5第五章 点的运动学描述和刚体的简单运动
- 格式:ppt
- 大小:3.42 MB
- 文档页数:2
大学物理刚体部分知识点总结大学物理刚体部分知识点总结一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。
2.刚体平行移动。
刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。
刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。
刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。
3.刚体绕定轴转动。
刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。
刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。
角速度ω表示刚体转动快慢程度和转向,是代数量,。
,当α与ω。
角速度也可以用矢量表示,角加速度表示角速度对时间的变化率,是代数量,同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。
角加速度也可以用矢量表示,。
绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。
速度、加速度的代数值为。
传动比。
二.转动定律转动惯量转动定律力矩相同,若转动惯量不同,产生的角加速度不同与牛顿定律比较:转动惯量刚体绕给定轴的转动惯量J等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。
定义式质量不连续分布质量连续分布物理意义转动惯量是描述刚体在转动中的惯性大小的物理量。
它与刚体的形状、质量分布以及转轴的位置有关。
计算转动惯量的三个要素:(1)总质量;(2)质量分布;(3)转轴的位置(1)J与刚体的总质量有关几种典型的匀质刚体的转动惯量刚体细棒(质量为m,长为l)细棒(质量为m,长为l)转轴位置过中心与棒垂直过一点与棒垂直转动惯量Jml212ml23细环(质量为m,半径为R)过中心对称轴与环面垂直细环(质量为m,半径为R)圆盘(质量为m,半径为R)圆盘(质量为m,半径为R)球体(质量为m,半径为R)薄球壳(质量为m,半径为R)平行轴定理和转动惯量的可加性1)平行轴定理直径过中心与盘面垂直直径过球心过球心mR2mR22mR22mR242mR252mR23设刚体相对于通过质心轴线的转动惯量为Ic,相对于与之平行的另一轴的转动惯量为I,则可以证明I与Ic之间有下列关系IIcmd22)转动惯量的可加性对同一转轴而言,物体各部分转动惯量之和等于整个物体的转动惯量。
第40卷第5期大 学 物 理Vol.40No.52021年5月COLLEGE PHYSICSMay2021 收稿日期:2020-09-11;修回日期:2020-11-18作者简介:邵瀚雍(2000—),男,四川德阳人,北京师范大学物理学系2018级本科生.櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍殻殻殻殻大学生园地 刚体一般运动的描述邵瀚雍(北京师范大学物理学系,北京 100875)摘要:刚体的一般运动是刚体运动学中最复杂的一类运动,其求解通常需要借助欧拉定理或沙勒定理.通过这两个定理,我们可以把刚体的一般运动分解成较简单的定轴转动和平动.本文主要应用代数理论中的正交矩阵描述刚体的运动,并用代数语言分析了定点转动的本征问题,证明了欧拉定理.随后,将刚体的定点转动进行分解,并给出了物理图像和推导结论,完成了对刚体复杂的一般运动的简单描述. 关键词:刚体一般运动;正交矩阵;沙勒定理;欧拉角中图分类号:O31 文献标识码:A 文章编号:1000 0712(2021)05 0062 05【DOI】10.16854/j.cnki.1000 0712.200405一般运动是刚体运动学中最复杂的问题,因此国内的理论力学教材大多对此介绍较少.且由于刚体运动学教学难度大,课时少,故多数同学跳过了刚体一般运动的内容,但这恰是将刚体运动转化成代数知识的极佳机会,不得不说是一种遗憾.事实上,刚体的一般运动总能分解成基点的运动和绕过该点某轴线的定轴转动,国外教材对此用代数语言给出了证明,但也没有就代数理论和刚体运动的关联进行深入的探讨.本文从正交矩阵讲起,力图用清晰简明的语言,论证使用矩阵描述刚体运动的合理性和优越性,并借用代数思想,将刚体运动和线性代数的知识联系起来,希望能对理论力学的相关教学和学生的学习起到一定的补充和帮助作用.1 参考系实验室参考系,即观者所在的惯性参考系;本体参考系,即固连在刚体上,并与之共同运动的参考系,一般是非惯性系.固连在两种参考系上的坐标系各有利弊.在实验室坐标系中,基矢对时间的微商为零,便于建立动力学方程,但许多力学量在该系中较复杂并不断变动;在本体坐标系中,这些力学量虽然直观简单,恒定不变,但其坐标轴的基矢处在变动之中.在研究刚体定点转动的问题时,我们需要寻找这两种系之间的关联,恰当使用它们描述刚体的运动[1].2 刚体的一般运动刚体在空间不受约束自由运动时,其自由度s=6.一般选定广义坐标(xc,yc,zc,φ,θ,ψ)描述刚体的状态,其中xc、yc、zc为刚体质心在实验室系中的笛卡尔坐标,φ、θ、ψ为刚体的本体系和实验室系坐标变换对应的欧拉角.刚体一般运动有4类特殊情况:平动、定轴转动、平面平行运动、定点转动.虽然它们形式各异,但可以证明如下两点[2]:1)定点转动总可以等效于绕过该定点某一轴线的定轴转动.2)刚体一般运动总可以分解为某点的运动和绕过该点某轴线的旋转.换言之,总可以将复杂的一般运动,分解成过一点的定轴转动(或由多个定轴转动合成)与该点的运动.第1点所谈到的内容,正是刚体运动欧拉定理.该定理指出,对于基点固定的刚体,其运动可以分解为绕某个或多个转轴的转动.根据欧拉运动定理,我们可以将之推广,即第2点,沙勒定理.该定理指出,刚体的最广义位移等价于一个平移和一次旋转.它们是本文的重点,在证明前,需要先通过代数的语言,合理描述刚体的运动,以便于后续的证明.第5期邵瀚雍:刚体一般运动的描述63 3 正交矩阵在线性代数理论中,正交矩阵A被定义为行向量、列向量皆正交且值为1的方阵[3],即满足如下的性质(E为单位阵):ATA=AAT=E(1)矩阵乘法等价于一次线性变换,换句话说,在数学里这种特殊的变换(正交变换)可以保持空间中任意两点的欧式距离不变.这意味着若将某向量v乘上正交矩阵A,得到的新向量长度不变,且空间的原点不变.我们通常将这种变换称为欧拉变换[4].此外,由于正交矩阵满足:ATA=A-1A=E(2)正交变换一定存在逆变换,而且该逆变换很容易写出:A-1=AT.正交矩阵的这些特殊性质在描述刚体运动时展现出极大的优越性,因此,我们常用它描述刚体运动.4 刚体运动的代数表达[2]从物理上讲,根据沙勒定理,刚体的运动可以分为两种:定点转动和点的运动.也就是第2节中提到的6个广义坐标.而上一节中提到的正交变换———欧氏距离不变的线性变换,恰好可以准确反映刚体的定点转动.换言之,刚体的定点旋转过程可以由一次欧拉变换来描述.容易得知,这种变换对应的正交矩阵R应是一个含时矩阵,即R(t).仅仅描述旋转过程是不够的,还需要描述点的运动.易知,描述该运动只需在旋转后添上一个简单的平移矢量p即可.从数学上讲,刚体的运动,可以反过来看作是坐标轴的运动.因此,假设两组正交基分别为[e1,e2,e3]和[e′1,e′2,e′3].在这两组基下,某向量v在这两组基下的值分别为[a1,a2,a3]T和[a′1,a′2,a′3]T.因此有|v|=[e1 e2 e3]a1a2a3=[e′1 e′2 e′3]a′1a′2a′3(3)于是,得到a1a2a3=eT1e′1 eT1e′2 eT1e′3eT2e′1 eT2e′2 eT2e′3eT3e′1 eT3e′2 eT3e′3a′1a′2a′3(4)已知a=[a1,a2,a3]T,a′=[a′1,a′2,a′3]T且定义如下:eT1e′1 eT1e′2 eT1e′3eT2e′1 eT2e′2 eT2e′3eT3e′1 eT3e′2 eT3e′3R(5)则可以将上式写为a=Ra′(6)称R是旋转矩阵.可以看到,R矩阵是由两个标准正交基相乘而来,在线性代数中可以很容易证明,这样得到的矩阵R是正交矩阵,或者反过来说,任何正交矩阵都可以拆分为两个标准正交基的矩阵乘积.因此,旋转矩阵R恰好是正交矩阵,而正交矩阵对应的变换也恰好是两组基之间的旋转变换,也就是实验室系和本体系的欧拉变换;并且,任意实正交矩阵都能看作为一个旋转矩阵.值得一提的是,旋转矩阵的集合称之为特殊正交群:SO(n)={R∈瓗n×n|RRT=E,detR=1}这个正交群可以描述n维空间的旋转变换,在此只考虑n=3的情况.再考虑定点的运动,可以将刚体的运动在数学上表示为a′=RTa+p(7)数学的正交矩阵(变换),对应着欧式空间中距离不变的线性变换,而物理的旋转矩阵(旋转),对应着刚体运动时的任意两点保持相对距离不变的属性.这样,在本节和上一节中已经论证了刚体运动的代数表达,这种代数的表达方式是相当合适且严谨的.5 旋转变换的本征问题刚体的定点转动定理指出,对于基点固定的刚体,其一般运动都可以分解为绕某个或多个轴的转动.根据定理,假设转轴对应的空间列向量为p,由于转轴并不会因为刚体转动而发生任何变化(刚体本身就在绕轴转动),因此,当发生旋转变换时,p应当保持不变.这对应着数学中的不变子空间理论.请看定理[4]:设φ是线性空间V上的线性映射(变换),而总能找到V的子空间U,使得φ(U) U即子空间U的任意元素p在线性映射φ的像Imφ中依然是p本身,称U为φ的不变子空间.易得,φ总有两种特殊的不变子空间U,分别是零子空间和64 大 学 物 理 第40卷全空间V,并称之为平凡子空间.可以发现,在三维旋转映射R下,有一个我们最关注的非平凡不变子空间,这个子空间恰好就是转轴所处直线对应的子空间.上述内容也可以在拓扑理论中理解成映射的不动点原理(Brouwer’sFixed-pointTheorem).从物理上讲,这是一类本征值问题.即在旋转后向量p不发生改变,也就是Rp=1p.这与数学物理方法和量子力学中的本征问题有着异曲同工之妙.将线性算符L^作用于某函数ψ,若有[5]L^ψ=λψ(8)则称函数ψ为线性算符L^的本征函数,λ为算符L^的本征值.例如,定态薛定谔方程H^ψ=Eψ.因此,由Rp=1p,得知p为旋转变换φ的本征函数,λ为变换φ的本征值,这恰好就是线性代数中熟知的矩阵特征值问题:Ap=λp(9)所以若要证明欧拉定理,可以将定理的证明等价于证明旋转矩阵R的特征值组中必然有一特征值λ1=1.本征值与本征函数对刻画线性系统的普遍性质和演化规律有着重要意义.它是所有线性体系中最根本的特点.如果能得到线性体系对应的本征值与本征函数,就可以通过线性组合的方法描述或解释这一体系更为普遍的规律.6 欧拉运动定理的证明和推论欧拉运动定理的论证过程在H.Goldstein所著的ClassicalMechanics[6]和BeattyM.F.所著的Prin ciplesofEngineeringMechanics:Kinematics中都有着详细的描述.两本书巧妙利用矩阵和线性代数理论证明了欧拉定理,而我们的证明过程也借鉴了其中的思想.设旋转矩阵为R,欧拉定理中所描述的轴线为p,则有:Rp=p.根据上一节中内容,若需要证明旋转过程中存在始终不变的轴线p,则等价于证明矩阵R具有特征值λ1=+1.容易证明旋转矩阵R为正交矩阵,所以由RTR=RRT=E,可得:(R-E)RT=E-RT(10)|R-E||RT|=|E-RT|(11)设旋转前后两组正交基的基点重合于刚体的定点,且初始基为标准正交基.则可以得出初始旋转矩阵为三阶单位阵E.因此,根据矩阵乘法,后续的旋转矩阵的行列式的值|R|和|RT|仍为+1.由式(11)可得|R-E|=|E-RT|=|E-RT|T=|E-R|(12)因此,有|R-E|=|E-R|=|-1(R-E)|(13)而|-1(R-E)|=(-1)n|R-E|(14)其中n为矩阵维数,也是空间维数.所以得到|R-E|=(-1)n|R-E|(15)刚体所处为三维空间,n=3,所以|R-E|=-|R-E|=0(16)最终得出|R-E|=0,即矩阵R至少有一个特征值λ1=+1,欧拉运动定理得证.需要多谈两个问题:其一[1],如果刚体所处空间不为奇数维度,而是偶数维度,则得不到|R-E|=0的结论,也就是说欧拉运动定理在二维、四维等偶数维空间失效.所以,平面内不存在欧拉定理,因为当坐标系转动时,任何位于平面内的矢量均会发生改变,唯有沿转轴方向的矢量不发生改变,但此时它与平面垂直,并不在平面内.这是一个相当有意思的推论,这意味着我们所处的三维空间并不是随便确定的.其二,是旋转矩阵R是否还存在别的特征值?答案是肯定的.利用矩阵的久期方程:|R-λE|=0(17)可以发现,这是一个关于λ的三次方程.高斯的代数基本定理指出,该一元三次方程在复数域C 中必然存在三个根.在文献[7]中,我们可以根据矩阵的迹tr(R)求得另外两个特征值分别为λ2,3=e±iΩ(18)也就是说,旋转矩阵的另外两个复特征值的辐角,恰好为欧拉定理中绕固定轴线p的旋转角Ω.这里给出两个特殊情况:1)λ1,2,3=+1:此时Ω=0,意味着刚体保持了初始时刻的状态,为平凡解.2)λ1=+1;λ2,3=-1:此时Ω=π,意味着刚体绕轴转过了180°,刚体任意两点之间的矢量p′都做了关于p的空间坐标反演操作.而沙勒定理是欧拉定理的一个直接推论.该定理的证明如下.刚体的一般运动可以分解为刚体中某一点的运第5期 邵瀚雍:刚体一般运动的描述65 动并叠加上刚体对该点的定点运动.而根据欧拉运动定理,后一运动可以认为是绕过该点的某一轴线的转动.因此,刚体的一般运动可以分解为某点的运动和绕过该点某轴线的旋转.沙勒定理得证.至此,我们完成了刚体一般运动中沙勒定理的证明,论证了刚体的任意运动都可以分解为某点运动和定轴转动.矩阵语言虽然简练,但不能直观反映物理实质.这里需要寻找一种物理的描述办法刻画刚体的运动,这就是所谓的欧拉角,也是前面所述的3个广义坐标φ、θ、ψ.7 欧拉角在天体和力学领域里,为了完备、清晰地刻画刚体运动,分别用了章动角θ、进动角φ和自转角ψ来描述.这些称呼来自陀螺的定点运动,如图1所示.图1 陀螺定点运动示意图为了便于描述欧拉角的具体意义,可将刚体的定点转动通过坐标轴的旋转,依次分成3个步骤,如图2—图4,这里在每个步骤后面都写上了对应的旋转矩阵R.每一次的旋转并不是任意的,它们都可以在图1的陀螺运动中找到对应,转动顺序是进动、章动、自转,如下所示.1)绕Oz0轴进动φ:图2(a)→(b)图2 进动示意图从Ox0y0z0到Ox′y′z′的旋转矩阵为Rφ=cosφ-sinφ0sinφcosφ0001(19)2)绕Ox′轴(节线ON)章动θ:图3(a)→(b)图3 章动示意图从Ox′y′z′到Ox″y″z″的旋转矩阵为Rθ=1000cosθ-sinθ0sinθcosθ(20)3)绕Oz″轴自转ψ:图4(a)→(b)图4 自动示意图从Ox″y″z″到Oxyz的旋转矩阵为Rψ=cosψ-sinψ0sinψcosψ0001(21)经过上面的三次旋转变换,可以得到描述刚体的任意旋转的总变换矩阵:R =RψRθRφ(22)由前面的结论可知,所有的变换矩阵都是正交矩阵,均由变换前后的两组基底相乘而来(此处为一组基的转置和另一组基之间的矩阵乘法).在前文中,我们提到过刚体的定点运动可以由一个旋转矩阵R来描述,矩阵的特征值λ2,3=e±iΩ,其中Ω为绕该轴的转角.那么,我们现在找到了一66 大 学 物 理 第40卷种物理的语言,可以将Ω对应的总角速度ω分解为刚体的章动、进动和自转.根据图2—图4中的转动过程,三个欧拉角的角速度方向分别为:φ 沿实验室系z0轴,θ 沿节线ON,ψ 沿本体系z轴,分解如下式:ω=φ k0+θ i′+ψ k(23)将不同的角速度对应的基矢利用旋转矩阵得到的函数关系展开化简,可以得到如下的结论:ω在实验室系的坐标轴投影为ω0x=ψ sinθsinφ+θcosφω0y=ψ sinθcosφ+θsinφω0z=ψcosθ+φ(24)ω在本体系的坐标轴投影为ωx=φ sinθsinψ+θ cosψωy=φ sinθcosψ-θ sinψωz=ψ+φ cosθ(25)这样,我们得到了刚体定点转动中绕某一轴线旋转的角速度ω的实际物理意义,即可以把这一定轴转动对应的转角Ω分解到3个有意义的欧拉角(也就是φ、θ、ψ)上去.不过,需要强调的是,在导出欧拉角的时候,所经历的三次连续旋转的转轴的选取顺序其实存在着随意性.只要每次选定的旋转轴不与上一次相同,便可以任意选取.因此,在右手系中我们有3×2×2=12种不同的旋转方法,这称为欧拉角的顺规.大多数的理论力学教材所采用的是x顺规,即第二次旋转绕x轴(前文中的节线ON),而多数的量子物理、核物理的教材所采用的是y顺规,即第二次旋转绕y轴.在工程中,为了弥补前两种顺规在变换前后的坐标系区分程度低的缺点,常采用第三种常见顺规:xyz顺规[2],这样得到的3个角就分别是飞机的偏航角(Yaw)、俯仰角(Pitch)和滚动角(Roll).8 总结在本文中,我们介绍了正交矩阵在描述刚体运动的优越性,并将之应用到刚体的旋转运动中,随后利用旋转矩阵证明了刚体运动的沙勒定理,这意味着复杂的刚体一般运动可以由定轴转动和点的运动来描述.之后,我们从物理给出了刚体定点运动的图像,并用欧拉角来描述这样的运动.刚体的运动学在数学上和物理上都全部得以描述.参考文献:[1] 秦敢,向守平.力学与理论力学(下册)[M].北京:科学出版社,2017:134 135.[2] BeattyJrMF.PrinciplesofEngineeringMechanics:Kinematics—TheGeometryofMotion[M].SpringerScience&BusinessMedia,2013.[3] 同济大学数学系.工程数学线性代数[M].北京:高等教育出版社,2014:118 119.[4] 姚慕生,吴泉水,谢启鸿.高等代数学[M].上海:复旦大学出版社,2003:202.[5] 杨福家.原子物理学[M].北京:高等教育出版社,2008:125 126.[6] GoldsteinH,PooleC,SafkoJ.ClassicalMechanics[M].2002.[7] 毛文炜.刚体定点转动的欧拉定理[J].大学物理,1988,1(4):15.Descriptionoftherigidbodies generalmotionSHAOHan yong(DepartmentofPhysics,BeijingNormalUniversity,Beijing100875,China)Abstract:Thegeneralmotionofarigidbodyisthemostcomplicatedtypeofmotioninrigidbodykinematics,anditssolutionusuallyrequirestheaidofEuler'stheoremorChasles theorem.Throughthesetwotheorems,wecandecomposethegeneralmotionofarigidbodyintosimplerfixed-axisrotationandtranslation.Thispapermainlyusestheorthogonalmatrixinthealgebratheorytodescribethemotionofarigidbody,andanalyzestheeigenprob lemsoffixed-pointrotation,andprovesEuler stheorem.Thenitdecomposesthefixed-pointrotationofarigidbody.Physicalimagesandderivationconclusionsaregiven,andasimpledescriptionofthecomplexgeneralmotionofrigidbodiesiscompleted.Keywords:rigidbodiesgeneralmotion;orthogonalmatrix;Chasles theorem;EulerAngles。
复试理力重点知识点总结静力学第一章静力学基础1、掌握平衡、刚体、力的概念以及等效力系和平衡力系,静力学公理。
2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束和球铰链的性质。
3、熟练掌握如何计算力的投影和平面力对点的矩,掌握空间力对点的矩和力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。
4、对简单的物体系统,熟练掌握取分离体并画出受力图。
第二章力系的简化1、掌握力偶和力偶矩矢的概念以及力偶的性质。
2、掌握汇交力系、平行力系、力偶系的简化方法和简化结果。
3、熟练掌握如何计算主矢和主矩;掌握力的平移定理和空间一般力系和平面力系的简化方法和简化结果。
4、掌握合力投影定理和合力矩定理。
5、掌握计算平行力系中心的方法以及利用分割法和负面积法计算物体重心。
第三章力系的平衡条件1、了解运用空间力系(包括空间汇交力系、空间平行力系和空间力偶系)的平衡条件求解单个物体和简单物体系的平衡问题。
2、熟练掌握平面力系(包括平面汇交力系、平面平行力系和平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力系平衡条件求解单个物体和物体系的平衡问题。
3、了解静定和静不定问题的概念。
4、掌握平面静定桁架计算内力的节点法和截面法,掌握判断零力杆的方法。
第四章摩擦1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。
2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。
运动学第五章点的运动1、掌握描述点的运动的矢量法、直角坐标法和弧坐标法,能求点的运动方程。
2、熟练掌握如何计算点的速度、加速度及其有关问题。
第六章刚体的基本运动1、掌握刚体平动和定轴转动的特征;掌握刚体定轴转动的转动方程、角速度和角加速度;掌握定轴转动刚体角速度矢量和角加速度矢量的概念以及刚体内各点的速度和加速度的矢积表达式。
2、熟练掌握如何计算定轴转动刚体的角速度和角加速度、刚体内各点的速度和加速度。
哈尔滨工业大学理论力学教研室理论力学(I)第8版习题答案《理论力学(1 第8版)/“十二五”普通高等教育本科国家级规划教材》第1版至第7版受到广大教师和学生的欢迎。
第8版仍保持前7版理论严谨、逻辑清晰、由浅入深、宜于教学的风格体系,对部分内容进行了修改和修正,适当增加了综合性例题,并增删了一定数量的习题。
本书内容包括静力学(含静力学公理和物体的受力分析、平面力系、空间力系、摩擦),运动学(含点的运动学、刚体的简单运动、点的合成运动、刚体的平面运动),动力学(含质点动力学的基本方程、动量定理、动量矩定理、动能定理、达朗贝尔原理、虚位移原理)。
本书可作为高等学校工科机械、土建、水利、航空、航天等专业理论力学课程的教材,也可作为高职高理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案专、成人高校相应专业的自学和函授教材,亦可供有关工程技术人员参考。
本书配套的有《理论力学学习辅导》、《理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案理论力学思考题集》、《理论力学解题指导及习题集》(第3版)、《理论力学电子教案》、《理论力学网络课程》、《理论力学习题解答》、《理论力学网上作业与查询系统》等。
理论力学(I)第8版哈尔滨工业大学理论力学教研室课后答案前辅文静力学关注网页底部或者侧栏二维码回复理论力学(I)第8版答案免费获取答案引言第一章静力学公理哈尔滨工业大学理论力学教研室理论力学(I)第8版课后答案理论力学思考题集》、《理论力学解题指导及习题集》(第3版)、《理论力学电子教案》、《理论力学网络课程》、《理论力学习题解答》、《理论力学网上作业与查询系统》等。
理论力学(I)第8版哈尔滨工业大学理论力学教研室课后答案前辅文静力学引言第一章静力学公理和物体的受力分析第二章平面力系第三章空间力系第四章摩擦理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案§4-4 滚动摩阻的概念运动学引言第五章点的运动学*§5-5 点的速度和加速度在球坐标中的投影思考题习题第六章刚体的简单运动§6-1 刚体的平行移动§6-2 刚体绕定轴的转动§6-3 转动刚体内各点的速度和加速度§6-4 轮系的传动比§6-5 以矢量表示角速度和角加速度·以矢积表示点的速度和加速度思考题习题第七章点的合成运动第八章刚体的平面运动动力学引言第九章质点动力学的基本方程第十章动量定理第十一章动量矩定理第十二章动能定理第十三章达朗贝尔原理第十四章虚位移原理参考文献习题答案索引Synopsis哈尔滨工业大学理论力学教研室理论力学(I)第8版课后答案第十四章虚位移原理。
第五章点的运动学本章将研究点的运动,包括点的运动方程、运动轨迹、速度、加速度等。
点的运动学也是研究刚体运动的基础。
第一节点的运动方程点在取定的坐标系中位置坐标随时间连续变化的规律称为点的运动方程。
点在空间运动的路径称为轨迹。
在某一参考体上建立不同的参考系,点的运动方程有不同的形式。
一、矢量法设点作空间曲线运动,在某一瞬时t ,动点为M,如图5-1所示。
选取参考体上某固定点O为坐标原点,自点O向动点M作矢量r,称r为点M相对于原点O的矢径。
当动点M运动时,矢径r随时间而变化,并且是时间的单值连续函数,即(5-1)上式称为矢量形式表示的点的运动方程。
显然,矢径r的矢端曲线就是动点的运动轨迹。
图5-1二、直角坐标法过点O建立固定的直角坐标系Oxyz,则动点M在任意瞬时的空间位置也可以用它的三个直角坐标x , y , z表示,如图5-1所示。
由于矢径的原点和直角坐标系的原点重合,矢径r可表为(5-2)式中i , j , k 分别为沿三根坐标轴的单位矢量。
坐标x , y , z也是时间的单值连续函数,即(5-3)式(5-3)称为点的直角坐标形式的运动方程,也是点的轨迹的参数方程。
三、自然法当动点相对于所选的参考系的轨迹已知时,可以沿此轨迹确定动点的位置。
在轨迹上任取固定点O 作为原点,选定沿轨迹量取弧长的正负方向,则动点的位置可用弧坐标s 来确定。
如图5-2所示。
动点沿轨迹运动时,弧长s 是时间的单值连续函数(5-4)上式称为点用自然法描述的运动方程。
图5-2以上三种形式的运动方程在使用上各有所侧重。
矢量形式的运动方程常用于公式推导;直角坐标形式的运动方程常用于轨迹未知或轨迹较复杂的情况;当轨迹已知为圆或圆弧时,用自然法则较为方便。
第二节点的速度和加速度动点运动的快慢和方向用速度表示,速度的变化情况则用加速度表示。
下面给出在各坐标系下,速度、加速度的数学表达式。
一、用矢量法表示点的速度和加速度如动点矢量形式的运动方程为r=r(t) ,则动点的速度定义为(5-5)即动点的速度等于动点的矢径r对时间的一阶导数。