数学角的平分线的性质(已用)
- 格式:ppt
- 大小:1001.50 KB
- 文档页数:10
八年级数学角平分线的性质八年级数学-角平分线的性质角平分线的性质角平分线性质:角平分线上任意一点到角两边的距离相等。
到角两边距离相等的点在角的平分线上。
............................................角平分线的画法:........例1已知O是三条角平分线的交点△ ABC和OD⊥ 如果外径=5且△ ABC等于20,面积△ ABC等于s△ ABC=例2如图所示,abd三边上AB、BC和Ca的长度分别为20、30和40,三个角的平分线将δabd分为三个三角形,然后s?阿宝:什么?bco:s?曹等于___1例3.如图:在△abc中,∠bac=90°,∠abd=∠abc,bc⊥df,垂足为f,af交bd于e。
2求证:ae=ef.例4如图所示:in△ ABC,相邻外角的平分线∠ B和∠ C与D点相交。
验证:D点位于∠ A.例5.如图所示,已知△abc中,ad平分∠bac,e、f分别在bd、ad上.de=cd,ef=ac.求证:ef∥ab.例6△ ABC,AB>AC,ad是∠ BAC。
P是ad上的任意点。
验证:ab AC>Pb PC1例7如图所示,∠ a+∠ d=1800,等分∠ 美国广播公司和行政长官意见相同∠ BCD,E点在广告上(1)探讨线段ab、cd和bc之间的等量关系;(2)探讨线段be与ce之间的位置关系.例8如图所示,已知△ ABC,ad是BC边缘的中线,e是ad上的点,延伸段be在F处与AC相交,AF=EF。
验证:AC=be课堂练习:1.如图所示△ ABC,P是高于BC,PR的点⊥ R中的AB,PS⊥ AC在s中,AQ=PQ,PR=PS,则以下三个结论的正确性为()① as=AR;②pq∥应收账;③ △ BRP≌ △ CSPA。
① 和② B② 和③ C① 和③ D.所有配对2.如图,ab=ac,be⊥ac于e,cf⊥ab于f,be、cf交于点d,则①△abe≌△acf;②△bdf≌△cde;③点d在∠bac的平分线上,以上结论正确的是()A.①②③B①②c.①③D②③3.在△abc和△a'b'c'中,①ab=a'b';②bc=b'c';③ac=a'c;④∠a=∠a';⑤∠b=∠b';⑥∠c=∠c';则下列哪组条件不保证△abc≌△a'b'c'.()A.①②③B①②⑤C①⑤⑥D①②④4.如图,已知点p到be、bd、ac的距离恰好相等,则点p的位置:①在∠b的平分线上;②在∠dac的平分线上;③在∠eac的平分线上;④恰是∠b,∠dac,∠eac三个角的平分线的交点。
人教版数学八年级上册《角平分线的性质(1)》教学设计一. 教材分析人教版数学八年级上册《角平分线的性质(1)》这一节的内容主要包括角平分线的定义、性质及其在几何中的应用。
学生通过学习这一节内容,可以进一步了解角的平分线与角的大小、角的边长之间的关系,为后续学习三角形、多边形等几何知识打下基础。
二. 学情分析学生在学习这一节内容之前,已经学习了角的概念、垂线的性质等知识,具备了一定的几何基础。
但部分学生对角平分线的理解可能仍存在困难,因此在教学过程中需要加强对角平分线概念的讲解,并通过大量的实例让学生加深对角平分线的认识。
三. 教学目标1.了解角平分线的定义及其性质;2.学会运用角平分线解决一些简单的几何问题;3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.角平分线的定义及其性质;2.角平分线在几何中的应用。
五. 教学方法1.采用讲解法,让学生理解角平分线的定义和性质;2.运用示例法,让学生通过观察、分析、归纳角平分线的性质;3.采用练习法,让学生在实践中运用角平分线解决几何问题;4.运用小组合作法,让学生在讨论中加深对角平分线性质的理解。
六. 教学准备1.准备相关的教学课件、图片、几何模型等;2.准备一些有关角平分线的练习题。
七. 教学过程1.导入(5分钟)通过复习角的概念、垂线的性质等知识,引导学生进入新课的学习。
2.呈现(10分钟)利用课件、图片等展示角平分线的定义和性质,让学生直观地了解角平分线。
3.操练(10分钟)让学生通过观察、分析、归纳角平分线的性质,并尝试解答一些有关角平分线的问题。
4.巩固(10分钟)让学生分组讨论,运用角平分线的性质解决一些几何问题,加深对角平分线性质的理解。
5.拓展(5分钟)引导学生思考:角平分线在实际生活中有哪些应用?让学生联系生活实际,拓宽思路。
6.小结(5分钟)对本节课的内容进行总结,强化学生对角平分线性质的记忆。
7.家庭作业(5分钟)布置一些有关角平分线的练习题,让学生课后巩固所学知识。
《角的平分线的性质》教学设计《角的平分线的性质》教学设计1教材分析1.角的平分线性质是初中阶段几何证明中重要的内容,为证明三角形全等提供更多的方法和条件;2、在利用全等三角形的基础上更进一步推理出角的平分线性质;3、在这节课中,也能让学生更多的动手作图,练习学生的尺规作图能力,把数学运用到实际生活中去;学情分析1.学生对数学学习兴趣不够高,基础知识参差不齐,特别是对作图方法难以掌握;2.学生对做角的平分线、角平分线到两边的距离作图不够规范,达不到垂直的要求;3.学生对如何动手作角平分线和证明角平分线的性质过程感到比较难掌握。
教学目标1、掌握作已知角的.平分线的方法;2、掌握角平分线的性质,掌握角平分线性质的推导过程;3、角平分线性质的运用。
教学重点和难点重点:角的平分线性质的证明及运用;难点:角的平分线性质的探究。
《角的平分线的性质》教学设计2【教学目标】1.使学生掌握角平分线的性质定理和判定定理,并会用两个定理解决有关简单问题.2.通过引导学生参与实验、观察、比较、猜想、论证的过程,使学生体验定理的发现及证明的过程,提高思维能力.3.通过师生互动以及交互性多媒体教学课件的使用,培养学生学习的自觉性,丰富想象力,激发学生探究新知的热情.【教学重点】角平分线的性质定理和判定定理的探索与应用.【教学难点】理解运用在角平分线上任意选取一点的方法证明角平分线性质定理以及两个定理的区别与联系.【教学方法】启发探究式.【教学手段】多媒体(投影仪,计算机).【教学过程】一、复习引入:1.角平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫这个角的平分线.表达方式:如图1,∵ OC是∠AOB的平分线,∴∠1=∠2(或∠AOB=2∠1=2∠2或∠1=∠2= ∠AOB).2.角平分线的画法:你能用什么方法作出∠AOB的平分线OC?(可由学生任选方法画出OC).可以用尺规作图,可以用折纸的方法,可以用TI图形计算器.3.创设探究角平分线性质的情境:用两个全等的30的直角三角板拼出一个图形,使这个图形中出现角平分线,并且平分出的两个角都是30.学生可能拼出的图形是:(拼法1)(拼法2)(拼法3)选择第三种拼法(如图2)提出问题:(1)P是∠DOE平分线上一点,PD、PE与∠DOE的边有怎样的位置关系?(2)点P到∠DOE两边的距离可以用哪些线段来表示?(3)PD、PE有怎样的数量关系?(投影)二、探究新知:(一)探索并证明角平分线的性质定理:1.实验与猜想:引导学生任意画出一个角的平分线,并在角平分线上任取一点,作出到角两边的距离.通过度量、观察并比较,猜想它们有怎样的数量关系?用TI图形计算器实验的结果:(教师用计算机演示:点P在角平分线上运动及改变∠AOB大小,引导学生观察PD与PE的数量关系).引导学生用语言阐述自己的观点,得出猜想:命题1在角平分线上的点,到这个角的两边的距离相等.2.证明与应用:(学生写在笔记本上)已知:如图3,OC是∠AOB的平分线,P为OC上任意一点,PD⊥OA于D,PE ⊥OB于E.求证:PD=PE.(投影)证明:∵ OC是∠AOB的平分线,∴∠1=∠2.∵ PD⊥OA于D,PE⊥OB于E,∴∠ODP=∠OEP=90.又∵ OP=OP,∴△ODP≌△OEP(AAS).∴ PD=PE三、作业设计反思:一、重视情境创设,让学生经历求知过程。
角的平分线的性质(一)教学目标1、应用三角形全等的知识,解释角平分线的原理.2.会用尺规作一个已知角的平分线.教学重点利用尺规作已知角的平分线.教学难点角的平分线的作图方法的提炼.教学过程Ⅰ.提出问题,创设情境问题1:三角形中有哪些重要线段.问题2:你能作出这些线段吗?Ⅱ.导入新课在学直角三角形全等的条件时做过这样一个题:在∠AOB的两边OA和OB上分别取OM=ON,MC⊥OA,NC⊥OB.MC 与NC交于C点.求证:∠MOC=∠NOC.通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,所以射线OC就是∠AOB的平分线.受这个题的启示,我们能不能这样做:在已知∠AOB的两边上分别截取OM=ON,再分别过M、N作MC⊥OA,NC⊥OB,MC•与NC交于C点,连接OC,那么OC就是∠AOB的平分线了.思考:这个方案可行吗?(学生思考、讨论后,统一思想,认为可行)议一议:右图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB.∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.看看条件够不够.AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩所以△ABC≌△ADC(SSS ). 所以∠CAD=∠CAB.即射线AC 就是∠DAB 的平分线. 作已知角的平分线的方法: 已知:∠AOB.求作:∠A OB 的平分线. 作法:(1)以O 为圆心,适当长为半径作弧,分别交OA 、OB 于M 、N . (2)分别以M 、N为圆心,大于12MN 的长为半径作弧.两弧在∠AOB 内部交于点C . (3)作射线OC ,射线OC 即为所求.议一议:1.在上面作法的第二步中,去掉“大于12MN 的长”这个条件行吗? 2.第二步中所作的两弧交点一定在∠AOB 的内部吗? 总结:1.去掉“大于12MN 的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线. 2.若分别以M 、N 为圆心,大于12MN 的长为半径画两弧,两弧的交点可能在∠AOB 的内部,也可能在∠AOB 的外部,而我们要找的是∠AOB 内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB 的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.练一练:任意画一角∠AOB,作它的平分线.探索活动按以下步骤折纸1.在准备好的三角形的每个顶点上标好字母;A、B、C。
学过程设计教探究二:角的平分线的性质实验:1.让学生在已经画好的角平分线上任取一点P.2.分别过P点向OA、OB边作垂线PD⊥OA,PE⊥OB,垂足分别为D、E。
3.测量PD和PE的长,观察PD与PE的数量关系。
,并试着说明理由。
归纳角的平分线的性质:角的平分线上的点到角的两边的距离相等。
应用:如图,ABC中,D为BC中点,且AD恰好平分∠BAC。
求证:AB=AC三、课堂训练1.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O,假设∠1=∠2,求证OB=OC.2.如图,四边形ABCD中,BD平分∠ABC,∠A+∠C=180°,求证:AD=CD四、小结归纳1.用尺规作图法作出角的角平分线的方法;2.角的平分线的性质;3.角的平分线的性质是证明线段相等的又一种方法。
学生做练习。
学生画图,教师巡视指导。
观察、讨论PD与PE的数量系。
学生通过三角形全等,说明PD=PE。
教师引导学生归纳出角的平分线的性质。
教师引导,学生思考并解题,写出证明过程。
学生充分讨论,综合运用所学知识解决问题。
学生小结本节所学的知识点及知识点的应用。
线的方法。
通过学生实验得到结论,重视知识的发生开展过程。
使学生明确角的平分线的性质是证明线段相等的又一种方法。
稳固本节课所学知识及提升综合应用所学知识解决问题的能力。
从总体上把握学知识。
五、作业设计1.教材习题11.3第2、4小题;2.补充作业:①如图,AB ∥CD ,∠BAC 与∠ACD 的平分线交于点O ,OE ⊥AC 于E ,且OE =2,求AB 、CD 间的距离.②如图,在△ABC 中∠C=90°,AC=BC,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB=6㎝,那么△DEB 的周长为_________㎝。
EDBCA②思考题::如图,任意ABC 中,AD 为∠BAC 的平分线。
求证:BD ∶DC =AB ∶AC〔提示:可参照例题[点拨],利用面积证明〕课题 11.3 角的平分线的性质一、角的平分线的作法: 作角的角平分线 例题分析 二、角的平分线的性质:教 学 反 思年级八年级课题13.1 平方根〔2〕课型新授教学媒体多媒体教学目标知识技能1.了解有的正数的算术平方根开不尽方;2.了解无限不循环小数特点;3.会用计算器算术求平方根;4.会比较开不尽方的正数的算术平方根与有理数的大小.过程方法通过拼正方形,体验解决问题方法的多样性,开展学生的形象思维和抽象思维;探究2的大小,培养估算意识,了解从两个方向无限逼近的数学思想,并学会比较开不尽方的正数的算术平方根与有理数的大小.情感态度认识数学和生活实际的密切关系,建立自信心,提高学习热情.教学重点初步感受无理数,能进行比较教学难点探究2大小教学过程设计教学程序及教学内容师生行为设计意图一、情境引入用两个面积为1的小正方形拼成一个面积为2的大正方形,并求出这个大正方形的边长.二、探究新知1.拼法:按以下图所示,很容易用两个面积为1的小正方形拼成一个面积为2的大正方形.2.问题:①拼成的大正方形的边长是多少?②你能像上节课那样得到一个平方等于2的正有理数吗?③我们只能把边长表示为2,那么2是多大呢?2的大小:∵12=1,22=4,∴1<2<4;∵22=2.25,∴1.4<2<1.5;∵22=2.0164,∴1.41<2<1.42;∵22=2.002225,∴1.414<2<1.415;……教师提出问题,组织学生动手拼剪.教师参与学生活动,适当帮助指导学生完成拼图活动,并及时肯定学生各种割、拼的方法.教师设计并向学生提出问题,组织学生思考,交流,并引导学生尝试总结归纳,估算出2的大小,理解无限不循环小数的特点.调动学生思维的积极性,通过拼图活动,经历发现无理数的过程.通过形的研究来感受无理数的存在.从而对数的认识进一步加深,为实现从有理数到实数的过渡作好铺垫.教师设计问题,逐层深入,对学生进行启发引导,通过对2的大小估计,再次从数的角度来感受无理数的存在性.培养学生的估算能力,渗透估算的思想和方法,感受从两端无限逼近的数学思想.如此进行下去,可以得到2的更精确地近似值.事实上,2=1.414 213 56…,同π一样,是一个无限不循环小数,这样的数与以前学的有理数一样吗?得到:小数位数无限且小数局部不循环的小数叫无限不循环小数.像7,5,3,2这样,所有开方开不尽的正数的算术平方根都是无限不循环小数. 4.用计算器计算算术平方根的三个步骤:①进入();②输入(被开方数);③输出()用计算器计算,并将计算结果填在表中. 0625.0 625.025.6 5.62 625 6250 观察上表,你发现什么了吗?(1)被开方数增大,算术平方根怎样变化? (2)被开方数与算术平方根的小数点有何移动规律?(3)直接写出:_____625000;_____62500==. 得到:被开方数增大(或减小),那么算术平方根也增大(或减小);被开方数的小数点向左〔右〕移动两位,它的算术平方根的小数点也相应的向左〔右〕移动一位.用一块面积为400cm 2的正方形纸片沿边的方向,能否裁出一块面积为300cm 2的长方形纸片, 使它的长宽之比为3:2?分析:大正方形的面积为400 cm 2, 可求出其边长为400=20cm ;要裁出面积为300cm 2的长方形纸片,并使其长宽之比为3:2,通过列方程可求得长和宽须分别为cm cm 502,503,用计算器求得1.750≈,所以3.21503≈,而21.3>20,即要裁出的长方形的长大于正方形的边长,故不能裁出.如果不使用计算器,因为21493503=>>20,所以不能裁出.不用计算器,估计一个整数的算术平方根的技巧:将这个整数a 拆成两个整数m 、n 的积,那么a 的算术平方根必在m 、n 之间,m 、n 越接近,估值越精确.如,24的算术平方根在4、6之间;56的算术平方根在7、8之间,这种方法虽然简便,但对有的数只能估计一个粗略范围,如50的算术平方根只能估计在5、10之间。