• 例3:已知A={a-2,2a2+5a,10},且 -3∈A,求a。
例4若A={x|x=3n+1,n ∈ Z}, B= {x|x=3n+2,n ∈ Z} C={x|x=6n+3,n ∈ Z} (1) 若c ∈ C,问是否有a ∈ A,b ∈ B,使得 c=a+b;
(2)对于任意a ∈ A,b ∈ B,是否 一定有a+b ∈ C ?并证明你的结论;
填空: ∈ 3.14_______Q π_______Q ∈ 0_______N 0_______N+ ∈ (-0.5)0_______Z ∈ 2_______R
集合的分类
有限集:含有限个元素的集合
无限集:含无限个元素的集合 空集:不含任何元素的集合
φ
集合的表示方法
1、列举法:
无序 互异 } 将集合中的元素一一列举出来,并用花括号 { 括起来的方法叫做列举法
将集合的所有元素都具有的性质(满足的条件) 表示出来,写成{x︱p(x)}的形式 特征性质
Venn图:形象
直观
a,b,c…
• 例2试分别用列举法和描述法表示下 列集合: • (1)方程x2-2=0的所有实数根组成的集 合; • (2)由大于10小于20的所有整数组成 的集合。 思考题 结合此例,试比较用自然语言、 列举法和描述法表示集合时各自的特点和 适用的对象。
• 练习与思考 1、教材P5练习1、2 2、集合{x|y=x+1,x∈R } 、{y|y=x+1} {(x、y)|y=x+1、,x、y∈R} 、{y=x+1} 是同一个集合吗?
课堂小结 1.集合的定义; 2.集合元素的性质:确定性,互 异性,无序性; 3.数集及有关符号; 4. 集合的表示方法;