统计学常用检验方法
- 格式:docx
- 大小:16.24 KB
- 文档页数:2
定性资料常用的统计学方法一、χ2检验χ2检验(chi-square test)是一种主要用于分析分类变量数据的假设检验方法,该方法主要目的是推断两个或多个总体率或构成比之间有无差别。
(一)四格表资料的χ2检验例17:为了解吲达帕胺片治疗原发性高血压的疗效,将70名高血压患者随机分为两组,试验组用吲达帕胺片加辅助治疗,对照组用安慰剂加辅助治疗,观察结果见表4 -5-1,试分析吲达帕胺片治疗原发性高血压的有效性。
表4 -5-1 两种疗法治疗原发性高血压的疗效1.四格表χ2检验的原理:对于四格表资料,χ2检验的基本公式为:式中,A为实际频数(actual frequency),T为理论频数(theoreticalfrequency)。
理论频数T根据检验假设H0:π1=π2确定,其中π1和π2分别为两组的总体率。
计算理论频数T的公式为:式中Tij 为第i行第j列的理论频数,ni+和n+j分别为相应行与列的周边合计数,n为总例数。
现以例17为例说明χ2检验的步骤:(1)建立检验假设并确定检验水准。
H0:π1=π2,即试验组与对照组的总体有效率相等H1:π1≠π2,即试验组与对照组的总体有效率不等α=0.05(2)计算检验统计量。
按式(4 -5-2)计算T11,然后利用四格表的各行列的合计数计算T12、T21和T22,即T11=(44×41)/70=25.77,T12=44-25.77=18.23T21=41-25.77=15.23,T22=26-15.23=10.77按式(4 -5-3)计算χ2值(3)确定P值,作出推断结论。
以ν=1查χ2分布界值表,得P<0.005。
按α=0.05水准,拒绝H,接受H1,可以认为两组治疗原发性高血压的总体有效率不等,即可以认为吲达帕胺片治疗原发性高血压优于对照组。
2.四格表资料χ2检验的专用公式:在对两样本率比较时,当总例数n≥40且所有格子的T≥5时,可用χ2检验的通用公式(4 -5-1)。
卡方检验医学统计学卡方检验是医学统计学中最常用的检验方法之一,它可用于测量两组数据之间的关联性。
在研究中,我们常常需要探究二者之间是否存在某种关联,卡方检验就是我们解决这个问题的利器。
卡方检验的原理卡方检验的原理是基于期望频数和实际频数的差异来检验两个变量之间的关系。
期望频数指的是在假设两个变量独立的情况下,我们可以根据样本量和其他条件,计算出不同组之间的理论值。
而实际频数则是实验中观察到的实际结果。
卡方检验的步骤如下:1.建立零假设和备择假设。
零假设指的是假设两个变量之间不存在任何关系,备择假设则是反之。
2.确定显著性水平 alpha,通常取值为0.05。
3.构建卡方检验统计量。
计算方法为将所有观察值与期望值的差平方后,再除以期望值的总和。
4.根据自由度和显著性水平,查卡方分布表得到 P 值。
5.如果 P 值小于显著性水平,拒绝零假设;否则无法拒绝零假设。
卡方检验的应用卡方检验可以应用于多个领域,其中医学统计学是最为常见的一个。
卡方检验可以用来分析两个疾病之间的相关性或者测量一种治疗方法的效果。
举个例子,某药厂要研发一种新的药物来治疗心脏病。
为了验证该药的疗效,实验组和对照组各50 人。
在 6 个月的治疗后,实验组和对照组中分别有 10 人和 15 人痊愈了。
卡方检验的作用就在于此时可以用来检验两组之间的差异是否具有统计学意义。
除了医学统计学之外,卡方检验在社会学、心理学、市场营销、物理等领域也都有广泛应用。
卡方检验的限制虽然卡方检验被广泛应用于各种实验和研究中,但它也有着自己的限制。
其中比较明显的一点就是对样本量有一定的要求。
当样本量较小的时候,期望频数的计算就会出现一定的误差,进而导致检验结果不准确。
此外,在面对非常态分布数据时,卡方检验也会出现问题。
当数据呈现正态分布时,卡方检验的准确性最高。
然而,实际上,很多数据都呈现出非正态分布,这时需要使用一些修正方法来解决。
卡方检验是医学统计学中最常用的统计方法之一,它可以用来测量两个变量之间的关联性。
统计学常⽤概念:T检验、F检验、卡⽅检验、P值、⾃由度1,T检验和F检验的由来⼀般⽽⾔,为了确定从样本(sample)统计结果推论⾄总体时所犯错的概率,我们会利⽤统计学家所开发的⼀些统计⽅法,进⾏统计检定。
通过把所得到的统计检定值,与统计学家建⽴了⼀些随机变量的概率分布(probability distribution)进⾏⽐较,我们可以知道在多少%的机会下会得到⽬前的结果。
倘若经⽐较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信⼼的说,这不是巧合,是具有统计学上的意义的(⽤统计学的话讲,就是能够拒绝虚⽆假设null hypothesis,Ho)。
相反,若⽐较后发现,出现的机率很⾼,并不罕见;那我们便不能很有信⼼的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现⽬前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的⼀种估计⽅法。
专业上,p值为结果可信程度的⼀个递减指标,p值越⼤,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提⽰样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均⽆关联,我们重复类似实验,会发现约20个实验中有⼀个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效⼒有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界⽔平。
3,T检验和F检验⾄於具体要检定的内容,须看你是在做哪⼀个统计程序。
举⼀个例⼦,⽐如,你要检验两独⽴样本均数差异是否能推论⾄总体,⽽⾏的t检验。
统计学中的假设检验方法统计学是一门应用广泛的学科,它通过收集、整理和分析数据来揭示事物之间的关系和规律。
在统计学中,假设检验方法是一种重要的工具,用于验证研究者对总体特征或参数的假设。
本文将介绍假设检验方法的基本原理、应用场景以及一些常见的假设检验方法。
假设检验方法的基本原理是基于概率论和数理统计的理论,通过对样本数据进行统计推断,从而对总体特征或参数进行推断。
在进行假设检验时,我们首先需要提出一个原假设(null hypothesis)和一个备择假设(alternative hypothesis)。
原假设通常是我们希望证伪的假设,而备择假设则是我们希望得到支持的假设。
在假设检验中,我们通过计算样本数据的统计量来判断原假设是否成立。
常用的统计量包括均值、方差、比例等。
根据样本数据的统计量,我们可以计算出一个p值(p-value),它表示在原假设成立的情况下,观察到的样本数据或更极端情况出现的概率。
如果p值小于预先设定的显著性水平(通常为0.05),则我们拒绝原假设,接受备择假设。
假设检验方法在各个领域中都有广泛的应用。
例如,在医学研究中,我们可以使用假设检验方法来判断某种治疗方法是否有效。
在市场营销中,我们可以使用假设检验方法来评估广告效果是否显著。
在环境科学中,我们可以使用假设检验方法来研究污染物对生态系统的影响。
假设检验方法不仅可以帮助我们验证研究假设,还可以提供科学依据,指导决策和政策制定。
在统计学中,有许多常见的假设检验方法。
其中,t检验是一种常用的方法,用于比较两个样本均值是否存在显著差异。
t检验可以分为独立样本t检验和配对样本t检验,分别适用于不同的研究设计。
另外,方差分析(ANOVA)是一种用于比较多个样本均值是否存在显著差异的方法。
方差分析可以分为单因素方差分析和多因素方差分析,它们可以帮助我们分析不同因素对总体均值的影响。
此外,卡方检验是一种用于比较观察频数与期望频数是否存在显著差异的方法。
统计学中的假设检验方法应用假设检验是统计学中一种常用的推断方法,用于检验关于总体参数的假设。
它基于样本数据,通过对比样本观察值与假设的理论值之间的差异,来确定是否拒绝或接受一些假设。
假设检验在实际应用中广泛使用,以下是一些常见的应用:1.平均值检验:平均值检验用于检验总体平均值是否等于一些特定值。
例如,一个医疗研究想要检验其中一种药物的疗效,可以控制一个实验组和一个对照组,然后收集两组患者的项指标数据(如血压)并计算均值,然后利用假设检验来判断两组是否存在显著差异。
2.方差检验:方差检验用于检验不同总体的方差是否相等。
例如,一个制造业公司想要比较两个供应商提供的原材料的质量是否一致,可以从这两个供应商中分别抽取样本,然后对比两组样本的方差,通过假设检验来判断两个供应商的方差是否有显著差异。
3.比例检验:比例检验用于检验两个总体比例是否相等。
例如,一个选举调查机构想要了解两个候选人在选民中的支持率是否相同,可以进行随机抽样并询问选民的偏好,然后利用假设检验来判断两个候选人的支持率是否存在显著差异。
4.相关性检验:相关性检验用于检验两个变量之间的相关关系是否显著。
例如,一个市场研究公司想要了解广告投入与销售额之间的关系,可以收集一定时间内的广告投入和销售额的数据,并进行相关性检验来判断两者之间是否存在显著的线性关系。
5.回归分析:假设检验在回归分析中也有广泛应用。
通过假设检验可以判断回归模型中的参数估计是否显著,进而判断自变量对因变量的影响是否存在统计学意义。
例如,一个经济学研究想要检验GDP(自变量)对于失业率(因变量)的影响,可以建立回归模型并通过假设检验来判断GDP系数是否显著。
在应用中,假设检验的步骤通常包括以下几个部分:明确研究问题、建立原假设和备择假设、选择适当的检验统计量、设定显著水平、计算检验统计量的观察值、根据观察值和临界值的比较结果进行决策、得出结论。
需要注意的是,假设检验的结果并不能确定假设是正确的或错误的,它只是根据样本数据提供了统计学上的证据。
统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:t检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。
配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。
当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。
当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t 分布),当x为未知分布时应采用秩和检验。
F检验又叫方差齐性检验。
在两样本t检验中要用到F检验。
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。
若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。
其中要判断两总体方差是否相等,就可以用F检验。
简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。
在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。
卡方检验是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。
方差分析用方差分析比较多个样本均数,可有效地控制第一类错误。
方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。
其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。
我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:t检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。
配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。
当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。
当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t 分布),当x为未知分布时应采用秩和检验。
F检验又叫方差齐性检验。
在两样本t检验中要用到F检验。
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。
若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。
其中要判断两总体方差是否相等,就可以用F检验。
简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。
在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。
卡方检验是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。
方差分析用方差分析比较多个样本均数,可有效地控制第一类错误。
方差分析(analysis of variance,ANOVA)由英国统计学家,以F命名其统计量,故方差分析又称F检验。
其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。
我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
统计学中的平稳性检验方法统计学是一门研究数据收集、分析和解释的学科,而平稳性检验是其中的一个重要概念和方法。
平稳性检验用于确定时间序列数据是否具有平稳性,即数据的统计特性在时间上是否保持不变。
本文将介绍统计学中常用的平稳性检验方法,并探讨其应用和局限性。
一、平稳性的概念和意义平稳性是时间序列分析的基本假设之一,它指的是数据的统计特性在时间上保持不变,即数据的均值、方差和自协方差不随时间的推移而发生显著变化。
平稳性的检验是为了确保时间序列数据的可靠性和有效性,因为只有具有平稳性的数据才能进行可靠的预测和建模。
二、单位根检验单位根检验是最常用的平稳性检验方法之一,它基于时间序列数据中是否存在单位根的假设。
单位根是指时间序列数据中存在一个根为1的特征根,即数据具有非平稳性。
常用的单位根检验方法包括ADF检验(Augmented Dickey-Fuller test)和KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)。
ADF检验是一种基于单位根存在的假设进行的统计检验,它通过计算单位根的统计量来判断数据是否具有平稳性。
ADF检验的原假设是存在单位根,即数据具有非平稳性。
如果ADF检验的统计量小于临界值,就可以拒绝原假设,认为数据具有平稳性。
KPSS检验则是一种基于单位根不存在的假设进行的统计检验,它通过计算单位根的统计量来判断数据是否具有平稳性。
KPSS检验的原假设是不存在单位根,即数据具有平稳性。
如果KPSS检验的统计量大于临界值,就可以拒绝原假设,认为数据具有非平稳性。
三、滚动统计量除了传统的单位根检验方法,滚动统计量也是一种常用的平稳性检验方法。
滚动统计量是在时间序列数据中使用移动窗口的方法进行计算,它可以检测数据在不同时间段内的平稳性。
常见的滚动统计量包括滚动平均、滚动方差和滚动自相关系数。
滚动平均是指在时间序列数据中计算移动窗口内数据的平均值,然后将窗口向前移动一个时间单位,再计算平均值。
统计学三大检验方法一、前言在数据分析中,我们经常需要对样本数据进行检验以判断其是否符合某些假设或推断。
统计学三大检验方法包括t检验、方差分析和卡方检验,是数据分析中常用的方法之一。
二、t检验1.概述t检验是一种用于比较两个样本均值是否显著不同的方法。
它可以用于两个样本的独立样本t检验和配对样本t检验。
2.独立样本t检验独立样本t检验适用于两个不相关的样本。
它的基本思想是通过比较两个组别的平均值来判断它们是否有显著性差异。
具体步骤如下:(1)建立假设:假设两个组别的总体均值相等;(2)确定显著性水平:通常选择0.05作为显著性水平;(3)计算统计量:根据公式计算出t值;(4)查找临界值:根据自由度和显著性水平查找临界值;(5)作出结论:比较计算得到的t值与临界值,如果计算得到的t值小于临界值,则接受原假设,否则拒绝原假设。
3.配对样本t检验配对样本t检验适用于两个相关的样本。
它的基本思想是比较两个组别的差异是否显著。
具体步骤如下:(1)建立假设:假设两个组别的总体均值相等;(2)确定显著性水平:通常选择0.05作为显著性水平;(3)计算统计量:根据公式计算出t值;(4)查找临界值:根据自由度和显著性水平查找临界值;(5)作出结论:比较计算得到的t值与临界值,如果计算得到的t值小于临界值,则接受原假设,否则拒绝原假设。
三、方差分析1.概述方差分析是一种用于比较三个或以上样本均值是否显著不同的方法。
它可以用于单因素方差分析和双因素方差分析。
2.单因素方差分析单因素方差分析适用于只有一个自变量的情况。
它的基本思想是通过比较各组之间的离散程度来判断它们是否有显著性差异。
具体步骤如下:(1)建立假设:假设各组的总体均值相等;(2)确定显著性水平:通常选择0.05作为显著性水平;(3)计算统计量:根据公式计算出F值;(4)查找临界值:根据自由度和显著性水平查找临界值;(5)作出结论:比较计算得到的F值与临界值,如果计算得到的F值大于临界值,则拒绝原假设,否则接受原假设。
统计学常⽤概念:T检验、F检验、卡⽅检验、P值、⾃由度1,T检验和F检验的由来⼀般⽽⾔,为了确定从样本(sample)统计结果推论⾄总体时所犯错的概率,我们会利⽤统计学家所开发的⼀些统计⽅法,进⾏统计检定。
通过把所得到的统计检定值,与统计学家建⽴了⼀些随机变量的概率分布(probability distribution)进⾏⽐较,我们可以知道在多少%的机会下会得到⽬前的结果。
倘若经⽐较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信⼼的说,这不是巧合,是具有统计学上的意义的(⽤统计学的话讲,就是能够拒绝虚⽆假设null hypothesis,Ho)。
相反,若⽐较后发现,出现的机率很⾼,并不罕见;那我们便不能很有信⼼的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现⽬前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的⼀种估计⽅法。
专业上,p值为结果可信程度的⼀个递减指标,p值越⼤,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提⽰样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均⽆关联,我们重复类似实验,会发现约20个实验中有⼀个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效⼒有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界⽔平。
3,T检验和F检验⾄於具体要检定的内容,须看你是在做哪⼀个统计程序。
举⼀个例⼦,⽐如,你要检验两独⽴样本均数差异是否能推论⾄总体,⽽⾏的t检验。
统计学方法卡方检验
卡方检验是一种统计学方法,主要用于分类变量分析,包括两个率或两个构成比的比较、多个率或多个构成比的比较以及分类资料的相关分析等。
具体步骤如下:
首先,观察实际观测值和理论推断值的偏离程度,此处的理论值可以是预期的发生频率或概率。
实际观测值与理论推断值之间的偏离程度决定了卡方值的大小。
如果卡方值越大,说明实际观测值与理论值之间的差异越大;反之,则差异越小。
如果两个值完全相等,卡方值就是0,这表明理论值完全符合实际观测值。
此外,在没有其他限定条件或说明时,卡方检验通常指的是皮尔森卡方检验。
在进行卡方检验时,研究人员通常会将观察量的值划分成若干互斥的分类,并尝试用一套理论(或零假设)去解释观察量的值落入不同分类的概率分布模型。
卡方检验的目的就在于衡量这个假设对观察结果所反映的程度。
统计学三大检验方法统计学是一门研究数据收集、分析和解释的学科,它通过运用各种方法来对数据进行推断和预测。
在统计学中,检验方法是一种常用的技术,用于检验样本数据是否可以代表总体,或者用于比较两个或多个总体之间的差异。
本文将介绍统计学中的三大检验方法,分别是假设检验、置信区间和方差分析。
一、假设检验假设检验是统计学中最基本和最常用的方法之一,用于评估样本数据与某个假设之间的差异或关联性。
在假设检验中,我们首先提出一个关于总体特征的假设,称为原假设(H0),然后收集样本数据,并使用统计方法来判断这个假设是否成立。
在假设检验中,我们通过计算统计量的值,然后基于这个值来推断原假设的合理性。
如果计算得到的统计量的值与某个特定的分布相匹配,则我们可以得出原假设成立的结论;如果它与该分布不匹配,则我们可以拒绝原假设。
二、置信区间置信区间是用来估计总体参数的一个范围,它可以告诉我们总体参数的估计值的不确定性程度。
在统计学中,我们通常使用样本数据来估计总体参数,并计算出一个置信区间。
置信区间由一个下限和一个上限组成,它表示我们对总体参数可能的取值范围的估计。
如果我们得出一个置信区间为[95,105],则意味着我们相信总体参数的真实值在95到105之间,并且有95%的置信水平。
如果我们重复进行抽样调查,有95%的抽样平均值会落在这个区间内。
置信区间方法提供了对估计值的不确定性的量化,它使我们能够更准确地解释样本数据对总体参数的影响。
三、方差分析方差分析是一种用于比较两个或多个总体均值是否存在显著差异的方法。
它通过将总体的方差分解为不同的组间变异和组内变异来进行分析。
在方差分析中,我们将总体划分为不同的组别,然后收集每个组别的样本数据。
通过计算组间的变异和组内的变异,我们可以得出一个统计量,称为F值。
F值代表了组间变异与组内变异的比例,如果F值大于某个阈值,我们就可以得出组别之间存在显著差异的结论。
方差分析可以应用于多个实验组或多个处理组之间的比较,它提供了一种有效的方法来确定不同组别之间是否存在统计上显著的差异。
统计学中的假设检验方法统计学是一门研究数据收集、分析和解释的科学领域。
在统计学中,假设检验方法是一种常用的数据分析技术,用于对研究假设进行验证。
通过对样本数据进行分析和推断,假设检验方法可以帮助研究人员判断某种假设在总体中是否成立,从而对问题进行科学的解答。
一、假设检验的基本概念假设检验是基于样本数据的统计推断方法,其基本思想是通过对样本数据进行统计分析,以便对总体参数进行推断和判断。
在假设检验中,我们通常会提出一个原假设(H0)和一个备择假设(H1或Ha),并通过计算统计量的方法来判断是否拒绝原假设。
原假设(H0)通常是一种无足够证据反驳的假设,研究人员试图通过数据分析来证明其成立。
备择假设(H1或Ha)则是原假设的对立假设,即研究人员试图证明原假设不成立。
二、假设检验的步骤在进行假设检验时,通常需要经过以下步骤:1. 建立假设:明确原假设(H0)和备择假设(H1或Ha),并确定显著性水平。
2. 选择合适的检验统计量和分布:根据数据类型和假设条件选择合适的检验统计量,并明确其分布情况(如正态分布、t分布、卡方分布等)。
3. 计算检验统计量的值:利用收集到的样本数据,计算出具体的检验统计量的值。
4. 计算P值:根据检验统计量的值和对应的分布情况,计算出P值(即在原假设成立的情况下,观察到的统计量或更极端情况出现的概率)。
5. 判断拒绝或接受原假设:比较P值与事先设定的显著性水平(通常为0.05或0.01),如果P值小于显著性水平,则拒绝原假设,否则接受原假设。
三、常见的假设检验方法在统计学中,有多种假设检验方法可供选择,下面介绍几种常见的方法:1. 单样本t检验:用于检验一个总体均值是否等于某个给定值。
2. 双样本t检验:用于检验两个总体均值是否相等。
3. 方差分析(ANOVA):用于检验多个样本的均值是否相等。
4. 卡方检验:用于检验观察频数与期望频数之间的拟合程度。
5. 相关分析:用于检验两个变量之间是否存在线性关系。
统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工
作来说一说:
t检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。
配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对
象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受
试对象处理前后。
u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。
当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。
当样
本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t 分布),当x为未知分布时应采用秩和检验。
F检验又叫方差齐性检验。
在两样本t检验中要用到F检验。
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。
若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。
其中要判断两总体方差是否相等,就可以用F检验。
简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。
在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。
卡方检验
是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。
方差分析
用方差分析比较多个样本均数,可有效地控制第一类错误。
方差分析(analysis of variance,ANOVA)由英国统计学家,以F命名其统计量,故方差分析又称F检验。
其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。
我们要学习的主要内容包括
单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):
用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
完全随机设计(completely random design)不考虑个体差异的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计。
在实验研究中按随机化原则将受试对象随机分配到一个处理因素的多个水平中去,然后观察各组的试验效应;在观察研究(调查)中按某个研究因素的不同水平分组,比较该因素的效应。
两因素方差分析即配伍组设计的方差分析(two-way ANOVA):
用途:用于随机区组设计的多个样本均数比较,其统计推断是推断各样本所代表的各总体均数是否相等。
随机区组设计考虑了个体差异的影响,可分析处理因素和个体差异对实验效应的影响,所以又称两因素实验设计,比完全随机设计的检验效率高。
该设计是将受试对象先按配比条件配成配伍组(如动物实验时,可按同窝别、同性别、体重相近进行配伍),每个配伍组有三个或三个以上受试对象,再按随机化原则分别将各配伍组中的受试对象分配到各个处理组。
值得注意的是,同一受试对象不同时间(或部位)重复多次测量所得到的资料称为重复测量数据
(repeated measurement data),对该类资料不能应用随机区组设计的两因素方差分析进行处理,需用重复测量数据的方差分析。
方差分析的条件之一为方差齐,即各总体方差相等。
因此在方差分析之前,应首先检验各样本的方差是否具有齐性。
常用方差齐性检验(test for homogeneity of variance)推断各总体方差是否相等。
本节将介绍多个样本的方差齐性检验,本法由Bartlett于1937年提出,称Bartlett法。
该检验方法所计算的统计量服从
分布。
经过方差分析若拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等。
若要得到各组均数间更详细的信息,应在方差分析的基础上进行多个样本均数的两两比较。