第7章多元函数积分学316(二重积分计算极坐标)
- 格式:ppt
- 大小:1.49 MB
- 文档页数:39
多元函数积分知识点总结1. 多元函数的概念多元函数是指至少含有两个自变量的函数,它是自变量的多项式和、积、商或者反函数的复合函数。
多元函数的自变量可以是实数,也可以是复数。
例如,z=f(x,y)表示一个含有两个自变量的函数,其中x和y称为自变量,z称为因变量。
多元函数的图形通常是在三维坐标系中表示的,它描述了自变量之间的关系和对因变量的影响。
2. 多元函数的积分多元函数的积分是对多元函数在给定区域上的积分运算,它可以表示为对函数在该区域上的所有微小部分进行求和。
多元函数的积分具有广泛的应用,例如在物理学、工程学、经济学等领域中都有重要应用。
多元函数的积分包括二重积分和三重积分两种重要形式。
3. 二重积分二重积分是对二元函数在给定区域上的积分运算,它可以表示为对函数在该区域上的面积进行求和。
二重积分的计算通常涉及到对区域进行分割、确定积分范围、选择合适的坐标系等步骤。
二重积分的求解可以利用极坐标、直角坐标等不同坐标系进行计算,根据具体问题的情况选择合适的坐标系可以简化计算过程。
4. 三重积分三重积分是对三元函数在给定区域上的积分运算,它可以表示为对函数在该区域上的体积进行求和。
三重积分的计算通常涉及到对区域进行分割、确定积分范围、选择合适的坐标系等步骤。
三重积分的求解可以利用柱面坐标、球面坐标等不同坐标系进行计算,根据具体问题的情况选择合适的坐标系可以简化计算过程。
5. 多元函数的积分性质多元函数的积分具有一些重要的性质,包括线性性质、可加性、区域可加性等。
其中线性性质指的是积分运算满足线性运算规律,可加性指的是积分在不同区域的和等于对整个区域的积分,区域可加性指的是积分在求和区域上的分割等价性。
这些性质在多元函数积分的计算中起着重要的作用,可以帮助简化计算过程和求得精确解。
6. 多元函数的变限积分多元函数的变限积分是对多元函数在变化区域上的积分运算,它可以表示为对函数在变限区域上的所有微小部分进行求和。
多元函数积分学是数学的一个分支,它是对多元函数进行积分的理论。
与一元函数积分学相比,它更加复杂,但它为我们研究物理学、工程学和其他自然科学问题提供了更强大的工具。
在本文中,我将介绍的一些基本理论,包括重积分、极坐标变换、格林公式等。
一、重积分重积分是的基本概念,它是对多元函数在某一区域上的积分。
重积分可以表示为Riemann积分或Lebesgue积分两种形式,具体形式与多元函数的性质有关。
在Riemann积分中,我们将区域分成有限个小区域,对每个小区域内的多元函数进行积分,最后将积分结果相加。
而在Lebesgue积分中,我们采用测度的概念,将多元函数的定义域分成不可数个小区域,在每个小区域上定义一个测度,对多元函数在每个小区域内的值进行加权积分,最后求出所有小区域上的积分和即为整个区域上的积分。
重积分在物理学和工程学中有着广泛的应用,例如计算物体的体积、求解场的强度等。
同时,重积分也是进一步研究多元函数性质的基础。
二、极坐标变换极坐标变换是一种将平面直角坐标系上的点表示为极径和极角的变换。
它可以将一些复杂的函数转化为简单的极坐标函数,使得对多元函数进行积分更加方便。
在极坐标系中,被积函数可以表示为一个积分项和一个积分域,积分项为正态函数,积分域为从 $0$ 到 $2\pi$ 的一个闭区间和一个在某个圆内部的有界区域,在这个有界区域上的积分相当于在平面直角坐标系上的二重积分。
因此,我们可以使用积分转化公式将多元函数在极坐标系中的积分转化为在平面直角坐标系中的二重积分。
极坐标变换在数学中有着广泛的应用。
例如,对于一个椭球体积的计算,使用极坐标变换可以将三维积分转化为二维积分,更加方便计算。
三、格林公式格林公式是中的一个重要定理,它是关于多元函数的一个等式,用于计算曲面积分和线积分之间的关系。
在平面上,格林公式是一个计算平面上曲线积分和面积的公式,它表明二元函数在解析条件下,其在一个闭合路径内的曲线积分等于该函数在这个区域内的面积积分。
微积分——多元函数及二重积分知识点
一、多元函数
多元函数是指变量、个数多于一个的函数。
常见的函数可以分为二元、三元函数。
1、二元函数
二元函数是指变量、个数为两个的函数,常见的二元函数有:二次函数、双曲线函数等。
(1)二次函数
二次函数是指用一元二次方程记录的函数,一般格式为:y=ax²+bx+c,其中a≠0,则二次函数是一个关于x的二次多项式函数,当a>0时,它
的图像呈现出U形;当a<0时,它的图像呈现出锥形。
(2)双曲线函数
双曲线的定义式有很多种,常见的有标准双曲线、变形双曲线等,它
们的共同特点是,双曲线的图像都是上下对称的,它们的定义式具有一定
的对称性。
2、三元函数
三元函数是指变量、个数为三的函数,一般格式为:z=f(x,y),它
们也有很多类型,比如极坐标函数、椭圆函数、正弦函数、余弦函数等。
(1)极坐标函数
指的是用极坐标表示的只有一个变量的函数,通常表示为r=f(θ),其中r代表半径,θ代表角度,则r随着θ的变化而变化,极坐标函数
的图像一般是一个圆或者椭圆。
(2)椭圆函数
椭圆函数是指以椭圆为图形的函数,一般表示为:
(x-x0)²/a²+(y-y0)²/b²=1,其中a是x轴的长半轴,b是y轴的
长半轴,x0、y0是椭圆圆心坐标。
计算二重积分的几种方法数学专业论文计算二重积分的几种方法摘要二重积分的计算是数学分析中一个重要的内容,其计算方法多样、灵活,本文总结了二重积分的一般计算方法和特殊计算方法.其中,一般计算方法包括化二重积分为累次积分和换元法,特殊计算方法包括应用函数的对称性、奇偶性求二重积分以及分部积分法.关键词二重积分累次积分法对称性分部积分法1 引言本人在家里的职业教育高中实习,发现这里有些专业的的学生要计算很多面积或者体积问题,已经略微涉及到大学的积分问题,如曲顶柱体的体积,他们用最普遍的求面积/体积的方法求解,而用二重积分进行计算求解就会更容易理解,方法和步骤也带给学生一个新的认知领域。
职业教育的学生在大学知识中解决实际问题应用积分的方法更频繁。
在解决一些几何、物理等的实际问题时,我们常常需要各种不同的多元实值函数的积分,而二重积分又是基本的、常见的多元函数积分,我针对自己在《数学分析》这门课程中的学习,总结了累次积分、根据函数对称性积分、元素法、分部积分法、极坐标下的积分等内容,以下是我对二重积分方法的总结。
2 积分的计算方法2.1化二重积分为两次定积分或累次积分法定理 1 若函数(),f x y 在闭矩形域(),R a x b c y d ≤≤≤≤可积,且[],x a b ∀∈,定积分()(),d cI x f x y dy=⎰存在,则累次积分(),bda c f x y dy dx ⎡⎤⎢⎥⎣⎦⎰⎰也存在,且(,)(,)b d ac Rf x y dxdy f x y dy dx⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰证明 设区间[],a b 与[],c d 的分点分别是011011i i n k kma x x x x x bc y y y y yd --=<<⋅⋅⋅<<<⋅⋅⋅<==<<⋅⋅⋅<<<⋅⋅⋅<=这个分法记为T .于是,分法将T 闭矩形域R 分成m n ⨯个小闭矩形,小闭矩形记为 11(,),1,2,,;1,2,,.ik i i k k R x x x y y y i n k m --≤≤≤≤=⋅⋅⋅=⋅⋅⋅ 设(){}(){}[]1sup ,,inf ,.,ik ik i i i M f x y m f x y x x ξ-==∀∈,有()1,,ik i ik k km f y M y y y ξ-≤≤≤<.已知一元函数(),if y ξ在[]1,k k yy -可积,有()11,,kikki ik k k k k k m y f y dy M y y y y ξ--∆≤≤∆∆=-⎰.将此不等式对1,2,k m=…相加,有()1111,k k mmmy ikki ik ky k k k m y f y dy M y ξ-===∆≤≤∆∑∑∑⎰,其中()()()11,,k k my di i i y ck f y dy f y dy I ξξξ-===∑⎰⎰,即()11mmikki ik kk k m yI M y ξ==∆≤≤∆∑∑.再将此不等式乘以ix ∆,然后对1,2,i n=…相加,有()11111n mn n miki k i i ik i ki k i i k mx y I x M x y ξ=====∆∆≤∆≤∆∆∑∑∑∑∑.此不等式的左右两端分别是分法T 的小和()s T 与大和()S T ,即 ()()()1ni i i s T I x S T ξ=≤∆≤∑.(1) 已知函数(),f x y 在R可积,根据定理有()()0lim lim (,),T T RS T s T f x y dxdy →→==⎰⎰又不等式(1),有()()01lim ,niiT i RI x f x y dxdy ξ→=∆=∑⎰⎰,即()()(),,.bbdaa c Rf x y dxdy I x dx f x y dy dx ⎡⎤==⎢⎥⎣⎦⎰⎰⎰⎰⎰类似地,若(),f x y 在闭矩形域(),R a x b c y d ≤≤≤≤可积,且[],,y c d ∀∈定积分存在,则累次积分(),d b caf x y dx dy⎡⎤⎢⎥⎣⎦⎰⎰,也存在,且()(),,dbcaRf x y dxdy f x y dx dy⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰.也可将累次积分(),b dacf x y dy dx⎡⎤⎢⎥⎣⎦⎰⎰与(),d bcaf x y dx dy⎡⎤⎢⎥⎣⎦⎰⎰分别记为(),b dac dx f x y dy⎰⎰和(),dbcadx f x y dy ⎰⎰. 定义 1 设函数()()12,x x ϕϕ在闭区间[],a b 连续;函数()()12,y y ψψ在闭区间[],c d 连续,则区域()()()[]{}12,,,x y x y x x a b ϕϕ≤≤∈和()()()[]{}12,,,x y y x y y c d ψψ≤≤∈分别称为x 型区域和y 型区域.如下图(1)和(2)所示 .定理2 设有界闭区域R 是x 型区域,若函数(),f x y 在R 可积,且[],x a b ∀∈,定积分()()()21,x xf x y dy ϕϕ⎰存在,则累次积分()()()21,bxaxdx f x y dy ϕϕ⎰⎰也存在,且()()()()21,,bxaxRf x y dxdy dx f x y dy ϕϕ=⎰⎰⎰⎰.利用极坐标计算二重积分公式:()(),cos ,sin RRf x y dxdy f r r rdrd ϕϕϕ=⎰⎰⎰⎰例 1 计算二重积分()sin Rx y dxdy +⎰⎰,其中0,0.22R x y ππ⎛⎫≤≤≤≤ ⎪⎝⎭解 被积函数()cos x y +在R 连续,则有()cos Rx y dxdy +⎰⎰=()220cos dy x y dxππ+⎰⎰=220(cos cos sin sin )dy x y x y dxππ-⎰⎰=()20cos sin y y dy π+⎰= 1+01-例2 计算二重积分22Dxdxdyy⎰⎰,其中D是由直线2,x y x==和双曲线1xy=所围成,D既是x型区域又是y 型区域,如图(3)所示.解先对y积分,后对x积分.将D投影在x轴上,得闭区间[]1,2.[]1,2x∀∈,关于y积分,在D内y的积分限是1yx=到y x=,然后在投影区间[]1,2上关于x积分,即()222231221194xxDx xdxdy dx dy x x dxy y==-=⎰⎰⎰⎰⎰.先对x积分,后对y积分.因为D的左侧边界不是由一个解析式给出,而是由两个解析式1xy=和y x=给出的,所以必须将图(3)所示的区域D分成两个区域()1D PRS与()2D PRQ,分别在其上求二重积分,然后再相加,即2122222122211222221294yyD D Dx x x x xdxdy dxdy dxdy dy dx dy dxy y y y y=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰.例3 设函数()f x在[]0,1上连续,并设()2,f x dx B=⎰求()()22.xI dx f x f y dy=⎰⎰解因为()()()()222yxI dx f x f y dy dy f x f y dx==⎰⎰⎰⎰ ()()()()22yxf y dy f x dx f x dx f y dy==⎰⎰⎰⎰所以()()()()()()2222222x xI f x dx f y dy f x dx f y dy f x dx f y dy B =+==⎰⎰⎰⎰⎰⎰所以22B I =.2.2 换元法求二重积分,由于某些积分区域的边界曲线比较复杂,仅仅将二重积分化为累次积分并不能得到计算结果.如果经过适当的换元或变换可将给定的积分区域变为简单的区域,从而简化了重积分的计算. 定理3若函数(),f x y 在有界闭区域R 连续,函数组()(),,,x x u v y y u v == (2)将uv 平面上区域'R 变换为xy 平面上区域R .且函数组(2)在'R 上对u 与对v 存在连续偏导数,(),'u v R ∀∈, 有()(),0,,x y J u v ∂=≠∂则()()()()',,,,,RR f x y dxdy f x u v y u v J u v dudv =⎡⎤⎣⎦⎰⎰⎰⎰ (3)证明 用任意分法T 将区域R 分成n 个小区域:12,,,nR R R ⋅⋅⋅.设其面积分别是12,,,nσσσ∆∆⋅⋅⋅∆.于是,在'R 上有对应的分法'T ,它将'R 对应地分成n 个小区域12',',,'nR R R ⋅⋅⋅.设其面积分别是12',',,'n σσσ∆∆⋅⋅⋅∆.根据定理可得(),'ku v R ∀∈,有()()(),','.,k k k x y J u v u v σσσ∂∆≈∆=∆∂(),k k kR ξη∀∈,在'kR 对应唯一一点(),kkαβ,而()(),,,k k k k k k x y ξαβηαβ==.于是,()()()()11,,,,,'.nnkkkkkk k k k k k k f f x y J ξησαβαβαβσ==∆≈∆⎡⎤⎣⎦∑∑(4)因为函数组(2)在有界闭区域R 上存在反函数组()(),,,u u x y v v x y ==,并且此函数组在R 一致连续,所以当T →时,也有'0T →.对(4)取极限()0T→,有()()()()',,,,,RR f x y dxdy f x u v y u v J u v dudv =⎡⎤⎣⎦⎰⎰⎰⎰.例4 计算两条抛物线2y mx=与2ynx=和两条直线y xα=与y x β=所围成R 区域的面积()0,0R m n αβ<<<<,如图(4)所示.解 已知区域R 的面积RR dxdy =⎰⎰.设2,.y yu v x x==这个函数将xy 平面上的区域R 变换为uv 平面上的区域'R ,'R 是由直线,u m u n ==和,v v αβ==所围成的矩形域.()()()()43224222,11.,,2,1x y x y x uu v u v y x y v y yx y x xy x x∂⎛⎫===== ⎪∂∂⎝⎭-∂-由定理3可知,()()4',,n m RR x y u R dxdy dudv dv duu v v βα∂===∂⎰⎰⎰⎰⎰⎰()()223322433.26n m n m dv v βαβααβ---==⎰本题是典型的运用换元法解决二重积分求面积的问题。
多元函数积分学总结多元函数积分学是一元函数积分学的拓展与延伸,包括二重积分、三重积分、曲线积分、曲面积分。
❖ 几何意义:曲顶柱体的体积❖ 性质:线性性质、可加性、单调性、估值性质、中值定理 ❖ 计算方式:x 型、y 型、极坐标(22y x +)❖ 常见计算类型:① 选择积分顺序:能积分、少分块② 交换积分顺序:确定积分区域→交换积分顺序→开始积分③ 利用对称性简化计算:要兼备被积函数和积分区域两个方面,不可误用。
④ 极坐标系下的二重积分的定限:极点在积分区域内(特殊:与x 轴相切、与y 轴相切)、极点不在积分区域内⑤ 其他:利用几何意义、含绝对值时先去绝对值、分段函数、概率积分 ❖ 了解“积不出来函数”:dx x ⎰)cos(2、dx e x ⎰-2、dx x ⎰ln 1、dx xx⎰sin ❖ 概率积分例题展示 证明22π=⎰∞+-dx ex证:令=)(x f 2x e-① 易证)()(x f x f -=⇒)(x f 为偶函数⇒212=⎰+∞-dx exdx ex2⎰+∞∞--(奇偶对称性、轮换对称性、周期性→简化计算) ② 已知dx e x ⎰-2为“积不出来函数”,所以改变我们所求目标函数dx e x2⎰+∞∞--的形式令=w dx ex2⎰+∞-412=w •dx e x 2⎰+∞∞--41=dxdx e x x⎰⎰+∞∞-+-+∞∞-)(22(了解“积不出来函数”,增强目标意识,适当转化目标函数形式)③ 令其中一个x 变成y ,构造22y x + 2w 41=dxdy e y x⎰⎰+∞∞-+-+∞∞-)(22④ 将θcos r x =,θsin r y =带入上一步的2w 易得),0(+∞∈r ,)2,0(π∈θ 2w =θdrd e r r ⎰⎰-+∞•π20241=⎰⎰+∞-•π2002θd dr er r2021212dr e r •=⎰+∞-π2021212lim dr e br b •=⎰-+∞→π)1(21212lim --=-+∞→b b e ππ41==⇒w 2π 即220π=⎰∞+-dx e x成立(极坐标系⇔直角坐标系,选择合适的积分次序将二重积分⇔二次积分,了解广义定积分)(此类积分为概率积分 bdt e bdx et bxπ211022⎰⎰∞+-∞+-==)。