初中数学竟赛辅导资料 待定系数法
- 格式:doc
- 大小:77.67 KB
- 文档页数:5
初中数学常考的知识点待定系数法待定系数法是初中数学中常考的一种解题方法,它的思想是通过设定合适的未知数来构建方程,然后解方程求解问题。
待定系数法的应用广泛,包括代数问题、几何问题、概率问题等等。
下面我将详细介绍待定系数法在初中数学中的常见应用。
一、代数问题1.求一元一次方程的解待定系数法可以用来解决一元一次方程的解的问题。
例如,求方程7x-21=10的解。
我们设方程的解为x=a,那么方程可以表示为7a-21=10。
然后解方程,得到a=5、所以方程的解是x=52.求一元二次方程的解待定系数法可以用来求解一元二次方程的解。
例如,求方程x^2+5x+6=0的解。
我们设方程的解为x=a,那么方程可以表示为a^2+5a+6=0。
然后解方程,得到a=-3或a=-2、所以方程的解是x=-3或x=-23.求一元二次方程的系数待定系数法还可以用来求解一元二次方程的系数。
例如,已知方程的根为2和3,且方程的首项系数为1,我们要求方程的系数。
设方程为ax^2+bx+c=0,代入已知根得到两个方程:a(2)^2+b(2)+c=0和a(3)^2+b(3)+c=0。
解这两个方程,得到a=1,b=-5,c=6、所以方程为x^2-5x+6=0。
二、几何问题待定系数法可以用来解决几何问题的角度问题、边长问题等等。
例如:1.角度问题已知一条边和一个角的大小,求另一条边的长度。
设另一条边的长度为x,那么根据三角函数的定义,可以得到一个方程。
解方程,得到x的值。
2.边长问题已知两条边和一个角的大小,求第三条边的长度。
设第三条边的长度为x,根据三角不等式可以得到一个方程。
解方程,得到x的值。
三、概率问题待定系数法可以用来解决概率问题中的计数问题、排列问题等。
例如:1.计数问题已知有n个人,其中有m个男生和n-m个女生。
从中选出x个人,其中至少有y个男生,求选人的方法数。
设选出的x个人中有y个男生的方法数为C,那么根据组合的性质可以得到一个方程。
初中数学常考的知识点待定系数法待定系数法:先设出函数解析式,在根据条件确定解析式中的未知的系数,从而写出这个式子的方法,叫待定系数法。
用待定系数法确定解析式的步骤:①设函数表达式为:y=kx 或 y=kx+b②将已知点的坐标代入函数表达式,得到方程(组)③解方程或组,求出待定的系数的值。
④把的值代回所设表达式,从而写出需要的解析式。
注意; 正比例函数y=kx只要有一个条件就可以。
而一次函数y=kx+b 需要有两个条件。
初中数学知识点解析:构造方程构造方程是初中数学的基本方法之一在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。
1、一些题目根据条件、仔细观察其特点,构造一个"一元一次方程"求解,从而获得问题解决。
例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b 的值分别是多少?解:原方程整理得(a-4)∵此方程有无数多解,∴a-4=0且分别解得a=42、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。
此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。
3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。
例3:已知3,5,2x,3y的平均数是4、20,18,5x,-6y的平均数是1、求的值。
分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
数学方法篇二:待定系数法
对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法.【范例讲析】:
一. 待定系数法在代数式变型中的应用:在应用待定系数法解有关代数式变型的问题中,根据右式与左式多项式中对应项的系数相等的原理列出方程(组),解出方程(组)即可求得答案。
A卷01.已知−3≤4a−3b≤3,5≤9a+b≤17,求2a+7b的最小值和最大值。
02.已知ax3+bx2−18x+8≡(ax+2)(x2+3x+4),求a和b的值。
03.已知一个关于x的三次多项式,当x取2和3时,多项式的值都为0;当x取−2、−3时,多项式的值分别为40与30,求这个三次多项式。
04.已知2x+3∣2x3−9x2+n,求n的值。
05.已知x2−4∣3x3+2x2+ax+b,求a+b的值。
06.已知x−2、x+3都能整除多项式x4+ax3−4x2+bx−12,求a、b的值。
B卷01.有收录机、钢笔和书包三种物品,若购买收录机3台、钢笔6支、书包2个共需302元;若购买收录机5台、钢笔11支、书包3个共需508元,问购买收录机、钢笔、书包各一个共需多少元?02.已知x+1、x+2都能整除多项式x3+ax2+bx+8,求a+b的值。
03.若x3+ax2+4x+c≡(x+d)(x2+3x−4),求7a−b+c的值。
04.已知x2−y2+mx+5y−6≡(x+y+n)(x−y+k),求m、n、k的值。
05.已知x4−6x3+13x2+ax+b是完全平方式,求a、b的值。
06.一个多项式除以x+2余1,除以x+3余−1,求这个多项式除以(x+2)(x+3)的余式。
C卷01.将5x2+8x−7表示成a(x−1)+b(x−1)+c的形式。
02.将x4+2x3+2x2表示成两个次数不同的多项式的平方差。
03.设p(x)=x2+bx+c,b、c是整数。
若p(x)︱x4+6x2+25,且p(x)︱3x4+4x2+28x+5,则当x=1时p(x)的值(即p(1))是多少?04.已知221A B3212xx x x x+≡+-+--,求A与B的值。
05.已知()2258A B4422xx x x x-≡+-+--,求A与B的值。
待定系数法知识定位待定系数法是一种求未知数的方法。
将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。
广泛应用于多项式的因式分解,求函数的解析式和曲线的方程等。
知识梳理知识梳理1:待定系数法在多项式除法中的应用多项式除多项式时,其结果的形式我们往往是可以判断出的,在这种情况下,我们可以先假设出最后的结果(当然也是含未知数的),转化为等式再进行计算。
知识梳理2:待定系数法在因式分解中的应用在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.知识梳理3:待定系数法在解方程中的应用在解一些复杂方程时,如果能够判断出方程的部分根,或者有方程根的一些限制条件;在这种情况下,采用待定系数的方法去解方程,往往可以有意想不到的效果。
知识梳理3:待定系数法在代数式恒等变形中的应用 知识梳理4:待定系数法在求函数解析式中的应用例题精讲【试题来源】【题目】已知多项式56423+-+x x x ,除式为12+x ,求它们相除所得到的商式和余式。
【答案】【解析】【知识点】待定系数法 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】已知r qx px x x ++++464234能被39323+++x x x 整除,求p,q,r 之值.【答案】【解析】【知识点】待定系数法 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】把多项式x 3-x 2+2x+2表示为关于x -1的降幂排列形式. 【答案】x 3-x 2+2x+2=(x -1)3+2(x -1)2+3(x -1)+4. 【解析】用待定系数法:设x 3-x 2+2x+2=a(x -1)3+b(x -1)2+c(x -1)+d 把右边展开,合并同类项(把同类项对齐), 得 x 3-x 2+2x+2=ax 3-3ax 2+3ax -a +bx 2-2bx+b +cx -c +d 用恒等式的性质,比较同类项系数,得⎪⎪⎩⎪⎪⎨⎧=+-+-=+--=+-=2223131d c b a c b a b a a 解这个方程组,得⎪⎪⎩⎪⎪⎨⎧====4321d c b a∴x 3-x 2+2x+2=(x -1)3+2(x -1)2+3(x -1)+4. 本题也可用换元法: 设x -1=y, 那么x=y+1.把左边关于x 的多项式化为关于y 的多项式,最后再把y 换成x -1.【知识点】待定系数法 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】已知:4310252323-+-++-x x x cbx x ax 的值是恒为常数求:a, b, c 的值.【答案】a = 1 b = 1.5 c = -2 【解析】【知识点】待定系数法 【适用场合】当堂练习题 【难度系数】3【试题来源】【题目】分解因式:.310434422-+---y x y xy x【答案】【解析】【知识点】待定系数法【适用场合】当堂练习题【难度系数】3【试题来源】【题目】m为何值时,6522-++-ymxyx能够分解因式,并分解之.【答案】【解析】【知识点】待定系数法 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】已知:4x 4+ax 3+13x 2+bx+1是完全平方式.求: a 和b 的值.【答案】解得⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧-==⎩⎨⎧-=-=⎩⎨⎧==172174 172174612612b a b a b a b a -或或或.【解析】设4x 4+ax 3+13x 2+bx+1=(2x 2+mx±1)2(设待定的系数,要尽可能少.)右边展开,合并同类项,得4x 4+ax 3+13x 2+bx+1=4x 4+4mx 3+(m 2±4)x 2±2mx+1. 比较左右两边同类项系数,得方程组⎪⎩⎪⎨⎧==+=m b m m a 213442; 或⎪⎩⎪⎨⎧-==-=m b m ma 213442.解得⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧-==⎩⎨⎧-=-=⎩⎨⎧==172174 172174612612b a b a b a b a -或或或.【知识点】待定系数法 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】推导一元三次方程根与系数的关系. 【答案】见解析【解析】设方程ax 3+bx 2+cx+d=0(a≠0)的三个根分别为x 1, x 2, x 3.原方程化为x 3+02=++adx a c x a b . ∵x 1, x 2, x 3是方程的三个根. ∴x 3+=++adx a c x a b 2(x -x 1) (x -x 2) (x -x 3). 把右边展开,合并同类项,得 x 3+=++adx a c x a b 2=x 3-( x 1+x 2+x 3)x 2+(x 1x 2+x 1x 3+x 2x 3)x -x 1x 2x 3. 比较左右同类项的系数,得 一元三次方程根与系数的关系是: x 1+x 2+x 3=-a b , x 1x 2+x 1x 3+x 2x 3=a c , x 1x 2x 3=-ad.【知识点】待定系数法 【适用场合】课后两周练习 【难度系数】3【试题来源】【题目】已知:x 3+px+q 能被(x -a )2整除.求证:4p 3+27q 2=0. 【答案】见解析 【解析】证明:设x 3+px+q =(x -a )2(x+b ). x 3+px+q=x 3+(b -2a)x 2+(a 2-2ab)x+a 2b.⎪⎩⎪⎨⎧==-=-③②①q b a p ab a a b 22202 由①得b=2a , 代入②和③得 ⎪⎩⎪⎨⎧=-=3223aq ap∴4p 3+27q 2=4(-3a 2)3+27(2a 3)2=4×(-27a 6)+27×(4a 6)=0. (证毕).【知识点】待定系数法 【适用场合】课后一个月练习 【难度系数】3【试题来源】【题目】已知:f (x)=x 2+bx+c 是g (x)=x 4 +6x 2+25的因式,也是q (x)=3x 4+4x 2+28x+5的因式.求:f (1)的值. 【答案】f (1)=4【解析】∵g (x),q (x)都能被f (x)整除,它们的和、差、倍也能被f (x)整除.为了消去四次项,设3g (x)-q (x)=kf (x), (k 为正整数). 即14x 2-28x+70=k (x 2+bx+c) 14(x 2-2x+5)=k (x 2+bx+c) ∴k=14, b=-2, c=5. 即f (x)=x 2-2x+5. ∴f (1)=4 . 【知识点】待定系数法 【适用场合】阶段测验 【难度系数】4【试题来源】【题目】已知:23)2)(3(22++-+=+-+-x Cx B x A x x x x x , 求:A ,B ,C 的值.【答案】A =-31. B =158. C =54. 【解析】去分母,得x 2-x+2=A(x -3)(x+2)+Bx(x+2)+Cx(x -3).根据恒等式定义(选择x 的适当值,可直接求出A ,B ,C 的值),当x=0时, 2=-6A. ∴A =-31. 当x=3时, 8=15B. ∴B =158.当x=-2时, 8=10C. ∴C =54.【知识点】待定系数法 【适用场合】随堂课后练习 【难度系数】3【试题来源】【题目】分解因式:x 2+3xy+2y 2+4x+5y+3.【答案】原式=(x+2y+3)(x+y+1).【解析】由于(x 2+3xy+2y 2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m 和x +y +n 的形式,应用待定系数法即可求出m 和n ,使问题得到解决. 设x 2+3xy+2y 2+4x+5y+3 =(x+2y+m)(x+y+n)=x 2+3xy+2y 2+(m+n)x+(m+2n)y+mn , 比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).【知识点】待定系数法【适用场合】当堂练习题【难度系数】3【试题来源】【题目】分解因式:x4-2x3-27x2-44x+7.【答案】原式=(x2-7x+1)(x2+5x+7)【解析】分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.【知识点】待定系数法【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】已知方程0412924=-+-x x x 有两根为1和2,解这个方程【答案】x 1 = 1 x 2 = 2【解析】【知识点】待定系数法【适用场合】当堂练习题【难度系数】3【试题来源】【题目】已知方程012823=+--x x x 有两个根相等,解这个方程. 【答案】【解析】【知识点】待定系数法【适用场合】当堂练习题【难度系数】3【试题来源】【题目】要使多项式))(2(2q x px x -++不含关于x 的二次项,则p 与q 的关系是()A 相等B 互为相反数C 互为倒数D 乘积等于1【答案】A【解析】【知识点】待定系数法【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】已知多项式43261312x x x x m -+-+是一个完全平方式,试求常数m 的值。
初中数学常考的知识点待定系数法待定系数法在初中数学中是一个非常重要的解题方法。
它通常用于解决一元一次方程组、二次方程、代数式的展开和因式分解等问题。
接下来,我将详细介绍待定系数法的基本概念、解题步骤以及一些常见的例题。
一、待定系数法的基本概念待定系数法是通过假设未知量的值为一些系数,然后通过数学运算得到方程组的解。
在待定系数法中,我们可以假设未知量是一个常数、一个变量,甚至是一个代数式。
二、待定系数法的解题步骤1.了解问题并设定未知量:首先,我们要仔细阅读题目,理解问题的要求,并确定需要求解的未知量。
2.假设未知量:根据题目的要求,我们根据经验和数学常识假设未知量的值。
3.建立方程:根据已知条件和假设的未知量,我们可以建立方程组或方程。
4.求解方程:将方程组或方程进行化简和整理,找到未知量的值。
5.验证解:将求得的未知量的值代入原方程中验证是否满足题目要求。
6.提出结论:根据求得的解和验证的结果,给出问题的最终解答。
三、待定系数法的常见例题1.一元一次方程组例题1:已知二次方程的两个根为4和-3,求该二次方程。
解析:根据二次方程的性质,已知根x1和x2,可以得到二次方程为(x-x1)(x-x2)=0,即(x-4)(x+3)=0。
将括号中的每个因式展开,得到x^2-x(4+3)+12=0,即x^2-7x+12=0。
2.二次方程例题2:求满足方程x^2+6x=8的x的值。
解析:我们可以假设x的值为a,即x=a,代入方程中得到a^2+6a=8、将方程化简为a^2+6a-8=0。
对于这个二次方程,我们需要用待定系数法求解,设定未知量为a,设定的a是一个常数。
然后,我们将这个方程因式分解为(a-1)(a+8)=0,即a-1=0或a+8=0。
解得a=1或a=-8,即x=1或x=-83.代数式的展开和因式分解例题3:将代数式(x-2)(x+3)展开。
解析:根据分配律,我们可以得到(x-2)(x+3)=x(x+3)-2(x+3)。
待定系数法在初中数学竞赛中的应用对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的关系式,得到以待定系数为元的方程或方程组,解得待定系数,从而使问题得以解决,这一方法叫待定系数法,此法在初中竞赛题中有着广泛的应用,下面举例予以说明.一、用于解不定方程例1 使得5×2m+1是完全平方数的整数m的个数为_______.解由题意,可设5×2m+1=(2k+1)2(k为正整数),则5×2m=4k(k+1),即5×2m-2=k(k+1).由于k(k+1)是连续的两个正整数的积,故可知5×2m-2=5 x4,∴m=4.即使得5×2m+1是完全平方数的整数m的个数只有1个.例2 已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.解设直角三角形的三边长分别为a,b,c(a≤b<c),则a+b+c=60.显然,直角三角形的外接圆的直径即为斜边长c,下面先求c的值.由a≤b<c及a+b+c=60,得60=a+b+c<3c,∴c>20.由a+b>c及a+b+c=60,得60=a+b+c>2c,∴c<30.又∵c为整数,∴21≤c≤29.根据勾股定理,可得a2+b2=c2.把c=60-a-b代入并化简,得ab-60(a+b)+1800=0,∴(60-a)(60-b)=1800=23×32×52.因为a ,b 均为整数,且a ≤b ,所以只有3260256035a b ⎧-=⨯⎪⎨-=⨯⎪⎩或22260256023a b ⎧-=⨯⎪⎨-=⨯⎪⎩ 解得2015a b =⎧⎨=⎩或1024a b =⎧⎨=⎩. 当a =20,b =15时,c =25,三角形的外接圆的面积为6254π; 当a =10,b =24时,c =26,三角形的外接圆的面积为169π.二、用于确定不等式的取等条件例3 已知锐角△ABC 的三个内角满足A>B>C ,用α表示A -B ,B -C ,以及90°-A 中的最小值,则α的最大值是_______.解 设x>0,y>0,z>0,则x α≤x(A -B),y α≤y(B -C),z α≤z(90°-A),即(x +y +z )α≤(x -z)A +(y -x)B -yC +z ·90°,令x -z =y -x =-y ,则x =2y ,z =3y .取y =16,则 α≤-16A -16B -16C +12·90° = 45°-(A +B +C)=15°.故当A = 75°,B =60°,C =45°时,α=15°.三、用于拆分分式例4 已知:()()223232x x A B C x x x x x x -+=++-+-+,求A ,B ,C 的值. 解 去分母,得x2-x+2=A(x-3)(x+2)+Bx(x+2)+Cx(x-3).根据恒等式定义,选择x的适当值,可直接求出A,B,C的值,所以,当x=0时,有2=-6A,得A=13;当x=3时,有8=15B,得B=8 15;当x=-2时,有8=10C,得C=45.注意本题也可以把等号右边的代数式,整理成为关于x的二次三项式,然后用恒等式的性质:“左右两边同类项的系数相等”,列出方程组来解.例5 已知抛物线y=-16x2+bx+c的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.将抛物线向左平移241)个单位,得到的新抛物线与原抛物线交于点Q,且∠QBO=∠OBC.求抛物线的解析式.解抛物线的解析式变形为y=-16(x-3b)2+232b+c,所以,点P(3b,32b2+c),点C(0,c).设△ABC的外接圆的圆心为D,则点P和点D都在线段AB的垂直平分线上,设点D的坐标为(3b,m).显然,x1,x2是一元二次方程-16x2+bx+c=0的两根,所以,x1=3bx2=3b又AB的中点E的坐标为(3b,0),所以,AE因为PA为⊙D的切线,所以PA⊥AD.又AE ⊥PD ,所以由射影定理,可得AE 2=PE ·DE ,即2232b c ⎛⎫=+ ⎪⎝⎭·m , 易知m<0,所以可得m =-6.又由DA =DC ,得DA 2=DC 2,即2+m 2=(3b -0)2+(m -c)2.把m =-6代入后,可解得c =-6(c =0舍去).将抛物线y =-16(x -3b)2+232b -6向左平移241)个单位后,得到的新抛物线为y =-16(x -3b +24)2232b -6. 易求得两抛物线的交点为Q(3b +12-232b +102) 由∠QBO =∠OBC ,可得tan ∠QBO =tan ∠OBC .作QN ⊥AB ,垂足为N ,则解得b =4(b =435) <0,舍去). 因此,抛物线的解析式为y =-16x 2+4x -6.。
数学方法篇二:待定系数法对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法.【范例讲析】:一. 待定系数法在代数式变型中的应用:在应用待定系数法解有关代数式变型的问题中,根据右式与左式多项式中对应项的系数相等的原理列出方程(组),解出方程(组)即可求得答案。
例1.若2x6x k++是完全平方式,则k=【】A.9 B.-9 C.±9 D.±3二. 待定系数法在分式求值中的应用:在一类分式求值问题中,已知一比例式求另一分式的值,可设定待定参数,把相关变量用它表示,代入所求分式,从而使问题获解。
例2.已知b5a13=,则aba b-+的值是【】A.32B.23C.94D.49三. 待定系数法在因式分解中的应用:目前这类考题很少,但不失为一种有效的解题方法。
例3.分解因式:2x x2+-=。
四. 待定系数法在求函数解析式中的应用:例4.无论a取什么实数,点P(a-1,2a-3)都在直线l上,Q(m,n)是直线l上的点,则(2m-n+3)2的值等于.例5.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.例 6.游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水﹣﹣清洗﹣﹣灌水”中水量y(m3)与时间t(min)之间的函数关系式.(1)根据图中提供信息,求整个换水清洗过程水量y(m3)与时间t(min)的函数解析式;(2)问:排水、清洗、灌水各花多少时间?例7.如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.例8.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为455,求点M的坐标.五. 待定系数法在求解规律性问题中的应用:例9.2008年北京成功举办了一届举世瞩目的奥运会,今年的奥运会将在英国伦敦举行,奥运会的年份与届数如下表所示:年份1896 1900 1904 (2012)届数 1 2 3 …n表中n的值等于.例10.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是.例11.我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是.六. 待定系数法在几何问题中的应用:在几何问题中,常有一些比例问题(如相似三角形对应边成比例,平行线截线段成比例,锐角三角函数等),对于这类问题应用消除待定系数法,通过设定待定参数,把相关变量用它表示,代入所求,从而使问题获解。
初中数学竞赛辅导资料待定系数法甲内容提要1. 多项式恒等的定义:设f(x) 和g(x)是含相同变量x 的两个多项式,f(x)≡g(x)表示这两个多项式恒等.就是说x 在取值范围内 ,不论用什么实数值代入左右的两边,等式总是成立的.符号“≡”读作“恒等于”,也可以用等号表示恒等式. 例如:(x+3)2=x 2+6x+9, 5x 2-6x+1=(5x -1)(x -1),x 3-39x -70=(x+2)(x+5)(x -7).都是恒等式.根据恒等式定义,可求恒等式中的待定系数的值. 例如:已知:恒等式ax 2+bx+c=2(x+1)(x -2).求:①a+b+c ; ②a -b+c.解:①以x=1, 代入等式的左右两边,得a+b+c =-4.②以x=-1,代入等式的左右两边,得a -b+c =0.2. 恒等式的性质:如果两个多项式恒等,则左右两边同类项的系数相等.即 如果 a 0x n +a 1x n -1+……+a n -1x+a n = b 0x n +b 1x n -1+……+b n -1x+b n那么 a 0=b 0 , a 1=b 1, …… , a n -1=b n -1 , a n =b n .上例中又解: ∵ax 2+bx+c=2x 2-2x -4.∴a=2, b=-2, c=-4.∴a+b+c =-4, a -b+c =0.3. 待定系数法:就是先假设结论为一个含有待定系数的代数式,然后根据恒等式定义和性质,确定待定系数的值.乙例题例1. 已知:23)2)(3(22++-+=+-+-x C x B x A x x x x x 求:A ,B ,C 的值.解:去分母,得x 2-x+2=A(x -3)(x+2)+Bx(x+2)+Cx(x -3).根据恒等式定义(选择x 的适当值,可直接求出A ,B ,C 的值), 当x=0时, 2=-6A. ∴A =-31. 当x=3时, 8=15B. ∴B =158. 当x=-2时, 8=10C. ∴C =54. 本题也可以把等号右边的代数式,整理成为关于x 的二次三项式,然后用恒等式性质:“左右两边同类项的系数相等”,列出方程组来解.(见下例).例2. 把多项式x 3-x 2+2x+2表示为关于x -1的降幂排列形式.解:用待定系数法:设x 3-x 2+2x+2=a(x -1)3+b(x -1)2+c(x -1)+d把右边展开,合并同类项(把同类项对齐),得 x 3-x 2+2x+2=ax 3-3ax 2+3ax -a+bx 2-2bx+b+cx -c+d用恒等式的性质,比较同类项系数,得⎪⎪⎩⎪⎪⎨⎧=+-+-=+--=+-=2223131d c b a c b a b a a 解这个方程组,得⎪⎪⎩⎪⎪⎨⎧====4321d c b a∴x 3-x 2+2x+2=(x -1)3+2(x -1)2+3(x -1)+4.本题也可用换元法:设x -1=y, 那么x=y+1.把左边关于x 的多项式化为关于y 的多项式,最后再把y 换成x -1.例3. 已知:4x 4+ax 3+13x 2+bx+1是完全平方式.求: a 和b 的值.解:设4x 4+ax 3+13x 2+bx+1=(2x 2+mx ±1)2 (设待定的系数,要尽可能少.)右边展开,合并同类项,得4x 4+ax 3+13x 2+bx+1=4x 4+4mx 3+(m 2±4)x 2±2mx+1.比较左右两边同类项系数,得方程组⎪⎩⎪⎨⎧==+=m b m m a 213442; 或⎪⎩⎪⎨⎧-==-=m b m m a 213442. 解得⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧-==⎩⎨⎧-=-=⎩⎨⎧==172174 172174612612b a b a b a b a -或或或. 例4. 推导一元三次方程根与系数的关系.解:设方程ax 3+bx 2+cx+d=0(a ≠0)的三个根分别为x 1, x 2, x 3.原方程化为x 3+02=++ad x a c x a b . ∵x 1, x 2, x 3是方程的三个根.∴x 3+=++ad x a c x a b 2(x -x 1) (x -x 2) (x -x 3). 把右边展开,合并同类项,得x 3+=++ad x a c x a b 2=x 3-( x 1+x 2+x 3)x 2+(x 1x 2+x 1x 3+x 2x 3)x -x 1x 2x 3. 比较左右同类项的系数,得一元三次方程根与系数的关系是:x 1+x 2+x 3=-a b , x 1x 2+x 1x 3+x 2x 3=a c , x 1x 2x 3=-ad .例5. 已知:x 3+px+q 能被(x -a )2整除.求证:4p 3+27q 2=0.证明:设x 3+px+q =(x -a )2(x+b ).x 3+px+q=x 3+(b -2a)x 2+(a 2-2ab)x+a 2b. ⎪⎩⎪⎨⎧==-=-③②①q b a p ab a a b 22202由①得b=2a , 代入②和③得 ⎪⎩⎪⎨⎧=-=3223aq a p ∴4p 3+27q 2=4(-3a 2)3+27(2a 3)2=4×(-27a 6)+27×(4a 6)=0. (证毕).例6. 已知:f (x)=x 2+bx+c 是g (x)=x 4 +6x 2+25的因式,也是q (x)=3x 4+4x 2+28x+5的因式.求:f (1)的值.解:∵g (x),q (x)都能被f (x)整除,它们的和、差、倍也能被f (x)整除.为了消去四次项,设g (x)-q (x)=kf (x), (k 为正整数).即14x 2-28x+70=k (x 2+bx+c)14(x 2-2x+5)=k (x 2+bx+c)∴k=14, b=-2, c=5.即f (x)=x 2-2x+5.∴f (1)=4 .例7. 用待定系数法,求(x+y )5 的展开式解:∵展开式是五次齐次对称式,∴可设(x+y )5=a(x 5+y 5)+b(x 4y+xy 4)+c(x 3y 2+x 2y 3) (a, b, c 是待定系数.) 当 x=1,y=0时, 得a=1;当 x=1,y=1时, 得2a+2b+2c=32,即a+b+c=16当 x=-1,y=2时, 得31a -14b+4c=1.得方程组⎪⎩⎪⎨⎧=+-=++=141431161c b a c b a a解方程组,得⎪⎩⎪⎨⎧===1051c b a∴(x+y )5=x 5+5x 4y+10x 3y 2+10x 2y 3+5xy 4+y 5.丙练习511. 已知4286322+-+=++-x b x a x x x . 求a, b 的值. 2. 已知:2)1(1)2()1(534222++-+-=+-+-x C x B x A x x x x . 求:A ,B ,C 的值. 3. 已知: x 4—6x 3+13x 2-12x+4是完全平方式.求:这个代数式的算术平方根.4. 已知:ax 3+bx 2+cx+d 能被x 2+p 整除.求证:ad=bc.5. 已知:x 3-9x 2+25x+13=a(x+1)(x -2)(x -3)=b(x -1)(x -2)(x -3)=c(x -1)(x+1)(x -3)=d(x -1)(x+1)(x -2).求:a+b+c+d 的值.6. 试用待定系数法,证明一元二次方程根与系数的关系(即韦达定理).7. 用x -2的各次幂表示3x 3-10x 2+13.8. k 取什么值时,kx 2-2xy -y 2+3x -5y+2能分解为两个一次因式..9. 分解因式:①x 2+3xy+2y 24x+5y+3;②x 4+1987x 2+1986x+1987.10. 求下列展开式:① (x+y)6; ② (a+b+c)3.11. 多项式x 2y -y 2z+z 2x -x 2z+y 2x+z 2y -2xyz 因式分解的结果是( )(A) (x+y)(y -z)(x -z) . (B) (x+y)(y+z)(x -z).(C) (x -y)(y -z)(x+z). (D) (x -y)(y+z)(x+z).12. 已知( a+1)4=a 4+4a 3+6a 2+4a+1, 若S=(x -1)4+4(x -1)3+6(x -1)2+4x -3.则S 等于( )(A) (x -2)4 . (B) (x -1)4 . (C) x 4 . (D) (x+1)4.(1988年泉州市初二数学双基赛题)13. 已知:4310252323-+-++-x x x c bx x ax 的值是恒为常数求:a, b, c 的值.练习511. a=-27,b=-211 2. A=1,B=2,C=3 3. ± (x 2-3x+2) 4.由 (x 2+p)(ax+p d )… 5. 1 7. 3(x -2)3+8(x -2)2-4(x -2)-38. 先整理为关于x的二次三项式,并把常数项分解因式,再用待定系数法。
9. ①(x+y +1)(x+2y+3) ②(x2+x+1)(x2-x+1987)10.①x6+6x5y+15x4y2+20x3y3+15x2y4+6xy5+y6.②x3+y3+z3+3(x2y+y2z+z2x+x2z+y2x+z2y)+6xyz.11. (A) 12.(C) 13. a=1, b=1.5, c=-2.。