算法设计与分析-分治法详解
- 格式:ppt
- 大小:488.50 KB
- 文档页数:10
算法设计与分析复习题目及答案详解分治法1、二分搜索算法是利用(分治策略)实现的算法。
9.实现循环赛日程表利用的算法是(分治策略)27、Straen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是(分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除(栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
前言 (1)正文 (1)2.1设计的目的和意义 (1)2.1.1设计的目的 (1)2.1.2设计的意义 (1)2.2设计的目标与总体方案 (1)2.1.1设计的目标 (1)2.1.2设计的总体方案 (2)2.3设计的方法和内容 (2)2.3.1硬件环境要求 (2)2.3.2软件环境需求 (2)2.3.3设计的流程图 (2)2.3.4设计的方法及详细内容 (2)2.3.4.1让用户输入信息 (2)2.3.4.2数据整理 (3)2.3.4.3查找数据并输出结果 (4)2.3.4.4询问用户是否继续 (5)2.4设计的创新与关键技术 (6)2.4.1设计的特点 (6)2.4.2设计的难点 (7)2.4.3软硬件调试及结果分析 (7)2.5结论 (7)致谢 (7)参考文献: (8)附录: (9)算法研究是计算机科学的核心。
近年来,算法领域去得了很多重要的进展。
这些进展包括快速算法的开发,如发明了傅里叶变换开速算法,以及不存在有效算法的本质问题的惊人发现。
这些结果点燃了计算机学者对算法研究的兴趣。
算法设计与分析已成为一个受到广泛注意的领域。
计算机的普及极大地改变了人们的生活。
目前,各行业、各领域都广泛采用了计算机的信息技术,并由此产生出开发各种应用软件的需求。
为了最少的成本、最快的速度、最好的质量开发出适合各种应用需求的软件,必须遵循软件工程的原则。
设计一个高效的程序不仅需要编程小技巧,更需要合理的数据组织和清晰高效的算法,这正是计算机科学领域数据结构与算法设计所研究的主要内容。
一些著名的计算机科学家在有关计算机科学教育的论述中认为,计算机科学是一中创造性思维活动,其教育必须面向设计。
计算机算法设计与分析正是一门面向设计,且处于计算机学科核心地位的教育课程。
通过对计算机算法系统的学习与研究,掌握算法设计的主要法方法,培养对算法的计算复杂性正确分析的能力,为独立设计算法和对算法进行复杂性分析奠定坚实的理论基础。
算法分析(第二章):递归与分治法一、递归的概念知识再现:等比数列求和公式:1、定义:直接或间接地调用自身的算法称为递归算法。
用函数自身给出定义的函数称为递归函数。
2、与分治法的关系:由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
分治与递归经常同时应用在算法设计之中,并由此产生许多高效算法。
3、递推方程:(1)定义:设序列01,....na a a简记为{na},把n a与某些个()ia i n<联系起来的等式叫做关于该序列的递推方程。
(2)求解:给定关于序列{n a}的递推方程和若干初值,计算n a。
4、应用:阶乘函数、Fibonacci数列、Hanoi塔问题、插入排序5、优缺点:优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。
缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。
二、递归算法改进:1、迭代法:(1)不断用递推方程的右部替代左部(2)每一次替换,随着n的降低在和式中多出一项(3)直到出现初值以后停止迭代(4)将初值代入并对和式求和(5)可用数学归纳法验证解的正确性2、举例:-----------Hanoi塔算法----------- ---------------插入排序算法----------- ()2(1)1(1)1T n T nT=−+=()(1)1W n W n nW=−+−(1)=021n-23()2(1)12[2(2)1]12(2)21...2++2 (121)n n n T n T n T n T n T −−=−+=−++=−++==++=−(1)2 ()(1)1((n-2)+11)1(2)(2)(1)...(1)12...(2)(1)(1)/2W n W n n W n n W n n n W n n n n =−+−=−−+−=−+−+−==++++−+−=−3、换元迭代:(1)将对n 的递推式换成对其他变元k 的递推式 (2)对k 进行迭代(3)将解(关于k 的函数)转换成关于n 的函数4、举例:---------------二分归并排序---------------()2(/2)1W n W n n W =+−(1)=0(1)换元:假设2kn =,递推方程如下()2(/2)1W n W n n W =+−(1)=0 → 1(2)2(2)21k k k W W W−=+−(0)=0(2)迭代求解:12122222321332133212()2(2)212(2(2)21)212(2)22212(2)2*2212(2(2)21)2212(2)222212(2)3*2221...2(0)*2(22...21)22k k k k k k k k k k k k k k k k k k k k k k k k W n W W W W W W W W k k −−−−−−−+−+−−−=+−=+−+−=+−+−=+−−=+−+−−=+−+−−=+−−−==+−++++=−1log 1n n n +=−+(3)解的正确性—归纳验证: 证明递推方程的解是()(1)/2W n n n =−()(1)1W n W n n W =−+−(1)=0,(n 1)=n +n=n(n-1)/2+n =n[(n-1)/2+1]=n(n+1)/2n W W +方法:数学归纳法证 n=1,W(1)=1*(1-1)/2=0假设对于解满足方程,则()---------------快速排序--------------------->>>平均工作量:假设首元素排好序在每个位置是等概率的112()()()(1)0n i T n T i O n n T −==+=∑ >>>对于高阶方程应该先化简,然后迭代(1)差消化简:利用两个方程相减,将右边的项尽可能消去,以达到降阶的目的。
分治法的步骤分治法是一种常见的算法设计策略,它将问题分解成更小的子问题,然后递归地解决每个子问题,最后将这些子问题的解合并起来得到原问题的解。
下面将详细介绍分治法的步骤。
一、分治法的定义和基本思想分治法是一种算法设计策略,它将一个大问题分解成若干个相互独立且结构相同的小问题,递归地求解这些小问题,并将它们的结果组合起来得到原问题的解。
在实际应用中,分治法通常用于处理那些具有重复性质或者可以通过递归实现的计算任务。
二、分治法的步骤1. 分解:首先将原问题划分为若干个规模较小、结构相似且独立的子问题。
这个过程通常称为“分解”(divide)。
2. 解决:对每个子问题进行递归求解。
如果子问题足够小而可以直接求解,则直接求解。
这个过程通常称为“解决”(conquer)。
3. 合并:将所有子问题的结果合并成原问题的结果。
这个过程通常称为“合并”(combine)。
三、应用场景1. 排序算法:例如归并排序、快速排序等。
2. 查找算法:例如二分查找。
3. 图论算法:例如最大子数组、矩阵乘法、汉诺塔等。
四、分治法的优缺点1. 优点:分治法可以有效地解决一些具有重复性质或者可以通过递归实现的计算任务,具有较高的效率和可扩展性。
2. 缺点:分治法需要额外的空间来存储子问题的结果,而且在递归过程中可能会出现栈溢出等问题,需要进行合理的优化。
同时,如果分解得不够合理或者子问题之间存在依赖关系,则可能会导致算法效率下降。
五、总结分治法是一种常见的算法设计策略,它将一个大问题划分为若干个规模较小、结构相似且独立的子问题,并递归地求解这些子问题。
在实际应用中,分治法通常用于处理那些具有重复性质或者可以通过递归实现的计算任务。
虽然分治法具有较高的效率和可扩展性,但也存在额外空间开销和栈溢出等问题,需要进行合理优化。
第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。
2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。
3、算法的时间复杂度的上界,下界,同阶,低阶的表示。
4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。
5、常用的几种数据结构:线性表、树、图。
第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。
递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。
递归元的递减方式~有两种:1、减法,即n -b,的形式。
2、除法,即n / b,的形式。
2、D(n)为常数c:这时,T(n) = 0(n P)。
D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。
对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。
c++分治算法详解摘要:1.分治算法概述2.C++分治算法实现a.快速排序b.归并排序c.赫夫曼编码3.分治算法的优势和应用4.C++分治算法案例分析a.快速排序案例b.归并排序案例c.赫夫曼编码案例5.总结正文:C++分治算法详解分治算法是一种将大问题分解为若干个相同或相似的小问题,然后逐个解决小问题,最后将小问题的解合并得到大问题的解的算法。
这种算法的设计思想是将一个难以直接解决的问题,分割成一些规模较小的相同问题,以便各个击破。
分治算法广泛应用于计算机科学、数学、物理学等领域,其中快速排序、归并排序、赫夫曼编码等是常见的分治算法。
C++分治算法实现1.快速排序快速排序是一种常用的分治算法,它采用分治策略将待排序的数组划分为较小和较大的两个子数组,然后递归地对子数组进行排序,最终合并得到有序数组。
快速排序的平均时间复杂度为O(nlogn),它有效地提高了排序速度。
2.归并排序归并排序也是一种分治算法,它将待排序的数组划分为较小和较大的两个子数组,然后递归地对子数组进行排序,最后将有序的子数组合并得到有序数组。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
3.赫夫曼编码赫夫曼编码是一种基于分治思想的压缩算法,它将原始数据分为若干个子数据,然后对子数据进行编码,最后将编码后的子数据合并得到压缩后的数据。
赫夫曼编码能够实现最优压缩,即压缩后的数据长度最短。
分治算法的优势和应用分治算法具有以下优势:1.将大问题分解为小问题,降低问题的复杂度,便于解决。
2.递归地解决小问题,可以减少代码的编写。
3.分治算法可以有效地提高排序速度。
分治算法广泛应用于排序、查找、压缩等领域。
例如,快速排序和归并排序用于对数组进行排序,赫夫曼编码用于数据压缩。
C++分治算法案例分析1.快速排序案例假设有一个长度为10 的数组{5, 2, 9, 1, 5, 6},采用快速排序进行排序。
首先,将数组划分为较小和较大的两个子数组,即{1, 2, 5, 5}和{9, 6}。