弯曲梁的剪应力计算及强度计算
- 格式:ppt
- 大小:580.00 KB
- 文档页数:20
梁的弯曲计算剪力计算公式在工程力学中,梁是一种常见的结构元素,用于支撑和承载荷载。
在设计和分析梁的时候,我们需要考虑到梁的弯曲和剪切力。
本文将重点讨论梁的弯曲计算和剪力计算公式,帮助读者更好地理解和应用这些公式。
梁的弯曲计算公式。
在梁的弯曲计算中,我们需要考虑梁的受力情况以及梁的几何形状。
弯曲时梁的受力情况可以用弯矩来描述,弯矩的大小和位置取决于梁的荷载和支撑条件。
在弯曲计算中,我们通常使用以下公式来计算梁的弯矩:M = -EI(d^2y/dx^2)。
其中,M表示弯矩,E表示梁的弹性模量,I表示梁的惯性矩,y表示梁的挠度,x表示梁的位置。
这个公式描述了梁在弯曲时的受力情况,可以帮助我们计算梁的弯曲应力和挠度。
梁的剪力计算公式。
除了弯曲力之外,梁在受荷载时还会产生剪切力。
剪切力是梁上各点间的内力,它的大小和位置取决于梁的荷载和支撑条件。
在剪力计算中,我们通常使用以下公式来计算梁上各点的剪切力:V = dM/dx。
其中,V表示剪切力,M表示弯矩,x表示梁的位置。
这个公式描述了梁上各点的剪切力分布情况,可以帮助我们计算梁的剪切应力和剪切变形。
梁的弯曲和剪力计算实例。
为了更好地理解梁的弯曲和剪力计算,我们可以通过一个实例来说明。
假设有一根长度为L,截面为矩形的梁,受均布荷载w作用。
我们可以根据梁的受力情况和几何形状,计算出梁的弯矩和剪切力分布情况。
首先,我们可以计算出梁的弯矩分布情况。
根据梁的受力情况和几何形状,我们可以得到梁的挠度y(x)的表达式。
然后,我们可以通过弯矩公式M = -EI(d^2y/dx^2)来计算出梁上各点的弯矩分布情况。
接着,我们可以计算出梁上各点的剪切力分布情况。
根据梁的弯矩分布情况,我们可以通过剪切力公式V = dM/dx来计算出梁上各点的剪切力分布情况。
通过以上计算,我们可以得到梁在受均布荷载作用时的弯矩和剪切力分布情况。
这些计算结果可以帮助我们更好地了解梁的受力情况,指导我们设计和分析梁的结构。
梁的应力和强度计算1.梁的基本假设梁的基本假设包括:梁材料是均匀各向同性的,梁截面是平面截面,梁的纵向伸缩变形可以忽略,梁的横向收缩变形可以忽略,梁截面平面保持平直。
2.梁的受力分析在进行梁的应力和强度计算之前,需要对梁的受力进行分析。
常见的梁的受力包括弯曲、剪切和轴向拉压等。
2.1弯曲弯曲是梁的一种主要受力状态,发生在梁受到弯矩作用时。
对于弯曲受力的梁,可以运用梁弯曲理论进行应力和强度计算。
常见的梁弯曲理论包括欧拉-伯努利梁理论和延性梁理论。
2.2剪切剪切是梁的另一种重要受力状态,发生在梁上部分截面受到剪力作用时。
剪切力引起梁截面上的剪应力,可以通过剪切变形理论进行计算。
2.3轴向拉压轴向拉压发生在梁上部分截面受到轴向拉力或压力作用时。
轴向拉力或压力引起梁截面上的轴向应力,可以通过轴向变形理论进行计算。
3.梁的应力分析根据梁的基本假设和受力分析,可以进行梁的应力分析。
梁的应力分析包括黄金区和非黄金区的判断、应力分布的计算和强度设计的确定。
3.1黄金区和非黄金区判断黄金区是指梁截面上应力最大的区域,通常位于材料的纤维处。
在黄金区内,应力达到梁材料的屈服强度。
非黄金区则是指其他区域,应力小于屈服强度。
3.2应力分布计算根据梁的受力和应力分析,可以计算出梁截面上的应力分布。
应力分布的计算可以通过梁的几何形状、外力和边界条件以及材料的性质来确定。
常见的应力分布包括弯曲应力、剪切应力和轴向应力等。
4.梁的强度设计梁的强度设计是根据计算得到的应力分布进行的。
根据材料的强度,可以确定梁的尺寸和形状,以满足梁的极限状态和使用状态的要求。
总结起来,梁的应力和强度计算是梁力学中的基本问题,包括梁的受力分析、应力分布计算和强度设计等内容。
通过合理的计算和设计,可以确保梁的安全和可靠性,提高结构的性能。
弯曲变形的强度条件和强度计算当梁受到一组垂直于其轴线的力即横向力或位于轴线平面内的外力偶作用时,梁的轴线由一条直线变为曲线,称为弯曲变形。
如果梁的几何形状材料性能和外力都对称于梁的纵向对称面则称为对称弯曲。
如果梁变形后的轴为形心主惯性平面内的平面曲线则称为平面弯曲。
本课程中主要研究以对称弯曲为主的平面弯曲,如图1所示。
图1 平面弯曲一、梁弯曲时的内力——剪力和弯矩梁的横截面上有两个分量——剪力和弯矩,它们都随着截面位置的变化而变化,可表示为F S=F S(x)和M=M (x),称为剪力方程和弯矩方程。
为了研究方便,通常对剪力和弯矩都有正负规定:使微段梁发生顺时针转动的剪力为正,反之为负,如图2所示;使微段梁上侧受拉下侧受压的弯矩为正,反之为负,如图3所示。
图2 剪力的正负图3 弯矩的正负例1:试写出下图所示梁的内力方程,并画出剪力图和弯矩图。
解:(1)求支反力=∑C M:0310126=⨯--⋅AyF,kN7=AyF=∑Y:010=-+ByAyFF,kN3=ByF(2)列内力方程剪力:⎩⎨⎧<<-<<=63kN33kN7)(S xxxF弯矩:⎩⎨⎧≤≤≤≤⋅-⋅-=633mkN)6(3mkN127)(xxxxxM(3)作剪力图和弯矩图二、梁弯曲时的正应力在一般情况下,梁的横截面上既有弯矩又有剪力。
若梁上只有弯矩没有剪力,称为纯弯曲。
本讲主要讨论纯弯曲时横截面上的应力——正应力。
梁横截面上的正应力大小与该点至中性轴的距离成正比,即正应力沿截面宽度均匀分布,沿高度呈线性分布,如图4所示。
图4 梁弯曲时的正应力分布图即有yIxMz)(=σ(1)中性轴把截面分成受拉区和受压区两部分,且最大拉应力和最大压应力发生在上下边缘处,其值为max max y I Mz=σ。
令max y I W z z=,即有:zW M =max σ (2)式中,W z 称为抗弯截面系数,它与横截面的几何尺寸和形状有关,量纲为[长度]3,常用单位为mm 3或m 3。
梁的应力及强度计算梁是一种常见的结构元件,用于承受或分配荷载。
在设计和分析梁的过程中,计算梁的应力及强度是非常重要的。
本文将详细介绍梁的应力及强度计算方法。
首先,梁的应力定义为单位面积上的力,用公式表示为:σ=M*y/I其中,σ表示梁的应力,M表示梁的弯矩,y表示距离中性轴的垂直距离,I表示梁的截面惯性矩。
梁的应力通常包括弯曲应力、剪切应力和轴向应力。
弯曲应力是由于弯曲力引起的应力,计算公式为:σ_b=M*y/I其中,σ_b表示弯曲应力。
剪切应力是由于纵向剪力引起的应力,计算公式为:τ=V*Q/(b*t)其中,τ表示剪切应力,V表示纵向剪力,Q为形状系数,b为梁的宽度,t为梁的厚度。
轴向应力是由于轴向力引起的应力,计算公式为:σ_a=N/A其中,σ_a表示轴向应力,N表示轴向力,A表示梁的截面积。
梁的强度是指在给定的荷载下梁能够承受的最大应力。
在计算梁的强度时,通常需要将不同种类的应力进行合并。
弯曲强度是指梁在弯曲荷载下的抗弯矩能力。
根据材料的弯曲性能和形状,可以采用破坏理论或变形理论计算梁的弯曲强度。
剪切强度是指梁在剪切荷载下的抗剪切能力。
根据材料的剪切性能和梁的几何形状,可以计算出梁的剪切强度。
轴向强度是指梁在轴向荷载下的抗轴向力能力。
轴向强度的计算通常基于材料的抗拉性能。
在进行梁的应力及强度计算时,还需要考虑其他因素,如材料的弹性模量、断裂韧性和安全系数等。
总之,梁的应力及强度计算是结构设计和分析中必不可少的一部分。
通过合理的计算方法,可以确保梁在荷载下的正常工作和安全使用。
梁横截面上的剪应力及其强度计算在一般情况下,剪应力是影响梁的次要因素。
在弯曲应力满足的前提下,剪应力一般都满足要求。
一、矩形截面梁的剪应力 利用静力平衡条件可得到剪应力的大小为:*z Z QS I b τ=; 公式中:Q ——为横截面上的剪力;*z S ——为横截面上所求剪应力处的水平线以下(或以上)部分面积A*对中性轴的静矩;I Z ——为横截面对中性轴的惯性矩;b ——矩形截面宽度。
计算时Q 、*z S 均为绝对值代入公式。
当横截面给定时,Q 、I Z 、b 均为确定值,只有静矩*z S 随剪应力计算点在横截面上的位置而变化。
222**2214()[()]()(1)222248z h h h h bh y S A y b y y y y h =⨯=-⨯+-=-=- 把上式及312z bh I =代入*z Z QS I bτ=中得到:2234(1)2Q y bh h τ=- 可见,剪应力的大小沿着横截面的高度按二次抛物线规律分布的。
在截面上、下边缘处(y=±0.5h ),剪应力为零;在中性轴处(y=0)处,剪应力最大,其值为:33 1.522Q Q Q bh A A τ=⨯=⨯= 由此可见,矩形截面梁横截面上的最大剪应力值为平均剪应力值的1.5倍,发生在中性轴上。
二、工字形截面梁的剪应力在腹板上距离中性轴任一点K 处剪应力为:*1z Z QS I b τ=; 公式中:b 1——腹板的宽度(材料表中工字钢腹板厚度使用字母d 标注的);*z S ——为横截面上阴影部分面积A*对中性轴的静矩;工字形截面梁的最大剪应力发生在截面的中性轴处,其值为:*max max1z Z QS I b τ=; 公式中:*max z S ——为半个截面(包括翼缘部分)对中性轴的静矩。
三、梁的剪应力强度计算梁的剪应力强度条件为:*max max max max *[](/)z Z Z Z Q S Q I b b I S ττ==≤。
梁横截面上的剪应力及其强度计算在一般情况下,剪应力是影响梁的次要因素。
在弯曲应力满足的 前提下,剪应力一般都满足要求一、矩形截面梁的剪应力利用静力平衡条件可得到剪应力的大小为:公式中:Q ――为横截面上的剪力;S ;――为横截面上所求剪应力处的水平线以下(或以上)部分面积A*对中性轴的静矩;I Z ――为横截面对中性轴的惯性矩;b ――矩形截面宽度。
计算时Q S ;均为绝对值代入公式。
当横截面给定时,Q l z 、b 均为确定值,只有静矩S ;随剪应力计算点在横截面上的位置而变化* *h1 h h h2 2bh 2 4y 2S ; A yb(- y) [y (- y)]-(-y )(1 2 )2 2 22 48h 把上式及I ;bh 3 代入虫 中得到:3Q(1 4^)12I Z b2bhh 2可见,剪应力的大小沿着横截面的高度按二次抛物线规律分布的。
在截面上、下边缘 处(y=± 0.5h ),剪应力为零;在中性轴处(y=0)处,剪应力最大,其值为:由此可见,矩形截面梁横截面上的最大剪应力值为平均剪应力值的1.5倍,发生在中性轴上。
二、工字形截面梁的剪应力在腹板上距离中性轴任一点K处剪应力为:公式中:b i――腹板的宽度(材料表中工字钢腹板厚度使用字母S z ――为横截面上阴影部分面积A对中性轴的静矩;公式中:S zmax ――为半个截面(包括翼缘部分)对中性轴的静矩。
Cb)图皐工字卑梁横苗面的应力计算图三、梁的剪应力强度计算梁的剪应力强度条件为:*QmaxSzmax Zmaxmax I z b b(l z/S;)[]d标注的);工字形截面梁的最大剪应力发生在截面的中性轴处,其值为:max* QS z max .;I Z b1。