凸包算法
- 格式:ppt
- 大小:2.29 MB
- 文档页数:22
凸包算法公式凸包是计算几何中的一个重要概念,而凸包算法公式则是解决相关问题的关键工具。
咱先来说说啥是凸包。
想象一下,你面前有一堆散落在地上的钉子,然后你拿一个橡皮筋把最外层的钉子圈起来,让橡皮筋形成的形状能够完全包住所有钉子,这个形状就是这堆钉子的凸包。
凸包算法有好几种,比如 Graham 扫描法、Jarvis 步进法等等。
咱就拿 Graham 扫描法来说说它涉及的公式。
Graham 扫描法里,首先要找到一个基准点。
通常找纵坐标最小的点,如果有多个这样的点,就选横坐标最小的那个。
找到这个点后,其他点就按照和这个基准点的极角大小进行排序。
这里就涉及到计算极角的公式啦。
对于两个点 A(x1, y1)和 B(x2, y2),极角θ 可以通过反正切函数来计算,公式是:θ = atan2(y2 - y1, x2 - x1)。
计算出极角后,就可以开始扫描了。
从基准点开始,依次检查相邻的三个点,如果这三个点构成的转向是逆时针的,那就保留中间那个点;如果是顺时针的,就把中间那个点去掉。
这里判断转向的公式就比较关键了。
对于三个点 A(x1, y1)、B(x2,y2)和 C(x3, y3),可以通过计算向量叉积来判断转向。
如果叉积大于 0 ,就是逆时针;小于 0 ,就是顺时针。
向量叉积的公式是:(x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1) 。
我记得之前有一次参加数学建模比赛,题目就和凸包算法有关。
当时我们小组几个人,一开始对这些公式和算法都不太熟悉,急得像热锅上的蚂蚁。
大家一起熬夜查资料、讨论,一遍遍地推导公式,尝试不同的方法。
特别是在计算极角和判断转向的时候,总是出错。
但经过不断地尝试和纠错,我们终于搞清楚了这些公式的应用,成功解决了问题,还拿到了不错的名次。
总之,凸包算法公式虽然看起来有点复杂,但只要掌握了其中的原理和规律,多做练习,就能熟练运用啦。
不管是在数学研究中,还是在实际的计算机图形学、地理信息系统等领域,凸包算法都有着广泛的应用。
葛立恒扫描法葛立恒扫描法(Graham Scan),又称凸包算法,是解决计算几何问题中的经典算法之一。
它的主要作用是计算多边形或点集的凸包,并返回凸包上的点集。
葛立恒扫描法的时间复杂度为O(nlogn),其中n是输入点集的大小。
凸包是一个简单多边形,可以包含给定点集中的所有点。
它的边界是由点集中的一些点组成的,这些点被称为凸包上的顶点。
凸包在计算几何、图形学以及计算机视觉等领域都有广泛的应用。
葛立恒扫描法的运行过程如下:1. 找到y值最小的点,并将它放在结果集中。
2. 将其余所有点按照与y值最小点的极角进行排序。
3. 对于每个点P,计算它与前两个点的极角。
如果它的角度不在逆时针方向,则将倒数第二个点从结果集中删除,然后重复此过程直到极角正确。
4. 返回结果集。
让我们来详细了解葛立恒扫描法的每个步骤。
找到y值最小的点要找到y值最小的点,我们可以遍历所有点,并找到纵坐标最小的那个。
在这里,我们使用了lambda函数来比较每个点的y值。
```python def find_lowest_point(points): lowest = min(points, key=lambda point: point[1]) return lowest ```排序接下来,我们需要将其余所有点按照与y值最小点的极角进行排序。
为此,我们需要定义一个函数来计算两点之间的极角。
在这里,我们使用了arctan2函数来计算极角。
```python def polar_angle(p1, p2=None): if p2 is None: p2 = lowest_point y_span =p1[1] - p2[1] x_span = p1[0] - p2[0] return atan2(y_span, x_span) ```然后,我们可以使用此函数来排序输入点集。
在这里,我们使用了sorted函数来排序。
```python def sort_points(points):sorted_points = sorted( points,key=cmp_to_key(lambda x,y: 1 if polar_angle(x) < polar_angle(y) else -1) ) returnsorted_points ```计算极角接下来,我们需要为每个点计算它与前两个点的极角。
凸包和凹包定义凸包和凹包是计算几何中常见的概念,它们分别指的是一个点集的最小凸多边形和最小凹多边形。
在实际应用中,凸包和凹包有着广泛的应用,比如在图像处理、计算机视觉、机器学习等领域中都有着重要的作用。
一、凸包凸包是指一个点集的最小凸多边形,也就是包含所有点的最小凸多边形。
凸包的求解方法有很多种,其中最常见的是Graham扫描法和Jarvis步进法。
Graham扫描法是一种基于极角排序的算法,它的基本思想是先找到点集中的最下面的点,然后按照极角从小到大的顺序对其余点进行排序,最后依次加入凸包中。
在加入新点的过程中,需要判断当前点是否在凸包内,如果不在则需要将凸包中的点弹出,直到当前点能够加入凸包为止。
Jarvis步进法是一种基于向量叉积的算法,它的基本思想是从点集中找到最左边的点作为凸包的起点,然后依次找到与当前点构成的向量中极角最小的点,直到回到起点为止。
在找到下一个点的过程中,需要判断当前点是否在凸包内,如果不在则需要继续寻找下一个点。
二、凹包凹包是指一个点集的最小凹多边形,也就是包含所有点的最小凹多边形。
凹包的求解方法相对于凸包来说要复杂一些,其中最常见的是分治法和动态规划法。
分治法是一种将问题分解成若干个子问题来解决的方法,它的基本思想是将点集分成左右两部分,分别求出左右两部分的凹包,然后将两个凹包合并成一个凹包。
在合并的过程中,需要找到左右两个凹包的上下凸壳,然后将它们连接起来形成一个新的凹包。
动态规划法是一种将问题分解成若干个子问题来解决的方法,它的基本思想是将点集按照极角排序,然后依次求出每个点作为凹包顶点时的最小凹包。
在求解过程中,需要用到一个二维数组来记录每个点作为凹包顶点时的最小凹包,然后根据递推公式依次求解出所有点的最小凹包。
三、应用凸包和凹包在实际应用中有着广泛的应用,比如在图像处理中,可以用凸包来进行图像的边缘检测和形状分析,可以用凹包来进行图像的形状重建和形态分析。
在计算机视觉中,可以用凸包来进行目标检测和跟踪,可以用凹包来进行目标形状的描述和匹配。
convex hull
凸包(convex hull)是一种广泛应用的几何运算,它将一组二维点进行包围,形成一个凸多边形。
凸包是一种压缩技术,它将传感器或其他设备的采样点组合到一个允许检测和分析的空间内。
它涵盖了所有可见包括内部点的最大空间。
凸包也被用于表示一群动物各自所成形状或一组多边形集合中最高点之间的距离。
凸包计算通常使用 Convex Hull Algorithm,这是一种考虑所有点的有效计算凸包的算法。
它首先考虑所有点的范围,然后从该框架中求出最大边缘。
它有效地建立了点的位置,以确定一组点的几何结构,并建立最外层边缘的凸多边形。
凸包也可以用于几何图形模型,用于形成所有离散点的关联。
它涵盖了一组离散点,为多边形提供多边形形状,让它们更容易处理。
凸包也可以被应用于军事战略规划,以用于精确地处理前沿拥有者的特定情况。
从经典的几何和数学应用看,凸包是一种有用的算法,它可以通过简单的计算就可以得出准确的结果。
凸包的实现也能帮助我们更好地理解计算机科学中的数据分析,比如轮廓检测,数据压缩和几何图形处理。
它还能源自让我们更好地理解几何变换和图形变换,以及这些变换如何影响数据集。
【算法】凸包问题--分治法凸包问题--分治法求能够完全包含平⾯上n个给定点的凸多边形。
⽰例:⼀、分治法:(⼀)算法思路:(这⾥所说的直线都是有向直线的。
)将数组升序排序,若x轴坐标相同,按照y轴坐标升序排序。
最左边的点p1和最右边的点p_n⼀定是该集合凸包的顶点。
该直线将点分为两个集合,上包为S1,下包为S2。
在p1 p_n线上的点不可能是凸包的顶点,所以不⽤考虑。
在上包S1中,找到p_max(距离直线p1p_n最远距离的点),若有两个距离同样远的点,取∠p_max p1 p_n最⼤的那个点(即△p_max p1 p_n⾯积最⼤)。
(⼀次递归到这⾥结束)找出S1中所有在直线p1 p_max左边的点,这些点中⼀定有构成上包中左半部分边界的顶点,⽤上⾯的算法递归查找点,直到上包就是以p1和p_n 为端点的线段。
下包S2中找下边界同理。
*如何判断点是否在直线p1 p_max左边(同 p1 p_n上⽅)?如果q1(x1,y1),q2(x2,y2),q3(x3,y3)是平⾯上的任意三个点,那么三⾓形△q1 q2 q3的⾯积等于下⾯这个⾏列式绝对值的⼆分之⼀。
当且仅当点q3=(x3,y3)位于直线q1 q2的左侧时,该表达式的符号为正,该点位于两个点确定的直线的左侧。
(⼆)实现中碰到的问题如何⽤快速排序来排序Point类(内有坐标x,y)的⼀维数组?按照x坐标排序很简单,若碰到x相同,y不同的怎么办?在快排的原基础上修改,以j向前逼近说明:(第⼀个while循环)当前⽐较数的横坐标>基准点的时,j向前逼近。
此处不加等于号,排序是不稳定的,即相等元素的相对位置可能发⽣改变。
(快排详见博客:(第⼆个while为添加内容)⽐较相等元素的纵坐标,基准点的更⼩,j继续向前逼近,即相等元素的相对位置不发⽣改变;否则,则改变。
也就是将原来快排中while循环拆分为两个,增加相等元素另外⽐较纵坐标的情况。
while (i < j && points[j].getX() > center.getX()) {j--;}while (i < j && center.getX() == points[j].getX() && points[j].getY() > center.getY()) {j--;}/** (i<j)若points[j].getX()< center.getX()或 center.getX() ==* points[j].getX()且points[j].getY()<center.getY() 以上两种情况,需要赋值*/if (i < j)// 跳出循环也有可能时因为i=j,所以这⾥要判断⼀下points[i++] = points[j];如果使⽤全局数组visit标识点是否访问,能确定凸包的所有顶点,但怎么顺序输出?在已经求的凸包顶点⾥逐⼀确定边界,判断是不是所有点都在这条边界的⼀侧,如果是则确定⼀条边界。
凸包问题是一个经典的几何问题,常见的求解凸包问题的算法有:
增量法:也称为Graham扫描法,其基本思想是从所有点中选择几个点,然后通过这些点将所有其他点组合成凸集。
该方法需要对所有点进行排序,然后按顺序添加点到凸包中。
分治法:该方法将凸包问题分解为更小的子问题,然后递归地解决这些子问题。
子问题的解可以合并以产生原始问题的解。
这种方法需要一些技巧来确保子问题的解可以正确地合并。
穷举法:也称为暴力求解法,通过枚举所有可能的情况来找到凸包。
这种方法对于小规模的问题可能是可行的,但对于大规模的问题效率低下。
旋转卡壳算法:该方法基于动态规划的思想,通过不断旋转坐标轴来找到凸包上的点。
该算法在实现上相对复杂,但具有较好的时间复杂度。
随机采样算法:该方法通过随机采样点来找到凸包。
该算法的优点是具有较低的时间复杂度,但结果的准确性取决于采样点的数量。
这些算法各有优缺点,在实际应用中需要根据具体情况选择适合的算法。
点云凸包算法点云凸包算法是一种用于检测三维空间中物体形状的计算机视觉算法。
它的出现主要是为了解决三维空间物体的形状检测的问题,它的主要思想是根据点云数据(链接至三维空间中的点)来构建凸包。
计算机图形学等学科中,点云凸包算法被用来构建凸包以表示物体的表面或图形。
过凸包可以检测物体的一些特征信息,如表面积、曲率等,从而检测物体的形状。
同时,点云凸包算法也可以用来检测物体的几何属性,如质心、质心距离等。
点云凸包算法是一种基于多角化的算法,其主要思想是把三维空间中的点连接起来,并生成多面体来表示物体的表面。
后,将一个约束称为凸包密封,用以指定物体的表面。
这样,所有面都可以被包裹在一起,这就是点云凸包算法。
从技术上讲,点云凸包算法主要基于Delaunay三角剖分,它是通过将空间中的点形成三角形来表示物体表面的一种基本方法,它借助多边形的概念,将三角形合并成多边形,从而构建凸包。
后,算法会寻找凸包上的点,以确定凸包的位置。
点云凸包算法的应用也非常广泛,它主要用于辅助机器人的导航、机器视觉的特征提取,以及建模和三维重构中的三维形状检测等。
在工业等领域,点云凸包算法可以以自动化实现物件的凹凸检测,用以准确分析物体的凹凸特征,从而改进加工效率,减少材料浪费。
此外,点云凸包算法还可以用来研究交通安全的空间特征,可以用于车辆驾驶员行为表现的分析,也可以用来检测桥梁的施工过程中的精准信息。
点云凸包算法也可以用来提取由点云数据表示的地形特征,可以帮助工程师准确定位地形,进而更好地进行室外建筑设计。
综上所述,点云凸包算法是一种很实用的计算机视觉技术,它主要用于检测三维空间中物体形状的特征,具有良好的准确性和可靠性,在自动化、机器视觉、工业、交通安全等领域都有着广泛的应用。
凸包算法详解凸包算法是解决最小生成树问题的一种有效算法,它可以在不生成环的情况下找到树的最好构造。
在计算机科学中,最小生成树问题是广义图论中的一个经典问题,它涉及到如何在给定一个有向图中找到一个最小生成树。
生成树是指保留图中所有节点,但只保留足以生成该节点的所有边的集合。
凸包算法详解主要从两个方面进行阐述:算法原理和实现过程。
一、算法原理凸包算法的基本思想是首先找到一个凸多面体,将该多面体内部的所有点都看作是图中的节点,然后将这些节点按照某种次序连接起来,生成树的每个节点都连接到至少一个凸多面体内部。
具体实现过程中,凸包算法会根据给定的有向图,找到一个凸多面体,将图中的每个节点都映射到该多面体内部的一个点,然后将这些点连接起来,生成树的每个节点都连接到至少一个凸多面体内部。
凸包算法的时间复杂度为$O(n+m)$,其中$n$是图的节点数,$m$是图的边数。
这个时间复杂度可以通过递归的方式计算,也可以使用静态数据结构来存储。
二、实现过程1.选择一个凸多面体在凸包算法中,我们需要找到一个凸多面体,使得该多面体内部的所有点都适合作为图中的节点。
具体实现过程中,可以使用任意一种搜索算法,如深度优先搜索(DFS)或广度优先搜索(BFS)来枚举所有的凸多面体。
在搜索的过程中,我们需要记录每个凸多面体的边数,以及该多面体内部的所有节点。
2.将节点连接起来在凸包算法中,我们需要将图中的节点连接起来,以生成树的每个节点都连接到至少一个凸多面体内部。
具体实现过程中,可以按照以下步骤将节点连接起来:(1)对于图中的每个节点,找到它所属的凸多面体,并将该节点连接到该凸多面体内部。
(2)对于图中的每个节点,找到它所属的凸多面体内部的一个点,并将该点与该节点连接起来。
(3)对于图中的每个节点,找到它所属的凸多面体内部的一个点,并将该点与该节点连接起来。
3.递归搜索凸多面体在凸包算法中,我们需要递归地搜索所有的凸多面体,以找到符合要求的凸多面体。