九年级上册数学23.2.1 中心对称
- 格式:ppt
- 大小:702.00 KB
- 文档页数:12
人教版九年级数学上册23.2.2.1《中心对称》教案一. 教材分析人教版九年级数学上册第23章《中心对称》是学生在学习了平面几何相关知识的基础上,进一步引导学生探索中心对称的性质和运用。
本节内容通过具体的实例,让学生了解中心对称的定义,掌握中心对称图形的性质,并能够运用中心对称解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生动手操作和观察分析的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习和操作来巩固。
此外,学生对实际问题的解决能力有待提高,需要通过具体的例子来引导和培养。
三. 教学目标1.了解中心对称的定义,掌握中心对称图形的性质。
2.能够运用中心对称解决实际问题,提高学生的应用能力。
3.培养学生的动手操作和观察分析能力,激发学生学习几何的兴趣。
四. 教学重难点1.中心对称的定义和性质。
2.中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过具体的实例和问题,引导学生探索中心对称的性质,培养学生的动手操作和观察分析能力。
同时,学生进行小组合作学习,鼓励学生发表自己的观点和思考,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图片和实例,用于引导学生探索中心对称的性质。
2.准备一些实际问题,用于巩固学生对中心对称的应用。
3.准备黑板和粉笔,用于板书重要的概念和性质。
七. 教学过程1.导入(5分钟)通过展示一些图片,如天安门、蝴蝶等,引导学生观察这些图片的共同特点,引发学生对中心对称的思考。
让学生发表自己的观点,教师总结并引入中心对称的概念。
2.呈现(10分钟)教师通过展示一些实例,如将一张纸折叠后,对折线两侧的图形完全重合,引导学生探索中心对称的性质。
教师引导学生动手操作,观察分析中心对称图形的性质,如对称轴的性质、对称点的性质等。
人教版数学九年级上册23.2.1《中心对称》教案一. 教材分析人教版数学九年级上册第23章《中心对称》是学生在学习了平面几何基本概念和性质的基础上进行的一节内容。
本节内容主要让学生了解中心对称的定义,掌握中心对称的性质和运用,能运用中心对称解决一些简单的几何问题。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的认识。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习来巩固。
三. 教学目标1.知识与技能:让学生理解中心对称的概念,掌握中心对称的性质,能运用中心对称解决一些简单的几何问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生团结协作、积极探究的精神。
四. 教学重难点1.重点:中心对称的概念和性质。
2.难点:中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生主动探究,合作交流,培养学生的几何思维能力。
六. 教学准备1.教具准备:多媒体课件、几何画板、黑板、粉笔。
2.学具准备:学生自带直尺、圆规、三角板。
七. 教学过程1. 导入(5分钟)利用多媒体课件展示一些生活中的中心对称图形,如天安门、蝴蝶、脸谱等,引导学生观察并思考:这些图形有什么共同特点?你想到了什么几何概念?2. 呈现(10分钟)教师通过讲解和示范,给出中心对称的定义,并用几何画板展示中心对称的性质。
同时,让学生尝试解释中心对称的概念,并找出生活中的中心对称现象。
3. 操练(15分钟)学生分组进行练习,运用中心对称的性质解决一些简单的几何问题。
教师巡回指导,及时纠正错误,帮助学生巩固知识。
4. 巩固(10分钟)教师选取一些典型的练习题,让学生在课堂上独立完成,检验学生对中心对称知识的掌握程度。
同时,教师对学生的解答进行点评,指出不足之处,巩固所学知识。
5. 拓展(10分钟)教师提出一些拓展问题,如中心对称与轴对称的关系,让学生进行思考和讨论。
人教版九年级数学上册23.2.1《中心对称》说课稿一. 教材分析人教版九年级数学上册第23.2.1节《中心对称》是整个初中数学知识体系中的一部分,主要介绍中心对称图形的概念及其性质。
这一节内容在教材中的位置是在学生已经掌握了平面几何的基本知识的基础上进行教学的,为学生后面学习对称变换、坐标与图形的变换等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的变换、对称性等概念有一定的了解。
但学生在学习这一节内容时,可能会对中心对称图形的概念和性质的理解存在一定的困难,因此,在教学过程中,需要教师耐心引导,通过大量的实例让学生深入理解中心对称图形的概念和性质。
三. 说教学目标1.知识与技能目标:让学生掌握中心对称图形的概念,理解中心对称图形的性质,能运用中心对称的知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和创新能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生良好的数学素养,使学生感受到数学的美。
四. 说教学重难点1.教学重点:中心对称图形的概念及其性质。
2.教学难点:中心对称图形的性质的证明和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的几何直观能力和逻辑思维能力。
2.教学手段:利用多媒体课件、几何画板等软件,展示中心对称图形的性质和变换过程,增强学生对知识的理解和记忆。
六. 说教学过程1.导入新课:通过展示一些生活中的对称现象,引导学生关注对称性,激发学生学习兴趣。
2.探究中心对称图形的概念:让学生通过观察、操作,发现中心对称图形的特征,从而引出中心对称图形的定义。
3.理解中心对称图形的性质:引导学生通过小组合作学习,探索中心对称图形的性质,教师进行讲解和总结。
4.应用中心对称图形的性质:让学生通过解决一些实际问题,运用中心对称图形的性质,巩固所学知识。
23.2中心对称23.2.1 中心对称——中心对称的概念和性质一、新课导入1.导入课题:问题1:把图①中一个图案绕点O旋转180°,你有什么发现?问题2:如图②,线段AC、BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°,你又有什么发现?图①图②由此导入课题:中心对称.(板书课题)2.学习目标:(1)通过具体实例认识中心对称,弄清楚中心对称及其有关概念的含义.(2)探究并归纳出中心对称的性质.(3)会作与一个图形关于某个点成中心对称的另一个图形.3.学习重、难点:重点:中心对称的概念和性质.难点:中心对称性质的证明.二、分层学习1.自学指导:(1)自学内容:教材第64页最后一段话之前的内容.(2)自学时间:5分钟.(3)自学方法:通过操作,从具体的情景中感受,理解、归纳中心对称及相关概念.(4)自学参考提纲:①把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心(简称中心).这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点.②中心对称是指几个图形之间的位置关系?一个图形绕一点旋转能与另一个图形重合就是中心对称吗?两个.不一定,必须是绕一点旋转180°能与另一个图形重合才是中心对称.③在下列四组图形中右边数字与左边数字成中心对称的有(1)(2)(3)(4) .(1)(2)(3)(4)2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:通过自学参考提纲的第②③题,了解学生是否能抓准中心对称的本质特征.②差异指导:依据学情予以点拨、指导.(2)生助生:小组内相互交流、研讨.4.强化:两个图形成中心对称须具备三个条件:①能找到一个对称中心;②旋转角为180°;③这两个图形旋转后能重合.1.自学指导:(1)自学内容:教材第64页最后一段话到第65页例题之前的内容.(2)自学时间:5分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①按下列步骤动手画图:第一步:用三角尺画出△ABC;第二步:以三角尺的一个顶点O为中心,把三角尺旋转180°,再画出△A′B′C′;第三步:移开三角尺,并用虚线连接对应点AA′,BB′,CC′.②思考下列问题:a.△ABC与△A′B′C′关于点O对称吗?对称.b.△ABC与△A′B′C′全等吗?为什么?全等.由图形旋转的性质可知△ABC≌△A′B′C′.c.线段AA′、BB′、CC′有何关系?相交于点O.d.点O在线段AA′、BB′、CC′的什么位置?点O在线段AA′、BB′、CC′的中点处.2.自学:学生可参考自学指导进行动手操作,交流、研讨.3.助学:(1)师助生:①明了学情:观察学生能否在探究提纲的指引下,顺利完成相应内容的学习.②差异指导:在充分了解学情的基础上,有针对性地予以指导.(2)生助生:小组内相互交流、协作,共同探讨、归纳结论.4.强化:交流学习成果,归纳中心对称的性质.1.自学指导:(1)自学内容:教材第65页至第66页的例1.(2)自学时间:5分钟.(3)自学方法:阅读教材并弄清画点A关于点O的对称点的画法,并在下图中动手画一画.(4)自学参考提纲:①如图,怎样画点A关于点O的对称点?连接AO,在AO的延长线上截取OA′=OA,即可求得点A关于点O的对称点A′.图①图②②如图②,怎样画△ABC关于点O对称的△A′B′C′?作出A,B,C三点关于点O的对称点A′,B′,C′,依次连接A′B′,B′C′,C′A′,就可得到与△ABC关于点O对称的△A′B′C′.2.自学:学生可参考自学指导进行动手操作,交流、研讨.3.助学:(1)师助生:①明了学情:观察学生能否正确画图.②差异指导:在充分了解学情的基础上,有针对性地予以指导.(2)生助生:小组内相互交流、协作,共同探讨、归纳结论.4.强化:(1)画一个点关于另一个已知点的对称点的操作要点.(2)作一个图形关于一个已知点的对称图形的操作要点.(3)练习:①分别画出图1中各图形关于点O对称的图形.图1 图2②图2中的两个四边形关于某点对称,找出它们的对称中心.解:如图所示,点O即为它们的对称中心.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?有何成功的经验或自我感觉不足的地方?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、小组交流协作情况、学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课设计通过问题导入,遵循从感性到理性的渐进认识规律、发展学生直观想象能力,分析、归纳、抽象概括的思维能力.学生在探究新知的过程中,教师给予学生更多的互动时间,联系生活中的例子,让学生对知识易于理解,易于接受.教学过程中要强调中心对称的性质和利用中心对称的性质作图的方法.从课堂发言和练习来看,学生积极动手动脑,教师适当引导,学生成为课堂的主人.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分) 下列结论中,错误的是( A )A .形状大小完全相同的两个图形一定关于某点成中心对称B .成中心对称的两个图形,对称中心到两对称点的距离相等C .成中心对称的两图形,对称中心在两对称点的连线上D .成中心对称的两图形,对应线段平行(或在同一直线上)且相等2.(10分) 如图,△ABC 与△A 1B 1C 1关于点O 成中心对称,下列说法:①∠BAC=∠B 1A 1C 1;②AC=A 1C 1; ③OA=OA 1;④△ABC 与△A 1B 1C 1的面积相等.其中正确的有(D )A.1个 B .2个 C .3个 D .4个第2题图 第3题图 第4题图3.(10分) 如图,△ABC 和△AB′C′成中心对称,A 为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长为(D)A.4B. 3C. 3D. 34.(10分) 如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说法中错误的是(D )A .AD ∥EF ,AB ∥GFB .BO=GOC .CD=HE ,BC=GHD .DO=HO5.(10分) 如图,两个卡通图案是关于某点成中心对称的两个图案,试在图中确定其对称中心.解:如图:点O 即为所求的对称中心.6.(20分)分别画出下面图形关于点O 对称的图形.解:如图:二、综合应用(20分)7.(20分)如图,△DEC是由△ABC经过如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称;③将△ABC向下、向左各平移1个单位,再以AC的中点为中心作中心对称,其中正确的变换有(A)A.①②B.①③C.②③D.①②③三、拓展延伸(10分)8.(10分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系?说明理由;(2)若△ABC的面积为3cm2,求四边形ABFE的面积.解:(1)AE与BF关于点C中心对称.理由:因为△FEC是由△ABC绕点C顺时针旋转180°得到的,所以△FEC于△ABC关于点C成中心对称,根据中心对称的性质可知点A、F,点B、E分别关于点C成中心对称,所以它们的连线AE与BF关于点C中心对称.(2)S四边形ABFE=4S△ABC=12 cm2.。