第7章多元函数积分学16-16(曲线与曲面积分习题课)
- 格式:ppt
- 大小:1.47 MB
- 文档页数:53
一、本章学习要求与内容提要(一)学习要求1.了解二重积分的概念, 知道二重积分的性质.2.掌握二重积分在直角坐标系下和极坐标系下的计算方法. 3.会用二重积分解决简单的实际应用题(体积、质量). 4.了解曲线积分的概念和性质. 5.会计算简单的曲线积分.重点 二重积分的概念,直角坐标系与极坐标系下二重积分的计算,曲线积分的概念,格林公式,曲线积分的计算,用二重积分解决简单的实际应用题.难点 直角坐标系与极坐标系下二重积分的计算,格林公式,曲线积分的计算,用二重积分解决简单的实际应用题.(二)内容提要 1.二重积分设二元函数),(y x f z =是定义在有界闭区域D 上的连续函数,用微元法先找出体积微元,再累加求出总体,由这两步所得的表达式,即⎰⎰Dy x f σd ),(称为函数),(y x f z =在闭区域D 上的二重积分,其中),(y x f 称为被积函数,σd ),(y x f 称为被积表达式,D 称为积分区域,σd 称为面积元素,y x 与称为积分变量.2.二重积分的几何意义 在区域D 上当0),(≥y x f 时,⎰⎰Dy x f σd ),(表示曲面),(y x f z =在区域D 上所对应的曲顶柱体的体积.当),(y x f 在区域D 上有正有负时,⎰⎰Dy x f σd ),(表示曲面),(y x f z =在区域D 上所对应的曲顶柱体的体积的代数和.3. 二重积分的性质 (1)可加性[]⎰⎰⎰⎰⎰⎰±=±DDDy x g y x f y x g y x f σσσd ),(d ),(d ),(),(.(2)齐次性⎰⎰⎰⎰=DDk y x f k y x kf )( d ),(d ),(为常数σσ.(3)对积分区域的可加性 设积分区域D 可分割成为1D 、2D 两部分,则有⎰⎰⎰⎰⎰⎰+=12d ),(d ),(d ),(D D Dy x f y x f y x f σσσ.(4)(积分的比较性质) 若),(),(y x g y x f ≥,其中D y x ∈),(,则σσd ),(d ),(⎰⎰⎰⎰≥DDy x g y x f .(5)(积分的估值性质) 设M y x f m ≤≤),(,其中D y x ∈),(,而M m ,为常数,则⎰⎰≤≤DM y x f m σσσd ),( ,其中σ表示区域D 的面积.(6)(积分中值定理)若),(y x f 在有界闭区域D 上连续,则在D 上至少存在一点D ∈),(ηξ,使得σηξσ),(d ),(f y x f D=⎰⎰.4. 二重积分的计算⑴ 二重积分在直角坐标系下的计算 直角坐标系下的面积元素y x •d d d =σ , ①若D :)()(21x y x ϕϕ≤≤,b x a ≤≤,则⎰⎰D y x y x f d d ),(=x y y x f x x b ad d ),()()(21⎥⎦⎤⎢⎣⎡⎰⎰ϕϕ, ②若D : )()(21y x y ψψ≤≤,d y c ≤≤,则⎰⎰Dy x y x f d d ),(=y x y x f y x d cd d ),()()(21⎥⎦⎤⎢⎣⎡⎰⎰ψψ. ⑵二重积分在极坐标系下的计算极坐标系下的面积元素θσd d d r r =,极坐标与直角坐标的关系⎩⎨⎧θ=θ=.sin ,cos r y r x若D : )()(21θθr r r ≤≤,βθα≤≤,则⎰⎰Dy x y x f d d ),(=⎰⎰Dr r r r f θθθd d )sin ,cos (=θθθθθβαd d )sin ,cos ()()(21⎥⎦⎤⎢⎣⎡⎰⎰r r r r r r f . 5. 对坐标的曲线积分设L 是有向光滑曲线,j ),(i ),(),F(y x Q y x P y x +=是定义在L 上的向量函数,且),( , ),(y x Q y x P 在L 上连续,利用微元法,先写出弧微元j i l y x d d d +=,作乘积=w d L F d ⋅=y )y ,x (Q x )x ,x (P d d +,再无限累加,由这两步所得的表达式,即⎰+y )y ,x (Q x )y ,x (P Ld d 称为函数)y ,x (F 在有向曲线L 上对坐标的曲线积分,其中有向曲线L 称为积分路径.如果),( , ),(y x Q y x P 中有一个为零,则这时曲线积分的形式为⎰⎰y )y ,x (Q x )y ,x (P L Ld d 或,如果曲线L 是封闭曲线,L 上积分记为⎰+y )y ,x (Q x )y ,x (P Ld d .6.对坐标的曲线积分的性质① 设L 为有向曲线弧,-L 是与L 方向相反的有向曲线弧,则y )y ,x (Q x )y ,x (P y )y ,x (Q x )y ,x (P L L d d d d +-=+⎰⎰-.② 如果21L L L +=,则有.y )y ,x (Q x )y ,x (P y )y ,x (Q x )y ,x (P y )y ,x (Q x )y ,x (P L L Ld d d d d d 21+++=+⎰⎰⎰7.格林公式 设D 是平面上以分段光滑曲线L 为边界的有界闭区域,函数),(y x P 及),(y x Q 在D 上有一阶连续偏导数,则有格林公式⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=+σd d d D L y P x Q y Q x P ,其中L 是区域D 的正向边界.8.曲线积分与路径无关(1)定义 设D 是一个单连通区域,将),(y x P 简称为),(,y x Q P 简称为Q ,如果对D 内任意指定的两点A ,B 以及D 内从A 点到B 点的任意两条不相同的曲线21 , L L ,若有y Q x P y Q x P L L d d d d 21+=+⎰⎰,则称曲线积分⎰+y Q x P L d d 在D 内与路径无关.这时,可将曲线积分记为⎰+BAy Q x P d d .(2)曲线积分与路径无关的定理 ①在单连通区域D 内,曲线积分⎰+y Q x P Ld d 与路径无关的充分必要条件是:对D 内任意一条闭曲线L ,均有⎰=+0d d y Q x P L.②设函数),(y x P 和),(y x Q 在单连通区域D 内有一阶连续偏导数,则曲线积分⎰+Lx Q x P d d 与路径无关的充分必要条件是:yPx Q ∂∂=∂∂在区域D 内恒成立. 9. 曲线积分的计算方法 ⑴积分路径由参数方程给出设xOy 面上的有向曲线L 的参数方程为⎩⎨⎧==,)t (y ,)t (x ψϕ且满足:① 当参数t 单调地由α变到β时,曲线上的点由起点A 运动到终点B ; ② )(t ϕ,)(t ψ在以α和β为端点的闭区间I 上具有一阶连续导数,且()()0)()(22≠'+'t t ψϕ;③),(y x P ,),(y x Q 在有向曲线弧L 上连续.则曲线积分⎰+y )y ,x (Q x )y ,x (P Ld d 存在,且y )y ,x (Q x )y ,x (P Ld d +⎰={}t )t ()]t (),t ([Q )t ()]t (),t ([P d ψψϕϕψϕβα'+'⎰.⑵ 积分路径由)(x f y =给出设xOy 面上的有向曲线弧L 的方程为 )(x f y =,这时可先将有向曲线弧L 的方程看作是以x 为参数的参数方程⎩⎨⎧==,)x (f y ,xx 然后再按(1)中的方法计算.要特别注意:在将对坐标的曲线积分转换为定积分时,积分下限一定要对应积分路径的 起点, 积分上限一定要对应积分路径的终点.二 、主要解题方法1.在直角坐标系下二重积分的计算例1 计算 ⎰⎰Dy x y x d d 2其中D 由直线2=y ,x y =和曲线1=xy 所围成.解 画出区域D 的图形如图所示,求出边界曲线的交点坐标A (21,2), B (1,1), C (2,2),选择先对x 积分,这时D 的表达式为⎪⎩⎪⎨⎧≤≤≤≤,y x y,y 121 于是⎰⎰Dy x y xd d 2=x y x y y y d d 1221⎰⎰=y x y yy d ]3[11321⎰ =⎰-2142d )1(31y yy =3312111()333y y -+=7249 .分析 本题也可先对y 积分后对x 积分,但是这时就必须用直线1=x 将D 分1D 和2D 两部分.其中1D ⎪⎩⎪⎨⎧≤≤≤≤,21,121y xx 2D ⎩⎨⎧≤≤≤≤,2,21y x x由此得⎰⎰D y x y x d d 2=⎰⎰1d d 2D y x y x +⎰⎰2d d 2D y x y x=y y x x xd d 212121⎰⎰+y y x x x d d 2221⎰⎰=⎰121212d ][ln x y x x+⎰2122d ][ln x y x x =⎰+1212d ]ln 2[ln x x x +⎰-212d ]ln 2[ln x x x=7249. 显然,先对y 积分后对x 积分要麻烦得多,所以恰当地选择积分次序是化二重积分为二次积分的关键步骤.例2 计算σ++⎰⎰d )1(Dy x ,其中D :1≤+y x .解 画出积分区域D 的图形, 观察被积函数,无论先对x 积分后对y 积分还是先对y 积分后对x 积分都需要将积分区域分成两部分,计算都较繁,这里选择先对y 积分后对x 积分,其中110,11,x D x y x -≤≤⎧⎨--≤≤+⎩201,11,x D x y x ≤≤⎧⎨-≤≤-⎩ 因此σ++⎰⎰d )1(Dy x =σ++⎰⎰d )1(1D y x +σ++⎰⎰d )1(2D y x =σ++⎰⎰+---d )1(d 1101x xy x x +σ++⎰⎰--d )1(d 1110x x y x x=4σ+⎰d )1(21-x +4x x d )1(1⎰-=423+103=. 例3 已知 I =x y x f y yd ),(d 010⎰⎰+x y x f y y d ),(d 2021⎰⎰- 改变积分次序.解 积分区域21D D D +=,其中1D ⎩⎨⎧≤≤≤≤,0,10y x y 2D ⎩⎨⎧-≤≤≤≤,20,21y x y画出积分区域D 的图形, 改变为先对y 积分后对x 积分, 此时 D ⎩⎨⎧-≤≤≤≤,2,102x y x x 因此I =x y x f y yd ),(d 010⎰⎰+x y x f y y d ),(d 2021⎰⎰-=y y x f x x xd ),(d 221⎰⎰- .小结 把二重积分化为累次定积分的关键在于正确选择积分次序及积分的上、下限,这里要求上限大于下限.在具体计算重积分时,正确地利用对称性可以使计算简化,但是要注意:只有当积分区域和被积函数均关于所给坐标轴对称时,对称性才能应用,切不可只顾积分域而忘了被积函数.2. 在极坐标系下二重积分的计算 例4 计算⎰⎰σDx y d arctan ,其中D 由422=+y x , 122=+y x ,0=y ,x y = 所围成的第一象限内的区域.解 画出积分区域D 的图形,由于积分区域的边界曲线有圆周, 所以选极坐标系积分. 此时 θ=xyarctan,于是 ⎰⎰σDx yd arctan=⎰θ4π0d ⎰θ21d r r =⎰πθθ40d 212]2[r=234π22θ=6432π. 例 5 求半球体2220y x a z --≤≤在圆柱ax y x =+22(0>a )D 内那部分的体积.解 把所求立体投影到y x o 面,即圆柱ax y x =+22(0>a )内部,容易看出所求立体的体积以D 为底,以上半球面222y x a z --=为顶的曲顶柱体的体积.由于积分区域的边界曲线为圆周,所以采用极坐标系较好.2xθ此时D ⎪⎩⎪⎨⎧θ≤≤≤θ≤-,cos 0,2π2πa r故 V =y x y x a Dd d 222⎰⎰--=⎰-θ2π2πd ⎰θ-cos 022d a r r r a=32⎰θθ-2π033d )cos 1(a =(3π94-)3a . 小结 在计算二重积分时,当积分区域为圆形区域、圆环区域或扇形区域时,选择用极坐标为好,其他情况用直角坐标为宜.3.对坐标的曲线积分的计算方法例 6 设 I =⎰--Ly y x x xy x d d )3(222 ,其中L 是沿上半圆周22y x +=1上的点A (1,0)到)0,1(-B 一段弧,如图.解一 首先验证曲线积分是否与路径无关.223xy x P -=,y x Q 2-=,因为yP∂∂=xy 2-=x Q ∂∂ ,所以曲线积分与路径无关,可选一条简单路径,即选择线段AB 路径. 得I =⎰--ABy y x x xy x d d )3(222 ,在线段AB 上0=y ,0d =y ,x 从1到1-,所以I =⎰-112d 3x x =113-x =2-.解二 用参数方程代入法,设t 为参数t x cos = ,t y sin =,t 从0到π 得I =⎰---π222d ]cos sin cos )sin )(sin cos cos 3[(t t t t t t t t=⎰--π2d ]4sin 41sin cos 3[t t t t =(t 3cos +161cos4t )π=2-.显然,法一比法二简单.例7 计算⎰-+-Lx x y y x y y d )1cos e (d )sin e ( ,其中L 为),0(a A ,)0,(a B 联成直线段.解 显然积分路径不是封闭曲线,不能直接用格林公式, 加直线段BO ,OA 构成封闭曲线,所以⎰-+-Lx x y y x y y d )1cos e (d )sin e ( =⎰++---OABO L xxy y x y y d )1cos e (d )sin (e⎰-+--BOx x y y x y y d )1cos e (d )sin e (⎰-+--Axxy y x y y 0d )1cos e (d )sin e (,其中 y y P x -=sin e ,1cos e -=y Q x ,yp∂∂= 1cos e -y x ,x Q ∂∂= y x cos e .因为封闭曲线是反方向,所以由格林公式,得⎰++-+-OABO L x xy y x y y d )1cos e (d )sin e(=y x y Px Q D d d )(⎰⎰∂∂-∂∂-=y x Dd d ⎰⎰-=22a -. 又因为在BO 上0=y ,0=dy ,故⎰---BOxx y y x y y d )1cos e (d )sin e (=0. 在OA 上 0=x ,0d =x ,y 从0变到a ,于是⎰---Axx y y x y y 0d )1c o s e (d )s i n e ( =⎰-ay y 0d ]1[cos =a a -sin ,因此 ⎰---Lxxy y x y y d )1c o s e (d )s i ne (=--22a (a a -sin ). 小结 计算对坐标的曲线积分⎰+Ly y x Q x y x P d ),(d ),(,(1) 若在单连通域内x Q ∂∂=yP∂∂时,曲线积分与路径无关。
第七章多元函数积分学知识点总结及典型例题(吐血推荐)第七章多元函数微分学本章学习基本要求:1.会求空间中两点之间的距离。
2.了解多元函数的概念及二元函数的表示法与几何意义。
3.掌握二元函数的极限的运算。
4.熟练掌握求偏导数与全微分的方法,掌握求多元复合函数偏导数以及隐函数偏导数的方法。
5.掌握二元函数极值的必要条件,充分条件,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值与最小值。
6.掌握二重积分在直角坐标系下的计算方法。
第一节空间解析几何简介一、空间直角坐标系在平面解析几何中,我们建立了平面直角坐标系,并通过平面直角坐标系,把平面上的点与有序数组(即点的坐标),(y x )对应起来. 同样,为了把空间的任一点与有序数组对应起来,我们来建立空间直角坐标系.过空间一定点O , 作三条相互垂直的数轴,依次记为x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),统称为坐标轴. 它们构成一个空间直角坐标系Oxyz .例 1、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D --解:A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.例 2、求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---..二、空间两点间的距离.)()()(||21221221221z z y y x x M M -+-+-=例 5、 z 轴上,求与点(4,1,7)A -, 点(3,5,2)B -等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(. 例 6、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.例2 设P 在x 轴上, 它到)3,2,0(1P 的距离为到点)1,1,0(2-P 的距离的两倍, 求点P 的坐标. 解因为P 在x 轴上,设P 点坐标为),0,0,(x ,113)2(22221+=++=PP x x,21)1(22222+=+-+=PP x x,221PP =PP221122+=+∴x x ,1±=x所求点为.)0,0,1(,)0,0,1(- 练习题:例 3、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .例 4、求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-= 222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.例 7、一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程. 解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)Mxyz C M A z ∈?=亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .第二节空间曲面及空间曲线定义1在空间直角坐标系中,如果曲面S 上任一点坐标都满足方程0),,(=z y x F ,而不在曲面S 上的任何点的坐标都不满足该方程,则方程0),,(=z y x F 称为曲面S 的方程, 而曲面S 就称为方程0),,(=z y x F 的图形空间曲面研究的两个基本问题是:(1) 已知曲面上的点所满足的几何条件,建立曲面的方程; (2) 已知曲面方程,研究曲面的几何形状. 平面平面是空间中最简单而且最重要的曲面. 可以证明空间中任一平面都可以用三元一次方程0=+++D Cz By Ax (1.3)来表示,反之亦然. 其中A 、B 、C 、D 是不全为零常数. 方程(1.3)称为平面的一般方程.柱面定义2 平行于某定直线并沿定曲线C 移动的直线L 所形成的轨迹称为柱面. 这条定曲线C 称为柱面的准线, 动直线L 称为柱面的母线.二次曲面在空间直角坐标系中,我们采用一系列平行于坐标面的平面去截割曲面,从而得到平面与曲面一系列的交线(即截痕),通过综合分析这些截痕的形状和性质来认识曲面形状的全貌. 这种研究曲面的方法称为平面截割法,简称为截痕法.椭球面 1222222=++c z b y a x )0,0,0(>>>c b a (1.4)椭圆抛物面 q y p x z 2222+=(同号与q p )双曲抛物面 z qy p x =+-2222 ( p 与q 同号) 单叶双曲面 1222222=-+cz b y a x )0,0,0(>>>c b a双叶双曲面 1222222-=+-cz b y a x )0,0,0(>>>c b a二次锥面 0222222=-+cz b y a x )0,0,0(>>>c b a1.用定义求曲面∑方程的方法(1)设(,,)M xyz 是曲面∑上任意一点,根据题意,列出点M 所满足的条件,得到含有,,x y z的等式,化简得(,,)0F x y z =。
习题7.1(A)1、求点(2,1,3)A -关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标。
解 (1)(2,1,3)--,(2,1,3)--, (2,1,3);(2)x 轴:(2,1,3)-,y 轴:(2,1,3)---,z 轴:(2,1,3)-; (3) (2,1,3)--。
2、在空间直角坐标系中,指出下列各点在哪个卦限?(4,3,5)A -,(2,3,4)B -,(2,3,4)C --,(2,3,1)D --并求点(4,3,5)A -分别到(1)坐标原点;(2)各坐标轴;(3)各坐标面的距离。
解 A 点在第4卦限; B 点在第5卦限;C 点在第8卦限;D 点在第3卦限。
(1) A =(4,3,5)-(2) A 到x =A 到y =A 到z 5=;(3) A 到坐标面xy 5=;A 到坐标面yz 4=;A 到坐标面xz 3=。
3、在z 轴上求一点M ,使该点与点(4,1,7)A 和(3,5,2)B 的距离相等。
解 因为所求点在z 轴上, 所以设该点为(0,0,)M z , 由题意有MA MB , 即222222(4)1(7)35(2)z z两边平方, 解得149z, 于是所求点为14(0,0,)9M . 4、写出球心在点(1,3,2)--处,且通过点(1,1,1)-的球面方程。
解 由2222000()()()xx yy zz R ,得2222(1())(113())(12)R则3R ,从而球面方程为2222(1)(3)(2)3x yz5、下列各题中方程组各表示什么曲线?(1)2248,8;x y z z(2)2225,3;x y z x(3)2224936,1;x y z y (4)2244,2.x y z y解 (1) 双曲线;(2) 圆;(3) 椭圆;(4) 抛物线。
6、描绘下列各组曲面在第一卦限内所围成的立体的图形。
(1) 0,0,0,1x y z x y z ===++=;(2) 2222220,0,0,,x y z x y R y z R ===+=+=。
1. 指出下列各点所在的坐标轴、坐标面或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。
2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z++=-。
多元向量函数的曲线积分与曲面积分曲线积分和曲面积分是向量微积分中的重要概念,用于描述多元向量函数在曲线上和曲面上的积分性质。
在本文中,我们将介绍多元向量函数的曲线积分和曲面积分的定义、计算方法和一些重要性质。
一、曲线积分曲线积分用于描述多元向量函数沿着曲线的积分性质。
设曲线C为参数方程r(t)=(x(t),y(t),z(t)),其中a≤t≤b是参数区间。
若函数F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))定义在曲线C上,那么多元向量函数F沿曲线C的曲线积分可以表示为:∫C F·dr = ∫C (Pdx+Qdy+Rdz)其中dr=(dx,dy,dz)是曲线C上的微元向量,P,Q,R是F的分量函数。
计算曲线积分的方法有两种,一种是直接计算,根据曲线参数方程将x,y,z替换成参数t,在参数区间上对分量函数P,Q,R进行积分。
另一种是利用格林公式或斯托克斯定理,将曲线积分转化为二重积分或三重积分进行计算。
二、曲面积分曲面积分用于描述多元向量函数通过曲面的积分性质。
设曲面S为参数方程r(u,v)=(x(u,v),y(u,v),z(u,v)),其中(u,v)∈D是参数区域。
若函数F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))定义在曲面S上,那么多元向量函数F通过曲面S的曲面积分可以表示为:∬S F·dS = ∬S (PdSx+QdSy+RdSz)其中dS=(dSx,dSy,dSz)是曲面S上的面积微元向量,P,Q,R是F的分量函数。
计算曲面积分的方法也有两种,一种是直接计算,根据曲面参数方程将x,y,z替换成参数u,v,在参数区域上对分量函数P,Q,R乘以面积微元dS进行积分。
另一种是利用高斯定理,将曲面积分转化为三重积分进行计算。
三、曲线积分与曲面积分的关系曲线积分和曲面积分之间存在密切的关系。
根据斯托克斯定理,对于光滑曲面S的边界曲线C,有以下等式成立:∫C F·dr = ∬S rotF·dS其中rotF=(∂R/∂y-∂Q/∂z, ∂P/∂z-∂R/∂x, ∂Q/∂x-∂P/∂y)是F的旋度。
高等数学练习题 第七章 多元函数微积分系 专业 班 姓名 学号 第一节 空间解析几何基础知识 第二节 多元函数的概念一.选择题1.方程22480x y z +-+=表示 (D ) (A )平面 (B )柱面 (C )球 (D )抛物面 2.函数)ln(1y x z +=的定义域 ( C )(A )0>+y x (B )0)ln(≠+y x (C )1>+y x (D )1≠+y x 3.设)1(-+=x f y z ,且当1=y x z =时,则)(y f = ( D )(A )1-y (B )y (C )2+y (D ))2(+y y4.若)0()l n(),(22>>--=y x y x x y x f ,则),(y x y x f -+= ( B )(A ))ln(y x - (B ))ln(2y x -(C ))ln (ln 21y x - (D ))ln(2y x - 二.填空题1.点(4,3,5)M -到x 轴的距离d2.若一球面以点(1,3,2)-为球心且过原点,则其方程为3.与Z 轴和点)1,3,1(-A 等距离的点的轨迹方程是_____ _ ___4. 球面:07442222=--+-++z y x z y x 的球心是点__________,半径=R __; 5. ln()z y x =-+的定义域6.设函数32(,)23f x y x xy y =-+,则(x f y =7.已知22),(y x xy y x f -=+,则=),(y x f 8.已知vu ww u w v u f ++=),,(,则),,(xy y x y x f -+=222(1)(3)(2)14x y z -+-++=2262110z x y z --++=(1,2,2)-422{(,)|1,0}x y x y y x +<>≥3()3x xy y -+2222(1)1(1)x xy x y y y --=++2()()xy xx y xy ++三.计算题1.y xy y x )sin(lim)0,2(),(→解:sin()xy xy ≤∴ 当(,)(2,0)x y →时,sin()2xy y→ 则原式=2 2.24lim)0,0(),(-+→xy xy y x解:2==∴原式=(,)(0,0)lim 2)4x y →=3.2222222)0,0(),()(cos 1limy x y x ey x y x +→++-解:2211()2x y -+∴原式=2222222(,)(0,0)1()2lim ()x y x y x y x y e+→++ =222(,)(0,0)1lim2x y x y e+→=12高等数学练习题 第七章 多元函数微积分系 专业 班 姓名 学号第三节 偏导数 第四节 全微分一.选择题1.设),(y x f z =,则),(00y x xz ∂∂= ( B )(A )x y x f y y x x f x ∆-∆+∆+→∆),(),(lim00000(B )xy x f y x x f x ∆-∆+→∆),(),(lim 00000(C )x y x f y x x f x ∆-∆+→∆),(),(lim0000(D )xy x f y y x f x ∆-∆+→∆),(),(lim 000002.若xy z ln =,则dz 等于 ( B )(A )y x y x y y x x ln ln ln ln + (B )dy yxy dx x y y x x ln ln ln ln +(C )ln ln ln ln x xy x y ydx dy x + (D )xyy x ln ln 3.设22()z yf x y =-,则 11z zx y y∂∂+=∂∂ ( A ) (A )221()f x y y -; (B )4f yf y '+; (C )0; (D )1y二.填空题1.设)cos(2y x z =,则yz∂∂= 2.设22),(y x y x y x f +-+=,则=')4,3(x f3.设)sin(),(223y x ey x y x f xy--+=,则=)1,1(x f4.设432),,(z y x z y x f =,则),,(z y x f z =5.设函数2sin()(1y z y xy y e -=+-,则(1,0)|z x∂=∂6.设2232),(y xy x y x f -+=,则),(y x f xy''= 7.设y x e u xsin -=,则yx u∂∂∂2在点)1,2(π处的值为22sin()x x y -251e +2234x y z 14322e π-8.函数y x xy z ++=22arctan 的全微分=dz三.计算题 1.设xzyau )(1=, 求z y x u u u ''',,解: 1()'ln ln xz xzyx u zayy a -=-⋅ 1()1'ln xz xz yy u xzyaa --=- 1()'ln ln xz xzyz u xy aa y -=-⋅2.设)ln(2y x z +=,求在点(1,0)处的全微分 解:22dx ydydz x y+=+ (1,0)|d z d x = 3.设)11(yx ez +-=,求证z yz y x z x222=∂∂+∂∂ 证:11()21x y z e x x -+∂=∂ 11()21x y z ey y-+∂=∂ 1111()()22222211x yx yz z x y x e y ex y x y-+-+∂∂+=+∂∂=11()22x yez -+=4.验证 nx ey tkn sin 2-=满足22xyk t y ∂∂=∂∂证:22sin kn t y kn e nx t -∂=-∂ 2c o s k n t y n e n x x -∂=∂ 2222s i n k n ty n e n x x-∂=-∂ ∴22xy k t y ∂∂=∂∂22(4)(1)1()1()y x x dx dy xy xy +++++高等数学练习题 第七章 多元函数微积分系 专业 班 姓名 学号第五节 多元复合函数与隐函数微分法(一)一.选择题1.设)(),,(,ln 2y v y x u v u z ψϕ===均为可微函数,则=∂∂yz( C ) (A )vu v u 2ln 2+(B )v u v y 2ln 2+ϕ (C )ψϕ'+v u v u y 2ln 2 (D )vu y ψϕ'22.设(,)2323z f x y x y =+,f 具有二阶连续偏导数,则2zx y∂=∂∂ (B )(A )226621112222615276f x y f x y f x yf '''''''+++ (B )()235211122226666f xy x y f x y f xy f '''''''++++ (C )()235111222666f xy x y f x y f ''''''+++ (D )226611122261527f x y f x y f ''''''++ 二.填空题1.设22v u z +=,而y x v y x u -=+=,,则yzx z ∂∂+∂∂= 2.设yx ez 2-=,而t x sin =,3t y =,则dtdz = 3.设z =)()(1y x y xy f x ++ϕ,f 和ϕ具有二阶连续导数,则yx z ∂∂∂2= '''()''(y f x y y x yϕϕ++++ 4.设f 具有一阶连续偏导数,),(22xye y xf u -=,则u x∂=∂ ;uy∂=∂ . 三.计算题1.设y x z arctan =,而v u x +=,v u y -=,求vz u z ∂∂+∂∂ 解:2211[]1()xz u x y yy∂=-∂+2211[]1()z x v y y y ∂=+∂+ 4()x y +22(cos 6)x y t t e--122''xy xf ye f +122''xy yf xe f -+222z z y u v x y ∂∂+=∂∂+2.设1)(2--=a z y e u ax ,而x a y sin =,xz cos =,求dx du 解:222cos sin ()111ax ax ax du a ae x e xe y z dx a a a =-++--- 2()1ax e yay az az a a=-++- 2222(1)sin (1)(1)1ax axa e x a e y a a a ++==-- 3.设sin()(,)x z xy x y =+ϕ,求2zx y∂∂∂,其中(,)u v ϕ有二阶偏导数。