =√ab,即a=b=√22时,取等号,故A 成立; ∵a+b ≥2√ab >0,∴2aba+b ≤2√ab=√ab ,当且仅当a=b 时,取等号,∴2aba+b ≥√ab 不一定成立,故B 不成立; ∵2aba+b ≤2√ab=√ab ,当且仅当a=b 时,取等号,∴a 2+b 2a+b =(a+b )2-2aba+b =a+b-2aba+b ≥2√ab −√ab ,当且仅当a=b 时,取等号, ∴a 2+b 2a+b ≥√ab ,∴22√ab ≥a+b ,故C 一定成立;∵(a+b )(1a +1b )=2+b a +ab ≥4,当且仅当a=b 时,取等号,故D 一定成立.故选B .(本大题共4小题,每小题5分,共20分.把答案写在题中的横线上) 5a 2-a+1,N=4a 2+a-1,则M ,N 的大小关系为 .M-N=5a 2-a+1-(4a 2+a-1)=a 2-2a+2=(a-1)2+1≥1>0,∴M>N.x 的不等式x 2-x+a-1≥0在R 上恒成立,则实数a 的取值范围是 .x 的不等式x 2-x+a-1≥0在R 上恒成立,所以其对应二次函数的图象与x 轴最多有一个交点,所以判别式Δ=(-1)2-4(a-1)≤0,解得a ≥54.≥5415.已知方程ax 2+bx+1=0的两个根为-14,3,则不等式ax 2+bx+1>0的解集为 .,方程ax 2+bx+1=0的两个根为-14,3,则有(-14)×3=1a ,解得a=-43<0, 则ax 2+bx+1>0⇒-14<x<3,即不等式的解集为{x |-14<x <3}.|-14<x <3} :①设a ,b 是非零实数,若a<b ,则ab 2>a 2b ;②若a<b<0,则1a >1b ;③函数y=2√x 2+2的最小值是2;④若x ,y是正数,且1x+4y =1,则xy 的最小值是16.其中正确的是 .(填序号)中ab 2-a 2b=ab (b-a ).,b 符号不定,故上式符号无法确定,故①不对.②中在a<b 两边乘正数1ab ,得1a >1b ,故②对. ③中y=2√x 2+2=√x 2+2√x 2+2≥2,但由√x 2+2=√x 2+2,得x 2+2=1无解,故③不对.④中,∵1x +4y =1≥2√4xy ,∴xy ≥16,即④对.(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知a>0,b>0,且a ≠b ,比较a 2b+b 2a与a+b 的大小.(a 2b +b 2a )-(a+b )=a 2b -b+b 2a -a=b 2b+b 2-a 2a=(a 2-b 2)(1b -1a )=(a 2-b 2)a -bab=(a -b )2(a+b )ab, 又a>0,b>0,a ≠b ,∴(a-b )2>0,a+b>0,ab>0,∴(a 2b +b 2a )-(a+b )>0,∴a 2b +b 2a >a+b.本小题满分12分)解关于x 的不等式56x 2+ax-a 2<0.(7x+a )(8x-a )<0, 即(x +a7)(x -a8)<0.①当-a 7<a 8,即a>0时,-a 7<x<a8;②当-a 7=a 8,即a=0时,原不等式的解集为⌀; ③当-a7>a8,即a<0时,a8<x<-a7. 综上可知,当a>0时,原不等式的解集为{x |-a 7<x <a8};当a=0时,原不等式的解集为⌀; 当a<0时,原不等式的解集为x |a8<x<-a 7. 19.(本小题满分12分)(1)已知式子√13+2x -x 2,求使式子有意义的x 的取值集合;y=x 2-4ax+a 2(a ∈R ),关于x 的不等式y ≥x 的解集为R ,求实数a 的取值范围.由13+2x -x 2≥0,得3+2x-x 2>0,解得-1<x<3,故使式子有意义的x 的取值集合是{x|-1<x<3}. y ≥x 的解集为R ,∴当x ∈R 时,x 2-(4a+1)x+a 2≥0恒成立. ∴Δ=(4a+1)2-4a 2≤0,即12a 2+8a+1≤0,即(2a+1)(6a+1)≤0,∴-12≤a ≤-16,∴a 的取值范围为{a |-12≤a ≤-16}.20.(本小题满分12分)已知关于x 的不等式ax -5x 2-a<0的解集为M.(1)若3∈M ,且5∉M ,求实数a 的取值范围. a=4时,求集合M.由3∈M ,知3a -59-a<0,解得a<53或a>9; 若5∈M ,则5a -525-a<0,解得a<1或a>25.则由5∉M ,知1≤a ≤25,因此所求a 的取值范围是1≤a<53或9<a ≤25. (2)当a=4时,4x -5x 2-4<0.4x -5x 2-4<0⇔{4x -5>0,x 2-4<0或{4x -5<0,x 2-4>0⇔{x >54,-2<x <2或{x <54,x <-2或x >2⇔54<x<2或x<-2.故M={x |x <-2,或54<x <2}.12分)证明不等式:a ,b ,c ∈R ,a 4+b 4+c 4≥abc (a+b+c ).a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,c 4+a 4≥2c 2a 2, +b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2), 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又a 2b 2+b 2c 2≥2ab 2c ,b 2c 2+c 2a 2≥2abc 2, c 2a 2+a 2b 2≥2a 2bc ,∴2(a 2b 2+b 2c 2+c 2a 2)≥2(ab 2c+abc 2+a 2bc ), 即a 2b 2+b 2c 2+c 2a 2≥abc (a+b+c ). ∴a 4+b 4+c 4≥abc (a+b+c ).22.(本小题满分12分)某商店预备在一个月内分批购买每张价值为20元的书桌共36张,每批都购入x 张(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4张,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用y ;,使资金够用?写出你的结论,并说明理由.设题中比例系数为k ,若每批购入x 张,则共需分36x 批,每批价值20x.由题意,y=36x·4+k ·20x , 由x=4时,y=52,得k=1680=15. 故y=144x+4x (0<x ≤36,x ∈N *).(2)可以使资金够用.理由如下:由(1)知y=144x +4x (0<x ≤36,x ∈N *), 则y ≥2√144x ·4x =48(元).当且仅当144x=4x ,即x=6时,上式等号成立.故只需每批购入6张书桌,可以使资金够用.。
高中数学专题复习
《一元二次二元一次基本不等式》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.1 .(汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答
案))已知0a >,,x y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a = ( )
A .14
B .12
C .1
D .2
2.2 .(汇编年高考天津卷(文))设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩
则目标函数
2z y x =-的最小值为
( )
A .-7
B .-4
C .1
D .2 3.小王从甲地到乙地的时速分别为a 和b(a<b),其全程的平均时速为v,则 ( )。
第二章一元二次函数、方程和不等式(单元检测卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B2.设集合A={x|x2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},则a=( )A.-4B.-2C.2D.43.下列选项中,使不等式x<1x<x2成立的x的取值范围是( )A.{x|x<-1}B.{x|-1<x<0}C.{x|0<x<1}D.{x|x>1}4.设m>1,P=m+4m-1,Q=5,则P,Q的大小关系为( )A.P<QB.P=QC.P≥QD.P≤Q5.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!6.若0≤x≤6,则x(8-x)的最大值为( )A.163B.4C.433D.57.若不等式x2+ax+b<0(a,b∈R)的解集为{x|2<x<5},则a,b的值为( )A.a=-7,b=10B.a=7,b=-10C.a=-7,b=-10D.a=7,b=108.已知不等式ax2-2ax-2<0对任意x∈R恒成立,则实数a的取值范围是( )A.{a|-1≤a≤0}B.{a|-2<a<0}C.{a|-2<a≤0}D.{a|a<-2或a≥0}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.已知2<x<3,2<y<3,则( )A.6<2x+y<9B.2<2x-y<3C.-1<x-y<1D.4<xy<910.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+111.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a +b 有最小值1C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.已知关于x的不等式x2-5ax+b>0的解集为{x|x<1或x>4},则a+b=________13.已知-1≤x+y≤4,且2≤x-y≤3,则z=2x-3y的取值范围是________14.已知实数a>0,b>0,且a2+4b2=8,则a+2b的最大值为________;4a+2+12b的最小值为________四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)已知a∈R且a≠1,试比较11-a与1+a的大小.16.(16分)解关于x的不等式x2-x-a2+a<0,0≤a≤1.17.(16分)已知x>0,y>0,且2x+8y-xy=0,求:(1)xy的最小值;(2)x+y的最小值.18.(16分)已知y=x+2x2+x+1(x>-2).(1)求1y的取值范围;(2)当x为何值时,y取得最大值?19.(16分)某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米造价40元,两侧墙砌砖,每米造价45元,顶部每平方米造价20元,求:(1)仓库面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?参考答案及解析:一、选择题1.B 解析:因为A -B =a 2+3ab -(4ab -b 2)=+34b 2≥0,所以A≥B .2.B 解析:集合A ={x|x 2-4≤0}={x|-2≤x ≤2},B ={x|2x +a ≤0}=,由A ∩B ={x|-2≤x ≤1},可得-a2=1,则a =-2.故选B .3.A 解析:取x =-2,知符合x <1x <x 2,即-2是此不等式的解集中的一个元素,所以可排除选项B ,C ,D .4.C 解析:∵m>1,∴P =m +4m -1=m -1+4m -1+1≥2(m -1)·4m -1+1=5,当且仅当m -1=4m -1,即m =3时等号成立.∴P ≥Q ,故选C .5.D 解析:由题中x 不低于95,即x ≥95;y 高于380,即y >380;z 超过45,即z >45.6.B 解析:因为0≤x ≤6,所以8-x >0,所以x(8-x)≤x +(8-x)2=4,当且仅当x =8-x ,即x =4时,等号成立.故所求最大值为4.7.A 解析:不等式x 2+ax +b <0的解集为{x|2<x <5},则对应方程x 2+ax +b =0的两个根为2和5,即Error! 解得a =-7,b =10.故选A .8.C 解析:对任意实数x ,不等式ax 2-2ax -2<0恒成立,①当a =0时,-2<0恒成立,符合题意,②当a ≠0时,则Error!解得-2<a <0.综上所述,实数a 的取值范围为{a|-2<a ≤0}.故选C .二、选择题9.ACD 解析:∵2<x<3,2<y<3,∴4<xy<9.∴4<2x<6,6<2x +y<9,∴-3<-y<-2,-1<x -y<1,1<2x -y<4.故选ACD .10.AC 解析:对于A ,当x >y >0时,x 2>y 2,A 成立;对于B ,当x >y >0时,-x <-y ,B2b(a )2-{a x |x 2⎫≤-⎬⎭不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.11.AC 解析:1=a+b≥2ab,所以ab≤14,当且仅当a=b=12时,等号成立,所以ab有最大值14,所以A正确; a +b≥2ab,2ab≤2,所以 a +b的最小值不是1,所以B错误;1a+1b=a+bab=1ab≥4,所以1a+1b有最小值4,所以C正确;a2+b2≥2ab,2ab≤12,所以a2+b2的最小值不是22,所以D错误.故选AC.三、填空题12.答案:5 解析:根据不等式x2-5ax+b>0的解集为{x|x<1或x>4},知方程x2-5ax+b=0的两个根是1和4,则5a=1+4,b=1×4,解得a=1,b=4,所以a+b=5.13.答案:3≤z≤8 解析:∵z=-12(x+y)+52(x-y),-2≤-12(x+y)≤12,5≤52(x-y)≤152,∴3≤-12(x+y)+52(x-y)≤8,∴3≤z≤8.14.答案:4,3 2 解析:∵a>0,b>0,16=2(a2+4b2)≥(a+2b)2,∴a+2b≤4,当且仅当a=2b,即a=2,b=1时等号成立,∴a+2b的最大值为4.∵(a+2+2b)·=8ba+2+a+22b+5≥24+5=9,∴4a+2+12b≥9a+2b+2≥94+2=32,当且仅当a=2,b=1时等号成立,∴4a+2+12b的最小值为3 2.41(a22b++四、解答题15.解:因为11-a -(1+a)=a 21-a,可得①当a =0时,11-a =1+a ;②当a >1时,a 21-a<0,所以11-a<1+a ;③当a <1且a ≠0时,a 21-a >0,所以11-a>1+a .综上可知,当a =0时,11-a=1+a ;当a >1时,11-a<1+a ;当a <1且a ≠0时,11-a>1+a .16.解:由x 2-x -a 2+a<0得,(x -a)[x -(1-a)]<0,0≤a ≤1①当1-a>a ,即0≤a<12时,a<x<1-a ;②当1-a =a ,即a =12时,<0,不等式无解;③当1-a<a ,即12<a ≤1时,1-a<x<a .综上所述,当0≤a<12时,解集为{x|a <x <1-a};当a =12时,解集为∅;当12<a ≤1时,解集为{x|1-a <x <a}.17.解:(1)由2x +8y -xy =0,得8x +2y=1,又x>0,y>0,则1=8x +2y ≥28x ·2y =8xy ,得xy ≥64,当且仅当x =16,y =4时,等号成立.所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,∵x >0,y >021(x 2则x +y =·(x +y)=10+2x y +8y x ≥10+22x y ·8yx=18.当且仅当x =12,y =6时等号成立,所以x +y 的最小值为18.18.解:(1)设x +2=t ,则x =t -2,t >0(x >-2).故1y =x 2+x +1x +2=(t -2)2+(t -2)+1t=t 2-3t +3t=t +3t-3≥23-3,∴1y≥23-3.(2)由题意知y >0,故欲使y 最大,必有1y 最小,此时t =3t ,t =3,x =3-2,y =123-3=23+33,∴当x =3-2时,y 最大,最大值为23+33.19.解:(1)设铁栅长为x 米,一堵砖墙长为y 米,而仓库面积即顶部面积,故S =xy .依题意,得40x +2×45y +20xy =3 200,由基本不等式,得3 200≥240x ×90y +20xy =120xy +20xy =120S +20S ,所以S +6S -160≤0,即(S -10)(S +16)≤0.因为S +16>0,所以S -10≤0,故S ≤10,从而S ≤100,所以S 的最大允许值是100.(2)取得最大值的条件是40x =90y 且xy =100,求得x =15,即铁栅的长是15米.82(x y。
第2章一元二次函数、方程和不等式(原卷版)本卷满分150分,考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列命题是真命题的是A .若ac bc >.则a b >B .若22a b >,则a b>C .若a b >,则11a b<D .若c d >,a c b d ->-,则a b>2.已知242,65,M x x N x x R =+-=-∈,下列关系正确的是A .M N ≤B .M N <C .M N=D .M N>3.已知正数a,b ,满足2a b +=A .最小值1BC D .最大值14.已知关于x 的不等式220ax ax -+>在R 上恒成立,则实数a 的取值范围是A .()(),08,-∞+∞B .(][),08,-∞+∞C .[)0,8D .()0,85.已知0a >,0b >,且228a b ab ++=,则2+a b 的最小值为A .2B .C .4D .66.不等式()4421m m >-,则实数m 的取值范围是A .(),1-∞B .1,13⎛⎫⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭7.已知0x >,0y >且141x y+=,若不等式246x y m m +≥-对任意正数x ,y 恒成立,则实数m 的取值集合为A .{|28}m m -≤≤B .{|82}m m -≤≤C .{|8m m ≤-或2}m ≥D .{|2m m ≤-或8}m ≥8.若关于x 的不等式22840x x a --->在[1,4]内有解,则实数a 的取值范围是A .(4,)-+∞B .(,4)-∞-C .(12,)-+∞D .(,12)-∞-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知23x <<,23y <<,则下列说法正确的是A .2x y +的取值范围为(6,9)B .2x y -的取值范围为(2,3)C .x y的取值范围为23(,)32D .xy 的取值范围为(4,9)10.不等式20ax bx c ++≥的解集是122x x ⎧⎫≤≤⎨⎬⎩⎭,对于系数a ,b ,c ,下列结论正确的是A .0a b c -+>B .0b >C .0c >D .0a b c ++>11.现有以下结论①函数1y x x=+的最小值是2②若,a b ∈R 且0ab >,则2b a a b+≥③y =2④函数423(0)y x x x =-->的最小值为2-其中,不正确的是A .①B .②C .③D .④12.关于x 的一元二次不等式x 2-6x +a ≤0(a ∈Z)的解集中有且仅有3个整数,则a 的取值可以是A .6B .7C .8D .9三、填空题:本题共4小题,每小题5分,共20分.13.若方程()200ax bx c a ++=>有唯一的实数根-2,则不等式20ax bx c ++>的解集为________.14.已知正实数a ,b 满足196a b+=,则()()19a b ++的最小值是________.15.若关于x 的不等式223x x a -≥-+无解,则实数a 的取值范围是________.16.已知λ∈R ,函数24,()43,x x f x x x x λλ-≥⎧=⎨-+<⎩,当λ=2时,不等式()0f x <的解集是________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(1)试比较()()15x x ++与()23x +的大小;(2)已知a b >,11a b<,求证:0ab >.18.(12分)已知二次函数2()3f x ax bx =++,且1,3-是函数()f x 的零点.(1)求()f x 的解析式;(2)解不等式()3f x ≤.19.(12分)求解下列各题:(1)求()23402x x y x x ++=<的最大值;(2)求()2811x y x x +=>-的最小值.20.(12分)今年10月份,学校从某厂家购进了A 、B 型电脑共250台,A 、B 两种型号电脑的单价分别为7000元、9000元,其中购进A 型、B 型电脑的总金额和为205万元.(1)求学校10月份购进A 、B 型电脑各多少台?(2)为推进学校设备更新进程,学校决定11月份在同一厂家再次购进A 、B 两种型号的电脑,在此次采购中,比起10月份进购的同类型电脑,A 型电脑的单价下降了a %,A 型电脑数量增加了4%5a ,B 型电脑的单价上升了503a 元,B 型电脑数量下降了4%5a ,这次采购A 、B 两种型号电脑的总金额为205万元,求a 的值.21.(12分)已知实数0,0x y >>,且()()222,,R xy x y a x y b a b =++++∈.(1)当0,0a b ==时,求4x y +的最小值,并指出取最小值时x ,y 的值:(2)当0,3a b ==时,求x y +的最小值,并指出取最小值时x ,y 的值(3)当1,02a b ==时,求x y +的最小值,并指出取最小值时x ,y 的值.22.(12分)若()0,a b ∈+∞,则2223a b a b a b +≤++.(1)若存在常数M ,使得不等式2222a b a bM a b a b a b a b+++≤≤+++对任意正数a ,b 恒成立,试求常数M 的值,并证明不等式:22a bM a b a b++≤+;(2)证明不等式:32232332a b a ba b a b a b a b≤++++++.第2章一元二次函数、方程和不等式(解析版)本卷满分150分,考试时间120分钟。
高中数学第二章一元二次函数方程和不等式专项训练题单选题1、实数a,b 满足a >b ,则下列不等式成立的是( ) A .a +b <ab B .a 2>b 2C .a 3>b 3D .√a 2+b 2<a +b 答案:C分析:利用不等式的性质逐一判断即可. A ,若a =1,b =0,则a +b >ab ,故A 错误; B ,若a =1,b =−2,则a 2<b 2,故B 错误;C ,若a >b ,则a 3−b 3=(a −b )(a 2+ab +b 2)=(a −b )[(a +b 2)2+3b 24]>0,所以a 3>b 3,故C 正确;D ,若a =1,b =−2,则√a 2+b 2>a +b ,故D 错误. 故选:C2、若a,b,c ∈R ,则下列命题为假命题的是( ) A .若√a >√b ,则a >b B .若a >b ,则ac >bc C .若b >a >0,则1a >1b D .若ac 2>bc 2,则a >b 答案:B分析:根据不等式的性质逐一分析各选项即可得答案. 解:对A :因为√a >√b ,所以a >b ≥0,故选项A 正确;对B :因为a >b ,c ∈R ,所以当c >0时,ac >bc ;当c =0时,ac =bc ;当c <0时,ac <bc ,故选项B 错误;对C :因为b >a >0,所以由不等式的性质可得1a>1b >0,故选项C 正确;对D :因为ac 2>bc 2,所以c 2>0,所以a >b ,故选项D 正确. 故选:B.3、若x >53,则3x +43x−5的最小值为( )A .7B .4√3C .9D .2√3 答案:C分析:利用基本不等式即可求解. 解:∵x >53, ∴3x −5>0,则3x +43x−5=(3x −5)+43x−5+5≥2√(3x −5)⋅43x−5+5=9, 当且仅当3x −5=2时,等号成立, 故3x +43x−5的最小值为9,故选:C .4、已知2<a <3,−2<b <−1,则2a −b 的范围是( ) A .(6,7)B .(5,8)C .(2,5)D .(6,8) 答案:B分析:由不等式的性质求解即可.,故4<2a <6,1<−b <2,得5<2a −b <8 故选:B5、已知a,b >0,a +4b =ab ,则a +b 的最小值为( ) A .10B .9C .8D .4 答案:B分析:由题可得4a +1b =1,根据a +b =(a +b )(4a +1b )展开利用基本不等式可求.∵a,b >0,a +4b =ab ,∴4a +1b =1, ∴a +b =(a +b )(4a +1b )=4b a +a b +5≥2√4b a ⋅ab +5=9,当且仅当4ba =ab 时等号成立,故a +b 的最小值为9. 故选:B.23,21<<-<<-a b6、已知两个正实数x ,y 满足x +y =2,则1x+9y+1的最小值是( )A .163B .112C .8D .3 答案:A分析:根据题中条件,得到1x +9y+1=13(1x +9y+1)[x +(y +1)],展开后根据基本不等式,即可得出结果. 因为正实数x,y 满足x +y =2,则1x +9y+1=13(1x +9y+1)[x +(y +1)]=13(10+y+1x+9x y+1)≥13(10+2√y+1x⋅9x y+1)=163,当且仅当y+1x=9xy+1,即x =34,y =54时,等号成立.故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.7、关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β,且α2+β2=12,那么m 的值为( ) A .−1B .−4C .−4或1D .−1或4 答案:A分析:α2+β2=(α+β)2−2α⋅β,利用韦达定理可得答案. ∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根, ∴Δ=[2(m −1)]2−4×1×(m 2−m )=−4m +4⩾0, 解得:m ⩽1,∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β, ∴α+β=−2(m −1),α⋅β=m 2−m ,∴α2+β2=(α+β)2−2α⋅β=[−2(m −1)]2−2(m 2−m )=12,即m 2−3m −4=0,解得:m =−1或m =4(舍去). 故选:A.8、已知实数x ,y 满足x 2+y 2=2,那么xy 的最大值为( ) A .14B .12C .1D .2 答案:C分析:根据重要不等式x 2+y 2≥2xy 即可求最值,注意等号成立条件.由x 2+y 2=2≥2xy ,可得xy ≤1,当且仅当x =y =1或x =y =−1时等号成立. 故选:C. 多选题9、下面所给关于x 的不等式,其中一定为一元二次不等式的是( ) A .3x +4<0B .x 2+mx -1>0 C .ax 2+4x -7>0D .x 2<0 答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A 是一元一次不等式,故错误;选项B ,D ,不等式的最高次是二次,二次项系数不为0,故正确;当a =0时,选项C 是一元一次不等式,故不一定是一元二次不等式,即错误. 故选:BD.10、已知a >0,b >0,且a 2+b 2=2,则下列不等式中一定成立的是( ) A .ab ≥1B .a +b ≤2 C .lga +lgb ≤0D .1a +1b ≤2 答案:BC分析:对于AD ,举例判断,对于BC ,利用基本不等式判断 解:对于A ,令a =√22,b =√62满足a 2+b 2=2,则ab =√22×√62=√32<1,所以A 错误,对于B ,因为(a +b)2=a 2+b 2+2ab =2+2ab ≤2+a 2+b 2=4,所以a +b ≤2,当且仅当a =b =1时取等号,所以B 正确,对于C ,因为lga +lgb =lgab ≤lg a 2+b 22=lg1=0,当且仅当a =b =1时取等号,所以C 正确,对于D ,令a =√22,b =√62满足a 2+b 2=2,则1a +1b =√2+√63≈1.414+0.8165>2,所以D 错误,故选:BC11、已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a−b >12C .log 2a +log 2b ≥−2D .√a +√b ≤√2 答案:ABD分析:根据a +b =1,结合基本不等式及二次函数知识进行求解. 对于A ,a 2+b 2=a 2+(1−a )2=2a 2−2a +1=2(a −12)2+12≥12, 当且仅当a =b =12时,等号成立,故A 正确;对于B ,a −b =2a −1>−1,所以2a−b >2−1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2(a+b 2)2=log 214=−2,当且仅当a =b =12时,等号成立,故C 不正确; 对于D ,因为(√a +√b)2=1+2√ab ≤1+a +b =2,所以√a +√b ≤√2,当且仅当a =b =12时,等号成立,故D 正确; 故选:ABD小提示:本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.12、下列选项中正确的是( ) A .不等式a +b ≥2√ab 恒成立B .存在实数a ,使得不等式a +1a ≤2成立 C .若a ,b 为正实数,则ba +ab ≥2D .若正实数x ,y 满足,则2x +1y ≥821x y +=答案:BCD分析:根据基本不等式的条件与“1”的用法等依次讨论各选项即可得答案. 解:对于A选项,当a<0,b<0时不成立,故错误;对于B选项,当a<0时,a+1a =−[(−a)+(−1a)]≤2,当且仅当a=−1等号成立,故正确;对于C选项,若a,b为正实数,则ba >0,ab>0,所以ba+ab≥2√ba⋅ab=2,当且仅当a=b时等号成立,故正确;对于D选项,由基本不等式“1”的用法得2x +1y=(2x+1y)(x+2y)=4+4yx+xy≥4+2√4yx⋅xy=8,当且仅当x=2y时等号成立,故正确.故选:BCD13、已知函数f(x)=x2−2(a−1)x+a,若对于区间[−1,2]上的任意两个不相等的实数x1,x2,都有f(x1)≠f(x2),则实数a的取值范围可以是()A.(−∞,0]B.[0,3]C.[−1,2]D.[3,+∞)答案:AD解析:对于区间[−1,2]上的任意两个不相等的实数x1,x2,都有f(x1)≠f(x2),分析即f(x)在区间[−1,2]上单调,利用二次函数的单调区间判断.二次函数f(x)=x2−2(a−1)x+a图象的对称轴为直线x=a−1,∵任意x1,x2∈[−1,2]且x1≠x2,都有f(x1)≠f(x2),即f(x)在区间[−1,2]上是单调函数,∴a−1≤−1或a−1≥2,∴a≤0或a≥3,即实数a的取值范围为(−∞,0]∪[3,+∞).故选:AD小提示:(1)多项选择题是2020年高考新题型,需要要对选项一一验证.(2)二次函数的单调性要看开口方向、对称轴与区间的关系.填空题14、已知三个不等式:①ab>0,②ca >db,③bc>ad,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题. 答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可. 由不等式性质,得{ab >0c a >d b ⇒{ab >0bc−ad ab>0⇒bc >ad ;{ab >0bc >ad ⇒c a >d b ;{ca>d bbc >ad⇒{bc−adab>0bc >ad⇒ab >0.故可组成3个真命题.所以答案是:3.15、命题p:∀x ∈R ,x 2+ax +a ≥0,若命题p 为真命题,则实数a 的取值范围为___________. 答案:[0,4]分析:根据二次函数的性质判别式解题即可.∀x ∈R ,要使得x 2+ax +a ≥0,则Δ=a 2−4a ≤0,解得0≤a ≤4. 若命题p 为真命题,则实数a 的取值范围为[0,4]. 所以答案是:[0,4]. 16、a >b >c ,n ∈N ∗,且1a−b+1b−c≥n a−c恒成立,则n 的最大值为__.答案:4分析:将不等式变形分离出n ,不等式恒成立即n 大于等于右边的最小值;由于a −c =a −b +b −c ,凑出两个正数的积是常数,利用基本不等式求最值. 解:由于1a−b+1b−c≥n a−c恒成立,且a >c即恒成立 只要的最小值即可∵a −c a −b +a −c b −c =a −b +b −c a −b +a −b +b −cb −c=2+b −c a −b +a −bb −c∵a >b >ca c a cn a b b c --≤+--a c a cn a b b c --≤+--∴a −b >0,b −c >0,故(a−c a−b +a−cb−c )≥4,因此n ≤4 所以答案是:4. 解答题17、(1)已知x >1,求4x +1+1x−1的最小值;(2)已知0<x <1,求x (4−3x )的最大值. 答案:(1)9;(2)43.分析:(1)由于x −1>0,则4x +1+1x−1=4(x −1)+1x−1+5,然后利用基本不等式求解即可, (2)由于0<x <1,变形得x (4−3x )=13⋅(3x )⋅(4−3x ),然后利用基本不等式求解即可. (1)因为x >1,所以x −1>0,所以4x +1+1x−1=4(x −1)+1x−1+5≥2√4(x −1)⋅1x−1+5=9, 当且仅当4(x −1)=1x−1,即x =32时取等号,所以4x +1+1x−1的最小值为9.(2)因为0<x <1,所以x (4−3x )=13⋅(3x )⋅(4−3x )≤13(3x+4−3x 2)2=43,当且仅当3x =4−3x ,即x =23时取等号,故x (4−3x )的最大值为43.18、在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,已知2acosB =2c −b . (1)求角A 的值;(2)若b =5,AC⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =−5,求△ABC 的周长; (3)若2bsinB +2csinC =bc +√3a ,求△ABC 面积的最大值. 答案:(1)A =π3;(2)20;(3)3√34. 解析:(1)利用正弦定理及两角和的正弦公式展开,可得,可求得角A 的值;(2)根据向量的数量积及余弦定理分别求出a,c ,即可求得周长;1cos 2A(3)将利用正弦定理将角化成边,再利用余弦定理结合基本不等式可求得面积的最值; (1)∵2acosB =2c −b ⇒2sinA ⋅cosB =2sinC −sinB ,∴2sinA ⋅cosB =2⋅sin(A +B)−sinB =2(sinA ⋅cosB +cosA ⋅sinB)−sinB , ∴,∵0<A <π,∴A =π3;(2)∵AC⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ 2 =c ⋅5⋅cos π3−52=52c −25=−5⇒c =8,在△ABC 中利用余弦定理得:a 2=b 2+c 2−2b ⋅c ⋅cosA =52+82−2⋅5⋅8⋅12=49, ∴a =7,∴ΔABC 的周长为:5+8+7=20; (3)∵bsinB =csinC =asinA =√32=2√3a3,∴sinB =√32ba,sinC =√32ca, ∴2b ⋅√32⋅b a+2c ⋅√32⋅ca=bc +√3a ,∴√3(b 2+c 2−a 2)=abc ⇒√3⋅cosA =a2⇒√3⋅12=a2⇒a =√3, ∴√3(b 2+c 2−3)=√3bc ⇒b 2+c 2=3+bc , ∴3+bc ⩾2bc ⇒bc ⩽3,等号成立当且仅当, △ABC 面积的最大值为(12bcsinA)max=3√34. 小提示:本题考查三角恒等变换、正余弦定理在解三角形中的应用,求解时注意选择边化成角或者角化成边的思路.1cos 2A =b c =。
高一数学必修第一册《一元二次函数、方程和不等式》检测卷考试时间:120分钟;满分:150分一.选择题(共8小题,满分40分,每小题5分)1.(5分)若实数a,b满足>,则下列不等式成立的是()A.>B.+>+C.2>2D.B2>B22.已知条件G>1,条件G−2−2+3≤0,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知1≤+≤4,−1≤−≤2,则4−2的取值范围是()A.−4<<10B.−3<<6C.−2<<14D.−2≤≤104.若正实数、满足+=2,则1B的最小值为()A.0B.1C.2D.35.(5分)若关于的不等式2+B+>0的解集为(−∞,−1)∪(2,+∞),则不等式2+B−8r>0的解集为()A.(−4,1)∪(2,+∞)B.(−2,1)∪(4,+∞)C.(−∞,−2)∪(1,4)D.(−∞,−4)∪(1,2)6.(5分)甲、乙两名司机的加油习惯有所不同,甲每次加油都说“师傅,给我加300元的油”,而乙则说“师傅帮我把油箱加满”,如果甲、乙各加同一种汽油两次,两人第一次与第二次加油的油价分别相同,但第一次与第二次加油的油价不同,乙每次加满油箱,需加入的油量都相同,就加油两次来说,甲、乙谁更合算()A.甲更合算B.乙更合算C.甲乙同样合算D.无法判断谁更合算7.(5分)若关于的不等式2−+2+2<0的解集中恰有3个整数,则实数的取值范围为()A.−2,−1∪5,6B.−2,−1∪3,6C.−3,−1∪3,6D.−1∪4,68.(5分)已知正数、满足−1−2=2,不等式3+2>恒成立.则实数的取值范围是()A.−∞,4+62B.6+42,+∞C.−∞,7+43D.8+43,+∞二.多选题(共4小题,满分20分,每小题5分)9.(5分)已知−1<<6,3<<8,则下列结果正确的有()A.−13<<2B.2<+<14C.−4<−<−2D.−3<B<4810.(5分)∀∈,关于的不等式2−B+>0恒成立,则实数的值可以是()A.0B.1C.2D.311.(5分)下列结论中,正确的结论有()A.函数=+1的最小值是2B.如果>0,>0,+3+B=9,那么B的最大值为3 C.函数op=的最小值为52D.如果>0,>0,且1r1+11+=1,那么+的最小值为2 12.(5分)已知关于x的不等式B2+B+≤0的解集是U≤−2或≥6()A.<0B.不等式B2−B+<0的解集是U−16<<C.++>0D.不等式B+>0的解集是U<−3三.填空题(共4小题,满分20分,每小题5分)13.(5分)比较大小:2+(请从“<”“>”“=”中选择合适的符号填空)14.(5分)若>0,>0,且+=6,则4+1的最小值为.15.(5分)已知二次方程B2+B+=0(>0)的两根分别为2和4,则不等式B2+B+<0的解集为.16.(5分)设>0,>1,若+=2,且不等式4+1K1>2+8恒成立,则的取值范围是.四.解答题(共6小题,满分70分)17.(10分)解关于的不等式.(1)2+−6<0;(2)−22−≤−6(3)(−p(−2)>0.18.(12分)比较下列各题中两个代数式值的大小. (1)2+12与4+2+1;(2)2−22+2与>>0.19.(12分)证明下列不等式:(1)已知>>>,求证:1K<1K;(2)已知>>0,<<0,<0,求证:K>K.20.(12分)已知>0,>0,+=1,求下列代数式的最小值(1)1r2+1r2;(2)1(+1).21.(12分)甲、乙两地相距1000km,货车从甲地匀速行驶到乙地,速度不得超过100(km/h),若货车每小时的运输成本(以元为单位)由可变成本和固定成本组成,可变成本是速度km h的平方的34倍,固定成本为元.(1)将全程运输成本(元)表示为速度km h的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?22.(12分)已知函数op=2−B+.(1)若不等式op>0的解集为(−∞,1)∪(3,+∞),求实数s的值;(2)当−1=0时,(i)解关于x的不等式>0;(i)若存在∈[1,2],使得≤0,求实数a的取值范围.高一数学必修第一册《一元二次函数、方程和不等式》检测卷答案一.选择题(共8小题,满分40分,每小题5分)1.(5分)若实数a,b满足>,则下列不等式成立的是()A.>B.+>+C.2>2D.B2>B2【解题思路】利用不等式的性质即可判断.【解答过程】由=1,=−2,=0<,故A错;2<2,故C错;B2=B2,故D错;由不等式的性质易知B正确.故选:B.2.已知条件G>1,条件G−2−2+3≤0,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】解一元二次不等式结合充分不必要条件的定义即可得解.【解答过程】由题意条件G>1,条件G−2−2+3≤0⇔≤−3或≥1,所以是的充分不必要条件.故选:A.3.已知1≤+≤4,−1≤−≤2,则4−2的取值范围是()A.−4<<10B.−3<<6C.−2<<14D.−2≤≤10【解题思路】利用+和−范围求出0≤2≤6,然后利用不等式的性质求解即可【解答过程】由−1≤−≤2,1≤+≤4,得0≤−++≤6,即0≤2≤6,−2≤2−≤4,所以−2≤2−+2≤10,即−2≤4−2≤10,故选:D.4.若正实数、满足+=2,则1B的最小值为()A.0B.1C.2D.3【解题思路】利用基本不等式可求得1B的最小值.【解答过程】因为正实数、满足+=2,则1B≥12=1,当且仅当=+=2时,即当==1时,等号成立,故1B的最小值为1.故选:B.5.(5分)若关于的不等式2+B+>0的解集为(−∞,−1)∪(2,+∞),则不等式2+B−8r>0的解集为()A.(−4,1)∪(2,+∞)B.(−2,1)∪(4,+∞)C.(−∞,−2)∪(1,4)D.(−∞,−4)∪(1,2)【解题思路】根据关于x的不等式B+<0的解集是U−1<<2,利用韦达定理可得=−1,=−2>0,进而求解.【解答过程】因为关于的不等式2+B+>0的解集为(−∞,−1)∪(2,+∞),所以2+B+=02,由韦达定理可得:=−1,=−2,所以2+B−8r>0>0,解得−2<<1或>4.所以原不等式的解集为(−2,1)∪(4,+∞),故选:B.6.(5分)甲、乙两名司机的加油习惯有所不同,甲每次加油都说“师傅,给我加300元的油”,而乙则说“师傅帮我把油箱加满”,如果甲、乙各加同一种汽油两次,两人第一次与第二次加油的油价分别相同,但第一次与第二次加油的油价不同,乙每次加满油箱,需加入的油量都相同,就加油两次来说,甲、乙谁更合算()A.甲更合算B.乙更合算C.甲乙同样合算D.无法判断谁更合算【解题思路】根据题意列出甲乙两次加油的平均单价,进而根据不等式即可求解.【解答过程】设两次的单价分别是s≠元/升,甲加两次油的平均单价为600300+300=21+1,单位:元/升,乙每次加油升,加两次油的平均单价为B+B2=r2,单位:元/升,因为>0,>0,≠,+=2++>2+=4,即21+1<r 2,即甲的平均单价低,甲更合算.故选:A.7.(5分)若关于的不等式2−+2+2<0的解集中恰有3个整数,则实数的取值范围为()A .−2,−1∪5,6B .−2,−1∪3,6C .−3,−1∪3,6D .−1∪4,6【解题思路】含参解一元二次不等式,分类讨论的范围确定整数解即可.【解答过程】由2−+2+2<0,得−−2<0,当=2时,不等式的解集为∅,不符合题意,舍去;当<2时,不等式的解集为<<2,此时若有3个整数解,此时,解集中的三个整数分别为1、0、−1,则需−2≤<−1;当>2时,不等式的解集为2<<,此时若有3个整数解,此时,解集中的三个整数分别为3、4、5,则需5<≤6综上:所以−2≤<−1或5<≤6,故选:A .8.(5分)已知正数、满足−1−2=2,不等式3+2>恒成立.则实数的取值范围是()A .−∞,4+62B .6+42,+∞C .−∞,7+43D .8+43,+∞【解题思路】由不等式3+2>恒成立,故只需3+2min>,由基本不等式的乘“1”法,结合已知求出3+2的最小值即可.【解答过程】因为−1−2=2,>0,>0,所以B =2+,即1+2=1,所以由基本不等式可得3+2=3+27+2+6≥7+=7+43,等号成立当且仅当2=6>0,>0−1−2=2即=1+233=2+3综上所述,3+2的最小值为7+43;因为不等式3+2>恒成立,所以实数的取值范围是−∞,7+43.故选:C.二.多选题(共4小题,满分20分,每小题5分)9.(5分)已知−1<<6,3<<8,则下列结果正确的有()A.−13<<2B.2<+<14C.−4<−<−2D.−3<B<48【解题思路】根据题意,利用不等式的基本性质,逐项判定,即可求解.【解答过程】对于A中,由3<<8,可得18<1<13,由不等式的性质,可得−13<<2,所以A正确;对于B中,由−1<<6,3<<8,根据不等式的性质,可得2<+<14,所以B正确;对于C中,由3<<8,可得−8<−<−3,所以−9<−<3,所以C错误;对于D中,由−1<<6,3<<8,可得−8<B<48,所以D错误.故选:AB.10.(5分)∀∈,关于的不等式2−B+>0恒成立,则实数的值可以是()A.0B.1C.2D.3【解题思路】结合一元二次不等式恒成立有Δ<0,即可求范围.【解答过程】∀∈,关于的不等式2−B+>0恒成立,所以Δ=2−4<0,解得0<<4,对照选项知实数的值可以是1,2,3.故选:BCD.11.(5分)下列结论中,正确的结论有()A.函数=+1的最小值是2B.如果>0,>0,+3+B=9,那么B的最大值为3C.函数op=的最小值为52D.如果>0,>0,且1r1+11+=1,那么+的最小值为2【解题思路】利用基本不等式对选项逐个判断即可得.【解答过程】对A:当J−1时,=−1−1=−2,所以最小值不是2,故A错误;对B:由已知可得9−B=+3≥23B,解得0<B≤3,所以0<B≤3,当且仅当=3时成立,此时B的最大值为3,故B正确;=2+4+,设2+4=,≥2,对C:函数op==+1在2,+∞上单调递增,所以=2时,取最大值52,故C正确;对D :+=+1++1−2=[(+1)+(+1)](1r1+1r1)−2=1+1−2+r1r1+r1r1≥=2,当且仅当=时取得最小值为2,故D 正确.故选:BCD .12.(5分)已知关于x 的不等式B 2+B +≤0的解集是U ≤−2或≥6()A .<0B .不等式B 2−B +<0的解集是U −16<<C .++>0D .不等式B +>0的解集是U <−3【解题思路】根据一元二次不等式的解集性质进行逐一判断即可.【解答过程】因为关于x 的不等式B 2+B +≤0的解集是U ≤−2或≥6,所以有<0−2+6=−−2×6=⇒<0=−4=−12,因此选项A 正确;B 2−B +<0⇒−12B 2+4B +<0⇒122−4−1<0⇒−16<<12,因此选项B 正确;++=−4−12=−15>0,因此选项C 正确;B +>0⇒−4B−12>0⇒+3>0⇒>−3,因此选项D 不正确,故选:ABC.三.填空题(共4小题,满分20分,每小题5分)13.(5分)比较大小:2+(请从“<”“>”“=”中选择合适的符号填空)【解题思路】将两数都平方,然后作差法比较大小即可.【解答过程】由(2+6)2=8+43,则(2+6)2−42=4(3−2)<0,所以(2+6)2<42⇒2+6<4.故答案为:<.14.(5分)若>0,>0,且+=6,则4+1的最小值为32.【解题思路】根据基本不等式的乘“1”法即可求解.【解答过程】由于>0,>0,所以4+1=+=+4+≥+=32,当且仅当4=,即=4,=2时等号成立,故答案为:.15.(5分)已知二次方程B2+B+=0(>0)的两根分别为2和4,则不等式B2+B+<0的解【解题思路】根据二次方程的两根可得、与的关系,可化简B2+B+<0为2−6+8<0,再解不等式可得答案.【解答过程】二次方程B2+B+=0(>0)的两根分别为2和4,可得2+4=−2×4=,即=−6=8,由B2+B+<0>0可得2−6+8<0,解得2<<4,所以不等式2−6+8<0的解集为U2<<4.故答案为:U2<<4.16.(5分)设>0,>1,若+=2,且不等式4+1K1>2+8的取值范围是−9,1【解题思路】首先根据已知条件得到+−1=1⋅+−1即可求得最小值,再解关于的一元二次不等式即可求得的取值范围.【解答过程】因为>0,>1,+=2,所以+−1=1,则4+1⋅+−1=5++K1≥5+=9,=K1时,即=23,=43时取等号,所以9>2+8,解得−9<<1.故答案为:−9,1.四.解答题(共6小题,满分70分)17.(10分)解关于的不等式.(1)2+−6<0;(2)−22−≤−6(3)(−p(−2)>0.【解题思路】由公式解不含参数的一元二次不等式,分类讨论解含参数的一元二次不等式.【解答过程】(1)不等式2+−6<0,即+3−2<0,解得−3<<2,所以不等式的解集为U−3<<2;(2)不等式−2,所以不等式的解集为{U≤−2或≥32};(3)不等式−−2>0,当>2时,解集为<2或>,当<2时,解集为<或>2,当=2时,解集为{U≠2}.18.(12分)比较下列各题中两个代数式值的大小.(1)2+12与4+2+1;(2)2−22+2与>>0.【解题思路】(1)(2)利用作差法,化简后和0比较,即可判断大小关系.【解答过程】(1)2+12−4+2+1=4+22+1−4+2+1=2≥0,∴2+12≥4+(2)2−22+2−K r==∵>>0,∴>0,+>0,2+2>0,>0,∴2−22+2>K r.19.(12分)证明下列不等式:(1)已知>>>,求证:1K<1K;(2)已知>>0,<<0,<0,求证:K>K.【解题思路】(1)依题意可得−>−>0,再根据不等式的性质证明;(2)利用作差法证明即可.【解答过程】(1)∵>>>,即>s−>−,∴−>−>0,则1K<1K.(2)∵>>0,<<0,<0,∴−>−>0,∴−>则−===>0,∴−>−.20.(12分)已知>0,>0,+=1,求下列代数式的最小值(1)1r2+1r2;(2)1(+1).【解题思路】(1)运用配凑和常值代换法将其转化,利用基本不等式即可求得;(2)展开变形成2+1B,再将1换成+2展开,即可利用基本不等式求解..【解答过程】(1)因>0,>0,+=1,则(+2)+(+2)=5,于是得1r2+1r2=15[(+2)+(+2)](1r2+1r2)=15(2+r2r2+r2r2)≥15(2+=45,当且仅当r2r2=r2r2,即==12时取“=”,所以,当==12时,1r2+1r2的最小值是45;(2)因>0,>0,+=1,则1(+1)=2+1B=2+(rp2B=2+2B+22B=+2+2≥2=22+2,当且仅当=2,即=2−2,=2−1时取“=”,所以当=2−2,=2−1时,1(+1)的最小值是22+2.21.(12分)甲、乙两地相距1000km,货车从甲地匀速行驶到乙地,速度不得超过100(km/h),若货车每小时的运输成本(以元为单位)由可变成本和固定成本组成,可变成本是速度km h的平方的34倍,固定成本为元.(1)将全程运输成本(元)表示为速度km h的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?【解题思路】(12元,固定成本为a元,求和后乘以时间即可;(2)由(1)的结论,利用基本不等式求最小值作答.【解答过程】(12元,固定成本为a元,所用时间为1000,则=10002+=1000(0, 100].(2)由(1)得=1000≥1000×=10003,当且仅当34=,即=易知函数=34+在+∞上单调递增.又0<≤100,所以当0<≤7500时,货车以=的速度行驶,全程运输成本最小;当>7500时,货车以100km/h的速度行驶,全程运输成本最小.22.(12分)已知函数op=2−B+.(1)若不等式op>0的解集为(−∞,1)∪(3,+∞),求实数s的值;(2)当−1=0时,(i)解关于x的不等式>0;(i)若存在∈[1,2],使得≤0,求实数a的取值范围.【解题思路】(1)根据题意,转化为得到1和3是方程2−B+=0的两个实数根据,列出方程组,即可求解;(2)(i)由−1=0,求得=−(+1),把不等式>0,转化为(+1)[−(+1)]>0,分类讨论,即可求得不等式的解集;(i i)由(i)中不等式的解集,结合存在∈[1,2],使得≤0,分类讨论,即可求解.【解答过程】(1)解:由函数op=2−B+,因为不等式op>0的解集为(−∞,1)∪(3,+∞),可得1和3是方程2−B+=0的两个实数根据,则1+3=1×3=,解得=4,=3.(2)解:(i)由函数op=2−B+,因为−1=0,可得o−1)=1++=0,即=−(+1),所以op=2−B−(+1),由不等式>0,即2−B−(+1)=(+1)[−(+1)]>0,当+1>−1时,即>−2时,解得<−1或>+1;当+1=−1时,即=−2时,即为(+1)2>0解得≠−1;当+1<−1时,即<−2时,解得<+1或>1,综上可得,当>−2时,不等式解集为(−∞,−1)∪(+1,+∞);当=−2时,不等式的解集为(−∞,−1)∪(−1,+∞);当<−2时,不等式的解集为(−∞,+1)∪(−1,+∞).(i i)由(i)知,当>−2时,不等式>0解集为(−∞,−1)∪(+1,+∞),若存在∈[1,2],使得≤0,则满足+1≥1,解得≥0;当=−2时,不等式>0的解集为(−∞,−1)∪(−1,+∞),此时不存在∈[1,2],使得≤0;当<−2时,不等式>0的解集为(−∞,+1)∪(−1,+∞),此时不存在∈[1,2],使得≤0,综上可得,实数的取值范围为[0,+∞).。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!《一元二次函数、方程和不等式》综合测试卷一、单选题1.(2020·安徽蚌埠·高三其他(文))设集合{2,2,4,6}A =-,{}2120B x x x =+-<,则A B =I ( )A .(2,2)-B .{2,0,2}-C .{2,4}D .{2,2}-【答案】D 【解析】{}2120{|43}B x x x x x =+-<=-<<,∴{2,2}A B =-I .故选:D .2.(2020·全国高一课时练习)若12,x x 是一元二次方程22630x x -+=的两个根,则12x x -的值为( )A B C .3D 【答案】B 【解析】3624120D =-=>,故方程必有两根,又根据二次方程根与系数的关系,可得1212332x x x x +==,,所以12x x -===故选:B .3.(2020·陕西西安·高三二模(理))已知a ,b 为非零实数,且0a b <<,则下列命题成立的是( )A .22a b <B .2211ab a b <C .22a b ab <D .b a a b<【答案】B 【解析】对于选项A,令1a =-,1b =时,221a b ==,故A 不正确;对于选项C,220a b ab >>,故C 不正确;对于选项D,令1a =-,1b =时,1b aa b=-=,故D 不正确;对于选项B,220a b ab >>,则22110ab a b<<故选:B4.(2020·全国高一课时练习)已知52x …,则()24524x x f x x -+=-有( )A .最大值54B .最小值54C .最大值1D .最小值1【答案】D 【解析】2245(2)1111()(2)1242(2)222x x x f x x x x x -+-+éù===-+´=ê---ëû…当且仅当122x x -=-即3x =时取等号,故选:D .5.(2019·宁波市第四中学高二期中)已知a R Î,则“0a >”是“12a a+³”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】当0a >时,112a a a a +=+³=,当且仅当1a a =,即1a =时取等号,当12a a +³时,可得12a a +≥或12a a+£-,得0a >或0a <,所以“0a >”是“12a a+³”的充分不必要条件,故选:A6.(2020·全国高一课时练习)若方程()2250x m x m ++++=只有正根,则m 的取值范围是( )A .4m £-或4m ³B .54m -<£-C .54m -££-D .52m -<<-【答案】B【解析】方程()2250x m x m ++++=只有正根,则1()当()()22450m m D =+-+=,即4m =±时,当4m =-时,方程为()210x -=时,1x =,符合题意;当4m =时,方程为()230x +=时,3x =-不符合题意.故4m =-成立;2()当()()22450m m D =+-+>,解得4m <-或4m >,则()()()224502050m m m m ìD =+-+>ï-+>íï+>î,解得54m -<<-.综上得54m -<£-.故选B.7.(2020·荆州市北门中学高一期末)若110a b<<,则下列不等式:①a b ab +<;②||||a b >;③a b <;④2b aa b+>中,正确的不等式是( )A .①④B .②③C .①②D .③④【答案】A 【解析】由于110a b<<,所以0b a <<,由此可知:①0a b ab +<<,所以①正确.②b a >,所以②错误.③错误.④由于0b a <<,所以1b a >,有基本不等式得2b a a b +>=,所以④正确.综上所述,正确不等式的序号是①④.故选:A8.(2020·浙江高一课时练习)“关于x 的不等式2x 2ax a 0-+>的解集为R”的一个必要不充分条件是( )A .0a 1<<B .10a 3<<C .0a 1££D .a 0<或1a 3>【答案】C 【解析】因为关于x 的不等式220x ax a -+>的解集为R ,所以函数2()2f x x ax a =-+的图象始终落在x 轴的上方,即2440a a D =-<,解得01a <<,因为要找其必要不充分条件,从而得到(0,1)是对应集合的真子集,对比可得C 选项满足条件,故选C.9.(2020·全国高一课时练习)将一根铁丝切割成三段,做一个面积为22m ,形状为直角三角形的框架,在下列4种长度的铁丝中,选用最合理共用且浪费最少的是( )A .6.5m B .6.8mC .7mD .7.2m【答案】C 【解析】设直角三角形的框架的两条直角边为x ,y (x >0,y >0)则xy =4,此时三角形框架的周长C 为:x +y =x +y∵x +y ≥2 4∴C =x +y ≥≈6.83故用7米的铁丝最合适.故选C .10.(2020·浙江高一单元测试)已知不等式()19a x y x y æö++ç÷èø≥对任意实数x 、y 恒成立,则实数a 的最小值为( )A .8B .6C .4D .2【答案】C 【解析】()11a ax yx y a x y y x æö++=+++ç÷èøQ .若0xy <,则0yx<,从而1ax y a y x +++无最小值,不合乎题意;若0xy >,则0yx>,0x y >.①当0a <时,1ax ya y x+++无最小值,不合乎题意;②当0a =时,111ax y y a y x x +++=+>,则()19a x y x y æö++ç÷èø≥不恒成立;③当0a >时,())211111a ax y x y a a a x y y x æö++=+++³++=+=ç÷èø,当且仅当=y 时,等号成立.所以,)219³,解得4a ³,因此,实数a 的最小值为4.故选:C.二、多选题11.(2020·南京市秦淮中学高二期末)已知命题1:11p x >-,则命题成立的一个必要不充分条件是( )A .12x <<B .12x -<<C .21x -<<D .22x -<<【答案】BD 【解析】由1210(1)(2)01211x x x x x x ->Û<Û--<Û<<--,选项A 为命题12x <<的充要条件,选项B 为12x <<的必要不充分条件,选项C 为12x <<的既不充分也不必要条件,选项D 为12x <<的必要不充分条件,故选:BD.12.(2019·山东莒县·高二期中)已知a ÎZ ,关于x 的一元二次不等式260x x a -+£的解集中有且仅有3个整数,则a 的值可以是( ).A .6B .7C .8D .9【答案】ABC 【解析】设26y x x a =-+,其图像为开口向上,对称轴是3x =的抛物线,如图所示.若关于x 的一元二次不等式260x x a -+£的解集中有且仅有3个整数,因为对称轴为3x =,则2226201610a a ì-´+£í-´+>î解得58a <£,.又a ÎZ ,故a 可以为6,7,8.故选:ABC13.(2020·湖南高新技术产业园区·衡阳市一中高二期末)(多选)若0a b >>,则下列不等式中一定不成立的是( )A .11b b a a +>+B .11a b a b+>+C .11a b b a+>+D .22a b aa b b+>+【答案】AD 【解析】0a b >>Q ,则()()()()1110111b a a b b b b a a a a a a a +-++--==<+++,11b b a a +\>+一定不成立;()1111a b a b a b ab æö+--=--ç÷èø,当1ab >时,110a b a b +-->,故11a b a b +>+可能成立;()11110a b a b b a ab æö+--=-+>ç÷èø,故11a b b a +>+恒成立;()222022a b a b a a b b b a b +--=<++,故22a b aa b b+>+一定不成立.故选AD.14.(2020·浙江高一单元测试)已知,a b R +Î且1a b +=,那么下列不等式中,恒成立的有( ).A .14ab …B .1174ab ab +…C +D .112a b+…【答案】ABC 【解析】,,1a b R a b +Î+=Q ,2124a b ab +æö\=ç÷èø…(当且仅当12a b ==时取得等号).所以选项A 正确由选项A 有14ab £,设1y x x =+,则1y x x =+在104æùçúèû,上单调递减.所以1117444ab ab +³+=,所以选项B 正确22a b a b a b +=+++++=Q (当且仅当12a b ==时取得等号),+.所以选项C 正确.11333222222a b a b b a a b a b a b +++=+=+++=+Q …222a b =时等号成立),所以选项D 不正确.故A ,B ,C 正确故选:ABC 三、填空题15.(2020·荆州市北门中学高一期末)不等式221x x -³-的解集是________.【答案】[0,1)【解析】原不等式可化为2201x x --³-即01xx £-,所以()1010x x x ì-£í-¹î,故01x £<,所以原不等式的解集为[0,1).故答案为:[0,1).16.(2020·全国高一课时练习)设0,2p a æöÎç÷èø,0,2éùÎêúëûp b ,那么23b a -的取值范围是________.【答案】,6p p æö-ç÷èø【解析】因为0,2p a æöÎç÷èø,0,2éùÎêúëûp b ,所以()20,a p Î,,036bp éù-Î-êúëû,∴2,36bp a p æö-Î-ç÷èø.故答案为:,6p p æö-ç÷èø.17.(2020·全国高一课时练习)设a >0,b >0,给出下列不等式:①a 2+1>a ;②114a b a b æöæö++³ç÷ç÷èøèø;③(a +b )11a b æö+ç÷èø≥4;④a 2+9>6a .其中恒成立的是________.(填序号)【答案】①②③【解析】解析由于a 2+1-a =213024a æö-+>ç÷èø,故①恒成立;由于a +1a ≥2,b +1b≥2,∴114a b a b æöæö++³ç÷ç÷èøèø,当且仅当a =b =1时,等号成立,故②恒成立;由于a +b ,11a b +³故(a +b )11a b æö+ç÷èø≥4,当且仅当a =b 时,等号成立,故③恒成立;当a =3时,a 2+9=6a ,故④不恒成立.综上,恒成立的是①②③.故答案为:①②③四、双空题18.(2020·浙江瓯海·温州中学高三一模)《九章算术》中记载了“今有共买豕,人出一百,盈一百;人出九十,适足.问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少.问人数、猪价各多少?”.设,x y 分别为人数、猪价,则x =___,y =___.【答案】10 900【解析】由题意可得100100900x y x y -=ìí-=î,解得10y 900x ==,.故答案为10 90019.(2020·山东高三其他)已知正实数,a b 满足10ab b -+=,则14b a+的最小值是__________,此时b =_________.【答案】9 32【解析】由10ab b -+=可得1b a b-=,由10b a b -=>,得1b >,所以11444(1)511b b b b a b b +=+=+-+--,因为14(1)41b b +--…,所以149b a +…,当且仅当13,32a b ==时等号成立.故答案为:9;32.20.(2020·曲靖市第二中学(文))已知x >0,y >0,且x +2y =xy ,若x +2y >m 2+2m 恒成立,则xy 的最小值为_____,实数m 的取值范围为_____.【答案】8 (4,2)-【解析】∵x >0,y >0,x +2y =xy ,∴21x y+=1,∴121x y =+³,∴xy ≥8,当且仅当x =4,y =2时取等号,∴x +2y =xy ³8(当x =2y 时,等号成立),∴m 2+2m <8,解得﹣4<m <2.故答案为:8;(﹣4,2)21.(2020·山东威海·高三一模)为满足人民群众便利消费、安全消费、放心消费的需求,某社区农贸市场管理部门规划建造总面积为22400m 的新型生鲜销售市场.市场内设蔬菜水果类和肉食水产类店面共80间.每间蔬菜水果类店面的建造面积为228m ,月租费为x 万元;每间肉食水产店面的建造面积为220m ,月租费为0.8万元.全部店面的建造面积不低于总面积的80%,又不能超过总面积的85%.①两类店面间数的建造方案为_________种.②市场建成后所有店面全部租出,为保证任何一种建设方案平均每间店面月租费不低于每间蔬菜水果类店面月租费的90%,则x 的最大值为_________万元.【答案】161【解析】设蔬菜水果类和肉食水产类店分别为,a b ,(1)由题意知,0.852********.82400a b ´³+³´,化简得:48075510a b £+£,又+80a b =,所以48075(80)510a a £+-£,解得:4055a ££,40,41,,55a \=K 共16种;(2)由题意知0.80.980b ax x +³,0.8(80)72b b x x \+-³,0.880.8[1]88b x b b \£=+--,max 804040b =-=Q ,850.8(1)0.81324x \£+=´=,即x 的最大值为1万元,故答案为:16;1五、解答题22.(2020·全国高一课时练习)(1)已知0x >,求4y x x=+的最小值.并求此时x 的值;(2)设302x <<,求函数4(32)y x x =-的最大值;(3)已知2x >,求42x x +-的最小值;(4)已知0x >,0y >,且191x y+=,求x y +的最小值;【答案】(1)当2x =时,4y x x =+取得最小值4;(2)92;(3)6;(4)16【解析】(1)因为0x >,所以44y x x =+³=,当且仅当4x x =,即2x =时取等号;故当2x =时,4y x x=+取得最小值4;(2)302x <<Q ,320x \->.[]22(32)94(32)22(32)222x x y x x x x +-éù\=-=-=êúëûg ….当且仅当232x x =-,即34x =时,等号成立.Q 33(0,)42Î,\函数34(32)(0)2y x x x =-<<的最大值为92.(3)2x >Q ,20x \->()44222622x x x x \+=-+++=--…,当且仅当422x x -=-时取等号,即4x =时,42x x +-的最小值为6,(4)0x Q >,0y >,191x y +=,199()101016y x x y x y x y x yæö\+=++=++=ç÷èø….当且仅当9y x x y=时,上式等号成立,又191x y +=,4x \=,12y =时,()16min x y +=.点睛:利用基本不等式求函数最值是高考考查的重点内容,对不符合基本不等式形式的应首先变形,然后必须满足三个条件:一正、二定、三相等.同时注意灵活运用“1”的代换.23.(2020·全国高一课时练习)已知x ,y 都是正数.求证:()12y x x y+³;()2()()()2233338.x y x y x y x y +++³【答案】()1证明见解析;()2证明见解析.【解析】()1证明:由x ,y 都是正实数,可得2y x x y +³=(当且仅当x y =时取得等号);()2证明:由基本不等式可知()()()(()(22332x y x y x y xy +++³××()23388xy xy x y =×=,(当且仅当x y =时取得等号).24.(2020·全国高一课时练习)日常生活中,在一杯含有a 克糖的b 克糖水中,再加入m 克糖,则这杯糖水变甜了.请根据这一事实提炼出一道不等式,并加以证明.【答案】a a mb b m+<+,0a b <<,0m >,证明见解析【解析】由题知:原来糖水的浓度为100%a b´,加入m 克糖后的浓度为100%+´+a m b m,0a b <<,0m >.因为这杯糖水变甜了,所以100%100%+´<´+a a m b b m,整理得:a a m b b m +<+,0a b <<,0m >.因为()()-++-=-=+++a b m a a m a a m b b m b b m b b m ,又因为0a b <<,0m >,所以0a b -<,()0-<m a b ,()0+>b b m ,所以()()0-<+a b m b b m ,即证a a m b b m+<+.25.(2020·全国高一课时练习)如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客.你能在这个图案中找出一些相等关系或不等关系吗?(教师引导学生从面积的关系去找相等关系或不等关系).【答案】a 2+b 2≥2ab.【解析】如图,设大正方形四个角上的直角三角形的两个直角边分别为,a b ,则大正方形的面积为2()a b +,四个矩形的面积和为4ab ,显然,大正方形的面积大于等于四个矩形的面积和,所以2()4,a b ab +³所以a 2+b 2≥2ab.26.(2020·浙江高一课时练习)已知关于x 的不等式2260(0)kx x k k -+<¹.(1)若不等式的解集是{|3x x <-或2}x >-,求k 的值.(2)若不等式的解集是1x x k ìü¹-íýîþ∣,求k 的值.(3)若不等式的解集是R ,求k 的取值范围.(4)若不等式的解集是Æ,求k 的取值范围.【答案】(1)25k =-;(2)k =(3)k <(4)k ³.【解析】(1)由不等式的解集为{3xx <-∣或2}x >-可知k 0<,且3x =-与2x =-是方程2260kx x k -+=的两根,2(3)(2)k\-+-=,解得25k =-.(2)由不等式的解集为1x x k ìü¹-íýîþ∣可知204240k k <ìíD =-=î,解得k =.(3)依题意知20,4240,k k <ìíD =-<î解得k <.(4)依题意知20,4240,k k >ìíD =-£î解得k ³.27.(2020·宁夏兴庆·银川一中高一期末)解关于x 的不等式()222ax x ax a R -³-Î.【答案】当0a =时,不等式的解集为{}|1x x £-;当0a >时,不等式的解集为2{|x x a³或1}x £-;当20a -<<时,不等式的解集为2{|1}x x a ££-;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为2{|1}x x a-££.【解析】原不等式可化为()2220ax a x +--³,即()()210ax x -+³,①当0a =时,原不等式化为10x +£,解得1x £-,②当0a >时,原不等式化为()210x x a æö-+³ç÷èø,解得2x a³或1x £-,③当0a <时,原不等式化为()210x x a æö-+£ç÷èø.当21a >-,即2a <-时,解得21x a-££;当21a=-,即2a =-时,解得1x =-满足题意;当21a<-,即20a -<<时,解得21x a ££-.综上所述,当0a =时,不等式的解集为{}|1x x £-;当0a >时,不等式的解集为2{|x x a³或1}x £-;当20a -<<时,不等式的解集为2{|1}x x a ££-;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为2{|1}x x a -££.。
高中数学专题复习《一元二次二元一次基本不等式》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(汇编年高考福建卷(文))若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤+012y x y x ,则y x z +=2的最大值和最小值分别为( )A .4和3B .4和2C .3和2D .2和02.已知不等式(x +y)(1x + ay )≥9对任意正实数x,y 恒成立,则正实数a 的最小值为( )A.2B.4C.6D.8(汇编陕西理)3.小王从甲地到乙地的时速分别为a 和b (a <b),其全程的平均时速为v,则 ( )A .a<v<abB .v=abC .ab<v <2a b+ D .v=2a b+(汇编陕西文)4.已知变量x 、y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )A .12B .11C .3D .1-(汇编广东理)5.“a c b d +>+”是“a >b 且c >d ”的A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件(汇编安徽文)6.若0x >,则2x x+的最小值为 . (汇编湖南文)7.“0x >”是“0x ≠”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 (汇编浙江文)A 【命题意图】本小题主要考查了命题的基本关系,题中的设问通过对不等关系的分析,考查了命题的概念和对于命题概念的理解程度.8.若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y =+的最大值是( )A 、12B 、26C 、28D 、339.已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)10.设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )(x +q )+2,则f (2) f(0) f(3)大小关系为____________ A .f (2)=f (0)<f (3) B .f (0)<f (2)<f (3) C .f (3)<f (0)=f (2)D .f (0)<f (3)<f (2)11.已知实数x y ,满足121y y x x y m ⎧⎪-⎨⎪+⎩≥,≤,≤.如果目标函数z x y =-的最小值为1-,则实数m 等于( )(陕西卷10) A .7B .5C .4D .312.已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( ) A .(0,11a ) B . (0,12a ) C . (0,31a ) D . (0,32a )(海南卷6) 第II 卷(非选择题)请点击修改第I I 卷的文字说明 评卷人得分二、填空题13.下列四个命题中:①a +b ≥2ab ;②si n 2x +x2sin 4≥4;③设x ,y 都是正数,若yx 91+=1, 则x +y 的最小值是12;④若0ab >, 则baa b +≥2,其中所有真命题的序号是___________.14.若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为 ▲ .15.若不等式02〉++c bx ax 的解集为(n m ,)(n m 〈〈0),则不等式02〈++a bx cx 的解集是 。
高中数学必修一第二章一、单选题1.已知集合A ={x‖x ―2|<1}, B ={x |x 2―2x ―3<0}.则A ∩B =A .{x |1<x <3}B .{x |―1<x <3}C .{x |―1<x <2}D .{x |x >3}2.下列结论成立的是( )A .若ac >bc ,则a >bB .若a >b ,则a 2>b 2C .若a >b ,c <d ,则a+c >b+dD .若a >b ,c >d ,则a ﹣d >b ﹣c3.已知关于 x 的不等式 a x 2―2x +3a <0 在 (0,2] 上有解,则实数 a 的取值范围是( )A .(―∞,33)B .(―∞,47)C .(33,+∞)D .(47,+∞)4.当x >3时,不等式x+1x ―1≥a 恒成立,则实数a 的取值范围是( ) A .(﹣∞,3]B .[3,+∞)C .[ 72,+∞)D .(﹣∞, 72]5.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a +b ≥―2|ab |C .a 2+b 2≥―2abD .a +b ≤2|ab |6.已知 x >2 ,函数 y =4x ―2+x 的最小值是( ) A .5B .4C .8D .67.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xy z取得最大值时,2x +1y ―2z 的最大值是( )A .0B .1C .94D .38.已知正数x ,y 满足x+y =1,且 x 2y +1+y 2x +1≥m ,则m 的最大值为( ) A .163B .13C .2D .4二、多选题9.设正实数a ,b 满足a +b =1,则( )A .a 2b +b 2a ≥14B .1a +2b +12a +b ≥43C .a 2+b 2≥12D .a 3+b 3≥1410.若a ,b ∈(0,+∞),a +b =1,则下列说法正确的有( )A .(a +1a)(b +1b )的最小值为4B .1+a +1+b 的最大值为6C.1a +2b的最小值为3+22D.2aa2+b+ba+b2的最大值是3+23311.已知a,b是正实数,若2a+b=2,则( )A.ab的最大值是12B.12a+1b的最小值是2C.a2+b2的最小值是54D.14a+b+2a+b的最小值是3212.已知a,b,c为实数,则下列命题中正确的是( )A.若a c2<bc2,则a<b B.若ac>bc,则a>bC.若a>b,c>d,则a+c>b+d D.若a<b<0,则1a >1 b三、填空题13.不等式﹣2x(x﹣3)(3x+1)>0的解集为 .14.已知正实数x,y满足xy―x―2y=0,则x+y的最小值是 . 15.已知a,b均为正数,且ab―a―2b=0,则a24+b2的最小值为 .16.以max A表示数集A中最大的数.已知a>0,b>0,c>0,则M=max{1c +ba,1ac+b,ab+c}的最小值为 四、解答题17.已知U=R且A={x∣x2―5x―6<0},B={x∣―4≤x≤4},求:(1)A∪B;(2)(C U A)∩(C U B).18.解下列关于x的不等式:(1)x2―2x―3≤0;(2)―x2+4x―5>0;(3)x2―ax+a―1≤019.已知关于x的不等式2x2+x>2ax+a(a∈R).(1)若a=1,求不等式的解集;(2)解关于x的不等式.20.某县一中计划把一块边长为20米的等边三角形ABC的边角地辟为植物新品种实验基地,图中DE 需把基地分成面积相等的两部分,D在AB上,E在AC上.(1)设AD=x(x≥10),ED=y,试用x表示y的函数关系式;(2)如果DE是灌溉输水管道的位置,为了节约,则希望它最短,DE的位置应该在哪里?如果DE 是参观线路,则希望它最长,DE的位置又应该在哪里?说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】A4.【答案】D5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】B,C,D10.【答案】B,C,D11.【答案】A,B12.【答案】A,C,D13.【答案】(﹣∞,﹣1)∪(0,3)314.【答案】3+2215.【答案】816.【答案】217.【答案】(1)解:因为A={x∣x2―5x―6<0}=(―1,6),且B={x∣―4≤x≤4}=[―4,4],则A ∪B=[―4,6).(2)解:由(1)可知,A=(―1,6),B=[―4,4],则C U A=(―∞,―1]∪[6,+∞),C U B=(―∞,―4)∪(4,+∞),所以(C U A)∩(C U B)=(―∞,―4)∪[6,+∞).18.【答案】(1)解:x2―2x―3≤0,(x―3)(x+1)≤0⇒x≤―1或x≥3,故解集为: (―∞,―1]∪[3,+∞).(2)解:―x2+4x―5>0,∴x2―4x+5<0⇒(x―2)2+1<0⇒x无解,故解集为: ∅(3)解:x2―ax+a―1≤0,∴[x―(a―1)](x―1)≤0,当a―1<1,即a<2时,解集为[a―1,1],当a―1=1,即a=2时,解集为x=1,当 a ―1>1 ,即 a >2 时,解集为 [1,a ―1] .所以:当 a <2 时,解集为 [a ―1,1] ,当 a =2 时,解集为 x =1 ,当 a >2 时,解集为 [1,a ―1] .19.【答案】(1)解:2x 2+x >2ax +a ,∴x (2x +1)>a (2x +1),∴(x ―a )(2x +1)>0,当a =1时,可得解集为{x |x >1或x <―12}.(2)对应方程的两个根为a ,―12,当a =―12时,原不等式的解集为{x |x ≠―12},当a >―12时,原不等式的解集为{x |x >a 或x <―12},当a <―12时,原不等式的解集为{x |x <a 或x >―12}.20.【答案】(1)解:∵△ABC 的边长是20米,D 在AB 上,则10≤x≤20,S △ADE = 12S △ABC ,∴12 x•AEsin60°= 12 • 34 •(20)2,故AE= 200x,在三角形ADE 中,由余弦定理得:y= x 2+4⋅104x 2―200 ,(10≤x≤20);(2)解:若DE 作为输水管道,则需求y 的最小值, ∴y= x 2+4⋅104x 2―200 ≥ 400―200 =10 2 ,当且仅当x 2= 4⋅104x 2即x=10 2 时“=”成立.。
高中数学专题复习
《一元二次二元一次基本不等式》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.1 .(汇编年上海市春季高考数学试卷(含答案))如果0a b <<,那么下列不
等式成立的是
( ) A .11a b < B .2ab b < C .2ab a -<- D .11a b
-<- 2.2 .(汇编年高考天津卷(文))设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩
则
目标函数2z y x =-的最小值为
( )
A .-7
B .-4
C .1
D .2 3.3 .(汇编年
高考课标Ⅱ卷(
文))设x,y 满足约束条件,则
z=2x-3y 的最小值是
( ) A . B .-6 C . D .-3。