神经网络控制
- 格式:doc
- 大小:132.50 KB
- 文档页数:8
控制系统中的神经网络控制方法控制系统是指通过对被控对象进行监测和调节,以达到预定要求的系统。
而神经网络控制方法是指利用神经网络模型和算法对控制系统进行优化和改进的方法。
本文将介绍神经网络控制方法在控制系统中的应用以及其原理和优势。
一、神经网络控制方法的原理神经网络控制方法主要基于人工神经网络模型,它模拟了生物神经系统的结构和功能。
该模型由多个神经元组成,这些神经元相互连接并通过权重参数传递和处理信息。
其原理主要包括以下几个方面:1. 网络拓扑结构:神经网络控制方法中使用的神经网络有多种拓扑结构,如前馈神经网络、循环神经网络和自适应神经网络等。
这些网络结构可以灵活地应用于不同的控制问题。
2. 学习算法:神经网络通过学习算法来调整网络中神经元之间的连接权重,以逐步优化网络的性能。
常见的学习算法包括反向传播算法、遗传算法和模糊神经网络算法等。
3. 控制策略:神经网络控制方法可以基于不同的控制策略,如比例积分微分(PID)控制、模糊控制和自适应控制等。
通过在神经网络中引入相应的控制策略,可以实现对被控对象的精确控制和调节。
二、神经网络控制方法在控制系统中的应用1. 机器人控制:神经网络控制方法在机器人控制中有广泛应用。
通过将神经网络嵌入到机器人的控制系统中,可以实现对机器人运动、感知和决策等方面的智能控制。
这种方法能够提高机器人的自主性和适应性,使其能够更好地适应不同环境和任务的需求。
2. 工业过程控制:神经网络控制方法在工业过程控制中也得到了广泛应用。
通过利用神经网络对工业过程进行建模和优化,可以提高生产效率、降低能耗和减少故障率。
此外,神经网络控制方法还可以应用于故障诊断和预测维护等方面,提高工业系统的可靠性和稳定性。
3. 航天飞行器控制:神经网络控制方法在航天飞行器控制方面也有重要应用。
通过神经网络对航天飞行器的姿态、轨迹和轨道控制进行优化,可以提高飞行器的稳定性和导航精度,降低燃料消耗和飞行风险。
神经网络控制(RBF)神经网络控制(RBF)是一种基于径向基函数(RBF)的神经网络,用于控制系统,其主要功能是通过对输入信号进行处理来实现对系统输出的控制。
通过神经网络控制,控制器可以学习系统的动态行为和非线性模型,从而使得控制器能够自适应地进行调整和优化,实现对系统的精确控制。
RBF 网络通常由三层组成:输入层、隐藏层和输出层。
输入层接受系统的输入信号,并将其传递到隐藏层,隐藏层对输入数据进行处理并输出中间层的值,其中每个中间层神经元都使用一个基函数来转换输入数据。
最后,输出层根据隐藏层输出以及学习过程中的权重调整,计算并输出最终的控制信号。
RBF 网络的核心是数据集,该数据集由训练数据和测试数据组成。
在训练过程中,通过输入训练数据来调整网络参数和权重。
训练过程分为两个阶段,第一阶段是特征选择,该阶段通过数据挖掘技术来确定最优的基函数数量和位置,并为每个基函数分配一个合适的权重。
第二阶段是更新参数,该阶段通过反向传播算法来更新网络参数和权重,以优化网络的性能和控制精度。
RBF 网络控制的优点在于其对非线性控制问题具有优秀的适应性和泛化性能。
另外,RBF 网络还具有强大的学习和自适应调整能力,能够学习并预测系统的动态行为,同时还可以自动调整参数以提高控制性能。
此外,RBF 网络控制器的结构简单、易于实现,并且具有快速的响应速度,可以满足实时控制应用的要求。
然而,RBF 网络控制也存在一些局限性。
首先,RBF 网络需要大量的训练数据来确定最佳的基函数数量和位置。
此外,由于网络参数和权重的计算量较大,实时性较低,可能存在延迟等问题。
同时,选择合适的基函数以及与其相应的权重也是一项挑战,这需要在控制问题中进行深入的技术和经验探索。
总体而言,RBF 网络控制是一种非常有效的控制方法,可以在广泛的控制问题中使用。
其结构简单,性能稳定,具有很强的适应性和泛化性能,可以实现实时控制,为复杂工业控制问题的解决提供了一个重要的解决方案。
神经网络控制随着先进的计算技术的发展和大量的计算资源的获得,神经网络控制已经成为一种重要的控制方法。
神经网络控制通过建立神经网络模型对系统进行建模和控制,可以适用于不确定性较大、非线性程度较高的系统。
本文将从以下几个方面进行讨论。
1. 神经网络的基本原理神经网络是一个由大量神经元相互连接的关系网络。
神经元是生物神经系统中的基本单位,它接收神经元的输入,对输入进行处理,并将处理结果输出到其他神经元。
神经网络通过对神经元之间的连接强度进行学习,从而实现对输入和输出之间的映射。
神经网络的结构包含输入层、隐层和输出层。
输入层接收外部输入,隐层进行处理,最终的输出由输出层输出。
各层之间的连接权重是从样本学习中学得的。
在训练过程中,神经网络通过误差反向传播算法进行训练,从而得到最小误差的权值。
2. 神经网络控制的研究现状神经网络控制已经成为控制领域的一个热门研究方向。
在国内外均有大量的研究成果和应用案例。
神经网络控制在机器人控制、无人驾驶汽车控制、空间飞行器控制等领域中被广泛应用。
3. 神经网络控制在机器人控制中的应用机器人控制是神经网络控制的一个重要应用领域。
神经网络控制可以解决机器人控制中的多方面问题,如动力学建模、逆运动学、轨迹规划、控制等。
神经网络控制在机器人控制中的应用有:(1)运动控制神经网络控制可以对机器人的运动进行控制。
在机器人运动控制中,神经网络控制可以通过监督学习,对机器人的动力学进行建模,解决运动控制中的逆运动学问题。
同时,神经网络控制可以实现机器人的运动轨迹控制,保证机器人运动的平稳性和精度性。
(2)感知控制神经网络控制可以对机器人的感知进行控制。
机器人的传感器可以观测到周围环境的信息,神经网络控制可以对这些信息进行处理,并通过控制机器人的动作,使机器人具有基本的感知能力,如避障、跟踪等。
(3)智能控制在机器人控制中,神经网络控制可以实现机器人的智能控制。
神经网络控制可以对机器人进行学习和适应性,根据环境的变化,实现机器人的自适应控制,从而使机器人具有较强的智能性和自主性。
自动控制系统中的神经网络控制自动控制系统是一种通过使用各种控制器和算法来实现对系统行为的调节和优化的系统。
神经网络控制是其中一种灵活且性能强大的控制方法,它模仿了人类大脑的神经网络,通过学习和适应来实现对系统的控制。
神经网络控制在自动控制系统中的应用非常广泛。
它可以用于机械控制、电力系统、通信网络等各种领域。
神经网络控制可以通过大量的输入输出数据来训练网络模型,并利用这些模型对未知的系统进行控制。
这使得神经网络控制能够处理非线性、时变和模型未知的系统。
神经网络控制的基本原理是通过训练神经网络来建立系统的模型,然后使用这个模型来预测系统的下一状态,并基于预测结果进行控制。
神经网络控制的训练过程通常包括两个阶段:离线训练和在线调整。
在离线训练阶段,使用大量的已知输入输出数据对神经网络进行训练,调整网络的权重和偏差,使其尽可能准确地描述系统的动态行为。
在在线调整阶段,根据实际的控制效果,对网络进行参数的实时调整,以适应系统的变化。
与传统的控制方法相比,神经网络控制具有以下几个优势:1. 适应性强:神经网络控制可以自适应地调整控制策略,以适应不同的工作环境和系统条件。
即使在存在模型误差和系统变化的情况下,它仍然能够保持较好的控制性能。
2. 鲁棒性强:神经网络控制对参数的变化和噪声的抗干扰能力较强。
它可以通过学习和适应来抵抗外部干扰和异常情况的干扰,从而使控制系统更加稳定可靠。
3. 非线性能力强:由于神经网络模型的非线性特性,神经网络控制可以有效地应对非线性系统。
它能够处理传统控制方法难以解决的非线性问题,并在控制精度和稳定性方面取得显著的改善。
在实际应用中,神经网络控制也存在一些挑战和限制。
首先,神经网络控制的设计和参数调整较为复杂,需要具备相关的知识和经验。
其次,神经网络控制的计算量较大,需要较高的计算资源和处理能力。
此外,神经网络控制还面临着数据不准确和训练样本不足的问题,这可能导致网络模型的性能下降。
人工神经网络控制摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。
本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。
关键词: 神经网络控制;控制系统;人工神经网络人工神经网络的发展过程神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。
它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。
是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。
它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。
在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。
神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。
神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。
如神经预测控制、神经逆系统控制等。
生物神经元模型神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。
每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。
图1生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两种类型,兴奋性突触和抑制性突触。
前者产生正突触后电位,后者产生负突触后电位。
人工神经网络的定义人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。
为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。
人工神经网络是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。
人工神经网络的定义不是统一的,T.Koholen对人工神经网络的定义:“人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。
”人工神经网络的基本原理人工神经网络(articles neural network,ANN)结构和工作机理基本上以人脑的组织结构(大脑神经元网络)和活动规律为背景的,它反映了人脑的某些基本特征,但并不是要对人脑部分的真实再现,可以说它是某种抽象、简化或模仿。
神经网络在2个方面与人脑相似:(1) 人工神经网络获取的知识是从外界环境中学习得来的。
(2) 互连神经元的连接强度,即突触权值,用于存储获取的信息。
他既是高度非线性动力学系统,又是自适应组织系统,可用来描述认知、决策及控制的智能行为。
神经网络理论是巨量信息并行处理和大规模并行计算的基础。
人工神经网络的基本特征1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。
这特别适于实时控制和动态控制。
各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。
2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。
只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。
因此人工神经网络是一种具有高度非线性的超大规模连续时间动力学系统。
3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。
作为神经元间连接键的突触,既是信号转换站,又是信息存储器。
每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。
信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。
4、 具有联想存储功能:人的大脑是具有联想功能的。
比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。
用人工神经网络的反馈网络就可以实现这种联想。
神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。
在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。
5、 具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。
6、 软件硬件的实现:人工神经网络不仅能够通过软件而且可借助软件实现并行处理。
近年来,一些超大规模集成电路的硬件实现已经问世,而且可从市场上购到,这使得神经网络具有快速和大规模处理能力的实现网络。
许多软件都有提供了人工神经网络的工具箱(或软件包)如Matlab 、Scilab 、R 、SAS 等。
人工神经网络的基本数学模型神经元是神经网络操作的基本信息处理单位(图2)。
神经元模型的三要素为:(1) 突触或联接,一般用,表尔神经元和神经元之间的联接强度,常称之为权值。
(2) 反映生物神经元时空整合功能的输入信号累加器。
图2 一个人工神经元(感知器)和一个生物神经元示意图(3) 一个激活函数用于限制神经元输出(图3),可以是阶梯函数、线性或者是指数形式的函数(Sigmoid 函数)等。
图3 激活函数:(a)阀值单元 (b)线性单元 (c)(d)非线性单元:Sigmoid 函数图3是神经元的基本模型,图5是多层人工神经网络模型的示意图,其中12,,,n x x x 为输入信号,对应于生物神经元的树突输入,其他神经元的轴突输出;i u 为神经元的内部状态;i θ为阀值;ij w 为神经元i 和神经元j 的连接权值,其正负分别表示兴奋和抑制;()f •为激活函数,也称变换函数或传递函数;i y 为输出。
这个模型可以描述为:图4 神经元的基本模型图5 多层人工神经网络示意图常见神经元响应函数(4)非线性单元:Sigmoid 函数(a )s e s -+=11)(σ (b ))tanh()(s s βσ=神经网络基本学习算法有教师学习(监督学习)无教师学习(无监督学习)a 期望输出强化学习(再励学习)人工神经网络应用人工神经网络经过多年的发展,应用研究也取得了突破性进展,范围正在不断扩大,其应用领域几乎包括各个方面。
半个世纪以来,这门学科的理论和技术基础已达到了一定规模,就应用的技术领域而言有计算机视觉,语言的识别、理解与合成,优化计算,智能控制及复杂系统分析,模式识别,神经计算机研制,知识推理专家系统与人工智能。
涉及的学科有神经生理学、认识科学、数理科学、心理学、信息科学、计算机科学、微电子学、光学、动力学、生物电子学等。
美国、日本等国在神经网络计算机软硬件实现的开发方面也取得了显着的成绩,并逐步形成产品。
人工神经网络在数据挖掘中主要应用于数据的分类和预测,在分类方法中,与传统的统计方法相比,神经网络具有很强的学习能力,极大地提高了分类的精度和预测的准测度。
人工神经网络与支持向量机、遗传算法、随机森林等其他先进算法的结合,产生更为精确地算法,在R的galgo包(主要应用于生物信息学)中已经体现出来。
神经网络应用于系统辨识与控制的优点:无须数学建模,只需在线或离线学习训练,同时适用于线性和非线性系统,具有很强的适应性和鲁棒性,容易和其他控制方式结合。
1数字识别◆每一网格的明暗度经光电器件转换成电信号◆神经网络(NN)的输入与网格阵列一一对应◆输出电平高低的组合对应要识别的数字◆用数字样本和标准输出对NN进行训练2系统辨识3专家控制人工神经网络发展方向1、人工神经网络模型的研究利用神经生理与认知科学研究人类思维以及智能机理和利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能。
如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。
2、人工神经计算和进化计算要把基于链接主义的神经网络理论、基于符号主义的人工智能专家系统理论和基于进化论的人工生命这3大研究领域,自发而有机的结合起来。
建立神经计算和进化计算的数学理论基础。
“并行分布处理(PDP)”具有自学习、自适应和自组织的特点,这是一种提高计算性能的有效途径,是神经网络迫切需要增强的主要功能,必须加以重视,同时,还应寻找其他有效方法,建立具有计算复杂性、网络容错性和坚韧性的计算理论。
进一步研究调节多层感知器的算法,使建立的模型和学习算法成为适应性神经网络的有力工具,构建多层感知器与自组织特征图级联想的复合网络,是增强网络解决实际问题能力的一个有效途径,重视链接的可编程性和通用性问题的研究,从而促进智能科学的发展。
3、神经网络计算机的实现神经网络结构和神经元芯片的作用将不断扩大。
神经网络结构的研究是神经网络的实现以及成功地实现应用的前提,又是优越的物理前提,他体现了算法和结构的统一是硬件和软件的混合体,未来的研究主要是针对信息处理功能体,将系统、结构、电路、器件和材料等方面的知识有机地结合起来,建构有关的新概念和新技术,在硬件实现上,研究材料的结构和组织,使他具有自然地进行信息处理的能力。
关于自己对人工神经网络的认知(1)人工神经网络的发展很大程度依靠算法的改进和计算硬件速度的发展;概率神经网络、模糊神经网络及与其他新技术的结合是很重要的发展方向。
(2)人工神经网络虽然已得到广泛的应用,但认为各种识别工作都可以利用神经网络来实现的观点是不成熟的。
(3)神经网络搭建的成功与否,很大程度取决于隐层单元个数的选择,而目前仍然没有该选择的理论依据;另外,输入层、输出层的确立往往依不同的设计人员而有不同的选择方式,因此,针对一个问题而建立的不同神经网络可能有多种,从而使得网络的识别能力存在差异。
(4)网络的训练和仿真对训练样本和测试样本有很大的依赖性。
如果两种样本的数量、类别不完备,网络的训练将存在缺陷,甚至达不到设计目的。
因此,使用神经网络技术,前提是有良好的数据样本基础。
总之,人工神经网络特有的非线性适应性的信息处理能力,克服了传统人工智能方法对于直觉信息处理方面的缺陷(如模式、语音识别、非结构化信息等),使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。