- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/7/14
数学与计算科学学院
§4 循环群
面,由于 (ar )s e 且| a | n ,根据命题 3.12,
n | (rs) ,从而, n | (rs) .由于 ( n , r) 1,
(r, n)
(r, n)
因此 n | s .所以 s n ,即| ar | n .
(r, n)
(r, n)
近世代数课件--1.4循环群
§4 循环群
命题 4.1 循环群的子群仍是循环群.
证明 设 G a 是一个循环群, H 是 G 的任意一个子群.
若 H {e} , 则 H 是 循 环 群 . 现 在 假 设 H {e}.考察集合 N {n N | an H} ,易见 N .将 N 中最小的那个正整数记作 r .
设 r 0 .由于 (r, n) (r, n) 且 | ar | | ar | ,因
此我们可以进一步假设 r 0 .一方面,由于
| a | n ,我们有
n
r
r
(ar )(r, n) (an )(r, n) e(r, n) e .
令 s | ar | .根据命题 3.12, s | n .另一方 (r, n)
2020/7/14
数学与计算科学学院
§4 循环群
我们来阐明 H ar .事实上,一方面, 显然, ar H .另一方面,由于 G a 且 H G ,对于任意的 hH ,可设 h an ,其 中 nZ .我们取整数 q 和 s ,使得
n qr s , 0 s r . 若 s 0 ,则
2020/7/14
数学与计算科学学院
§4 循环群
as anqr an (ar )q h(ar )q H , 这与 r 为 N 中的最小数矛盾.因此 s 0 ,从而,
h an aqr (ar )q ar . 由 此 可 见 H ar . 所 以 H ar . 这 就 是 说, H 是循环群.□
2020/7/14
数学与计算科学学院
§4 循环群
注 我们有 [(s, n), (t, n)] (s, n) (t, n)
((s, n), (t, n)) ( t , n) ((s, t), n) (s, n) (s, t)
((s, t), n)
2020/7/14
数学与计算科学学院
§4 循环群
(s, n) ( t , n) (s, t)
( st , n) ([s, t] n) . (s, t)
2020/7/14
数学与计算科学学院
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
(r, n)
□
作业 p16,第 3,4,6 源自.2020/7/14数学与计算科学学院
§4 循环群
习题参考答案 5. 设 G a 是 循 环 群 , H as 和 K at 是 G 的两个子群,证明:
H K a[s, t] . 证明 显然 a[s, t] H K ,从而,
a[s, t] H K .
2020/7/14
数学与计算科学学院
§4 循环群
为了证明 H K a[s, t] ,现在只需证明 H K a[s, t] .
考察为 H K 中任意一个元素 b ar : (1)假设| a | . 由于 b H ,因此存在 i Z ,使得 r is ; 由于 b K ,因此存在 j Z ,使得 r jt .这就 是说, r 是 s 与 t 的一个公倍数.因此存在
2020/7/14
数学与计算科学学院
§4 循环群
于 ak ([s, t], n) a([s, t], n) ,因此 b ar a([s, t],n) .
综上所述,无论是| a | 还是 | a | , 总有 b ar a[s, t] .由于 b 的任意性,我们有
H K a[s, t] .
(r, n) (s, n) (r, n) (t, n)
2020/7/14
数学与计算科学学院
§4 循环群
从 而 , (s, n) | (r, n) 且 (t, n) | (r, n) . 因 此 [(s, n), (t, n)]| (r, n) .众所周知,
([s, t], n) [(s, n), (t, n)].注 所以 ( [s, t], n) | (r, n) ,从而,存在 k Z ,使得 k([s, t], n) (r, n) ,所以 ak([s, t], n) a(r, n) . 这样,根据第 3 题,我们有 a(r, n) a r .因 此, ar ak ([s, t], n) ,从而, ar ak ([s, t], n) .由
2020/7/14
数学与计算科学学院
§4 循环群
命 题 4.2 设 G a 是 一 个 有 限 循 环 群,| a | n , r 是任意一个整数.那么
| ar | n , (r, n)
其中 (r, n) 表示 r 与 n 的最大公约数.
2020/7/14
数学与计算科学学院
§4 循环群
证明 当 r 0 时,结论显然成立.不妨假
2020/7/14
数学与计算科学学院
§4 循环群
k Z ,使得 r k[s, t].所以 b ar a[s, t] . (2)假设| a | n . 由于 b H ,因此| b | | | as | ;由于 b K ,
因此| b | | | at | .也就是说, n|n,n|n,