计算传热学与计算流体力学的理想选择
- 格式:ppt
- 大小:131.50 KB
- 文档页数:10
传热学工程热力学流体力学参考文献传热学工程热力学流体力学参考文献引言:传热学工程热力学流体力学是一门重要的学科,它涉及到热量的传递、热力学的变化和流体的运动。
在工程领域,传热学工程热力学流体力学的研究对于制造业的发展和技术的创新起着关键作用。
本文将介绍一些与此领域相关的重要参考文献,希望能够为读者提供一个全面、深度和广度兼具的了解。
一、传热学参考文献1. 祝九胜、毛国礼、朱耀中编著的《传热学》这本教材是传热学领域的经典之作,涵盖了传热学的基本理论、传热过程和传热设备等内容。
书中详细介绍了传热的基本原理、传热模型和传热计算方法等,并结合实例进行了阐述。
这本书不仅对于传热学的学生和研究人员具有重要参考价值,也对于工程师有一定的实践指导意义。
2. 凌宇和王勇等合著的《传热学实验技术与设备》这本书是传热学实验技术与设备领域的重要参考书籍,涵盖了传热学实验的各个方面,包括传热实验装置和传热实验方法等。
书中详细介绍了传热实验的原理和方法,并给出了一些实际案例进行分析和讨论。
这本书对于进行传热实验的研究人员和工程师非常有用,可以帮助他们更好地进行传热实验的设计和实施。
二、工程热力学参考文献1. 吴健雄著的《热力学与工程热力学》这本书是工程热力学领域的经典教材,介绍了热力学的基本原理、热力学方程和热力学循环等内容。
书中详细介绍了热力学的基本概念和定律,并结合实际工程应用进行了实例分析。
这本书对于工程热力学的学生和研究人员来说是一本非常重要的参考书,可以帮助他们更好地理解和应用热力学的知识。
2. 徐吉康主编的《热力学各论》这本书对于工程热力学各个方面都进行了详细的介绍,包括热力学基础、热力学过程和热力学循环等内容。
书中详细阐述了热力学的基本理论和方法,并给出了一些实际工程案例进行分析和讨论。
这本书可以帮助读者全面了解和掌握工程热力学的知识,对于工程师和研究人员来说非常有用。
三、流体力学参考文献1. 陈建兵、李非等合著的《流体力学》这本书是流体力学领域的经典教材,涵盖了流体力学的基本概念、流体的运动和流体的力学性质等内容。
流体力学与传热学在汽车发动机冷却系统中的应用在汽车发动机的冷却系统中,流体力学与传热学是两个至关重要的学科,它们为汽车发动机的性能和可靠性提供了支持和保障。
首先,让我们来了解一下流体力学在汽车发动机冷却系统中的应用。
流体力学是研究流体运动规律的学科,它在冷却系统中主要用于研究流体在管道中的流动状态及其对温度的调控。
例如,在水冷系统中,流体流经发动机的散热器,通过冷却剂的对流传热,将发动机产生的热量带走。
通过流体力学的研究,可以优化散热器的设计,使得冷却剂在散热器中的流动状态更加顺畅,提高传热效率。
其次,传热学在汽车发动机冷却系统中的应用同样不可忽视。
传热学是研究热量传递规律的学科,它在冷却系统中主要用于研究热量在不同介质之间的传递方式和机制。
例如,在汽车发动机中,燃烧室内的高温气体通过金属壳体传递给冷却剂,然后通过散热器传至外界。
通过传热学的研究,可以优化散热器的材料选择和结构设计,提高传热效率,使得发动机在工作过程中能够稳定运行。
流体力学与传热学在汽车发动机冷却系统中的应用不仅可以提高冷却效果,还可以提高发动机的燃烧效率。
在汽车发动机中,高温燃烧室内产生的废气需要及时排出,以保证燃烧室内的温度和压力的稳定。
通过流体力学的研究,可以优化排气管的设计,使得废气在排气管中的流动状态更加顺畅,提高汽车发动机的排气效率。
同时,通过传热学的研究,可以优化排气管的材料选择和结构设计,提高废气的散热速度,减少发动机的热负荷,提高燃烧效率。
此外,流体力学与传热学在汽车发动机冷却系统中还能提高系统的可靠性和安全性。
在汽车行驶过程中,由于外界环境的温度和压力变化,冷却系统需要及时进行调节和控制,以保证发动机的正常工作。
通过流体力学与传热学的研究,可以优化冷却系统的管道布局和控制策略,提高系统的响应速度和稳定性,确保发动机的冷却效果和工作安全。
综上所述,流体力学与传热学在汽车发动机冷却系统中的应用是多方面的,它们不仅可以提高冷却效果和燃烧效率,还可以提高系统的可靠性和安全性。
计算传热学在工程领域的应用研究引言计算传热学是研究热传输过程中热量、温度、流速等参数变化规律的一门学科。
在工程领域中,计算传热学在热能转换、能源利用与环境保护等方面发挥着重要的作用。
本文将从传热模型、传热计算方法和应用案例三个方面阐述计算传热学在工程领域的应用研究。
第一章传热模型传热模型是计算传热学中的基本概念,它描述了热量从高温区向低温区传递的过程。
传热模型可分为对流传热、导热传热和辐射传热三种。
对流传热指的是流体在物体表面与物体接触的同时将热量带走的现象。
导热传热则是指物体自身内部传递热能的过程。
辐射传热则是指物体表面和环境之间的热辐射现象。
第二章传热计算方法传热计算方法指的是以数学公式和模型来对传热过程进行计算和模拟的方法。
传热计算方法主要为传热系数法、有限元法、有限差分法以及计算流体力学等方法。
传热系数法可用于估算流体和固体间的传热系数,从而计算热传输过程。
有限元法和有限差分法则是通过分块分割的方法对物体进行离散化处理,并建立数学模型进行传热计算。
计算流体力学则是通过求解流体运动的数学方程来模拟流体在传热过程中的行为。
第三章应用案例在工程领域中,计算传热学的应用非常广泛。
以下列出几个应用案例。
1. 燃烧工程:在燃烧工程中,通过计算传热学模型和计算热转换效率,可以选择最适合的燃烧工艺和优化燃烧效率。
2. 电子工程:在电子设备中,通过计算传热学和优化散热系统的设计可以有效降低电子设备的温度,提高电子设备的可靠性。
3. 石化工程:在石化工程中,通过计算传热学和流体力学分析可以优化反应器的设计,提高生产效率。
4. 汽车工程:在汽车工程中,通过计算传热学和流体力学分析可以优化发动机散热系统的设计,提高汽车发动机的性能。
结论综上所述,计算传热学在工程领域中的应用研究发挥着重要的作用。
通过传热模型的建立和传热计算方法的运用,可以解决一些复杂的传热问题,并优化工程设计,提高工程效率和质量。
偶也说一点。
偶原来是做实验的,CFD和NHT上课学过一点,没学到什么东西。
研究生毕业前半年,觉得身为流体机械的master不懂CFD没脸见人,于是就自己再学。
说实话,教材,当时觉得没有一个是很系统明了的。
所看的书基本是北航的《计算流体力学基础》(忘了作者)、《计算流体动力学》(马铁尤),这两个比较老,主要着重于可压缩流的计算。
较新的可压缩流计算可以看看《应用计算流体力学》(朱自强)和《叶轮机械跨声速及亚声速流场的计算方法》(清华的王保国)。
《数值传热学》(陶文铨)、《计算传热学的近代进展》(陶文铨),主要着重于不可压流的计算。
此外还有吴子牛的一本书,不记得名字,思路清晰,简明扼要。
刘超群的一本多重网格法的专著,附带的源代码很多,即使不作多重网格,也是很有价值的。
因为没有老师,所以看书就没有什么章法,看不懂就跳过,往后看,说不定就懂一点,然后回头重新看。
没事就看看,仔细看,多了就明白了。
还可以在internet 上搜索老外的教材和lecture notes。
初学CFD,最忌急躁。
很多看不懂是正常的,指望全部内容一次看懂是不可能的(这不是看小说)。
看上一段时间,大概几个月,看多了,脑子里面的概念就系统了。
很重要的是这两大类(可压/不可压)的计算方面的一些重要的区别和特点,主要体现在方程组形式、求解方式、边界条件的处理、物理上的着重点等等。
这些概念很重要,即使不编程,实用商业软件的时候如果没有清晰的概念,就会在求解设置上犯错(有人算跨音速喷管居然用常密度气体,典型的基本概念不清)。
肯定会碰到大量的公式的。
没别的,硬着头皮看,但是脑子要清醒,不能晕。
如kaisa说,就是那么几个守恒关系(质量、动量、能量、组分……)。
而且这些公式都是一个形式——对流扩散方程,搞清楚那些是流动项(对流项),那些是扩散项,那些是源项,这样主干就清晰了。
枝节的问题相对杂一些,那只能硬着头皮读。
如果着重于利用商业软件解决问题,只要有足够的基本概念就可以参考软件的文档很快入门了。
流体力学与传热学流体力学和传热学是物理学和工程学中的重要分支,它们在许多领域中都有着广泛的应用。
本文将对流体力学和传热学进行简单的介绍和探讨。
流体力学是研究流体(包括液体和气体)运动、变形和受力规律的学科。
流体力学的研究对象是流体的宏观运动,它涉及到许多自然现象和社会生产实践中的问题。
例如,气象、水利、航空航天、工业制造等领域都离不开流体力学。
流体力学的基本原理包括:流体的性质、流体静力学、流体动力学、流动阻力和能量损失等等。
它在很多领域中有重要应用,如飞机飞行和汽车设计中的气动性能,以及建筑物的风洞实验等等。
传热学是研究热量传递规律和传热过程的学科。
传热学主要涉及到热传导、热对流和热辐射三种基本传热方式。
热传导是指物体内部热能传递的过程,它涉及到物体内部的微观粒子运动;热对流是指由于流体运动而引起的热能传递过程,它主要发生在流体与固体的交界面上;热辐射是指物体通过电磁波的形式向外传递热能的过程。
传热学在能源、建筑、化工、电子、航天等领域中都有广泛的应用,如能源利用中的传热过程优化、建筑物的保温性能设计和微电子器件的散热设计等等。
在能源领域,流体力学和传热学具有非常重要的作用。
例如,在太阳能利用中,如何高效地收集太阳能并进行利用是一个重要问题。
太阳能集热器就是利用传热学原理来提高太阳能的利用率,它可以将太阳能转化为热能,并将其传输到需要加热的地方。
此外,传热学还广泛应用于石油和天然气工业中,例如油井的加热和天然气液化的过程都需要利用传热学的知识来进行优化设计。
建筑领域也是一个广泛应用流体力学和传热学的领域。
例如,建筑物的通风系统和空调系统都需要利用流体力学的知识来进行设计。
同时,建筑物的保温性能和隔热性能是建筑节能的关键因素之一,因此需要通过传热学的知识来进行合理的建筑设计和材料选择。
此外,在桥梁、高速公路和其他基础设施建设领域中,也需要利用流体力学和传热学的知识来进行防水、排水和保温等方面的设计和施工。