流体力学课程报告
- 格式:docx
- 大小:164.92 KB
- 文档页数:10
实验报告开课学院:建筑工程学院实验课程:流体力学教学实验实验项目名称: 1.雷诺实验 2.孔口与管嘴出流实验实验项目性质:教学实验实验时间:专业班级:学生学号与姓名:指导教师:雷诺实验指导书一、实验目的观察管道中不同流量下液体的流动状态的变化情况(层流、紊流及其转变情况),并通过实验测定管道内液体的下临界速度V c从而可以列表计算出下临界雷诺数Re c。
二、实验内容在实验中观察层流、紊流的流态特征,通过实测测定下临界速度的方法计算出下临界雷诺数,并在实验后对雷诺数的影响因素进行分析。
三、实验原理层流条件下,流体质点不发生各向紊动和混杂,流动呈现规则有秩序的成层流动;紊流条件下,由于粘性力对质点的束缚作用降低,质点容易偏离其原来的运动方向,形成无规则的脉动混杂甚至产生可见尺度的涡旋。
在本实验中,颜色水随玻璃管内主流一起流动,颜色水流线代表了管内主流的流动状态。
由流体力学可知:层流与紊流流态的判别标准就是下临界雷诺数Re c,可表示为,式中d为玻璃管内径;ν为流体的运动粘性系数,μ为流体的动力粘性系数,ρ为流体的密度,V c为流体的临界速度。
水的运动粘性系数ν与温度的关系为:。
四、实验装置与仪器1、实验装置2、仪器设备:1)雷诺实验台1套;2)酒精温度计1只;3)秒表1只;4)玻璃量杯1只(刻度为1000ml)。
五、实验步骤1、开启进水开关,向水箱内注水。
到达一定水位高度,并保持适当的溢流,使水箱内水位稳定。
在实验期间如出现水位变化时,应缓慢调节进水开关确保水箱内水位稳定。
2、打开玻璃管放水开关,待管内空气排出后,松开颜色水管开关使颜色水随玻璃管内主流一起流动。
3、缓慢关小放水开关降低管内流速,同时观察玻璃管内颜色水变动情况,直到颜色水变为一条稳定的直线,此时即为紊流转变为层流的下临界状态。
此时需要用体积法测量管道内的流量,即用量杯和秒表测量流量。
具体做法是:用量杯接住管道出口的流量,同时按下秒表计时,等量杯内接住一定量体积的液体后移开量杯并同时按下秒表停止计时,然后用体积除以时间即可计算出流量。
实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。
2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。
二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。
在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。
在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。
流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。
若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。
三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。
水的流量由出口阀门调节,出口阀关闭时流体静止。
四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。
思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。
本次流体力学综合实训旨在通过实际操作和理论学习的结合,使我对流体力学的基本原理、基本方法及实验技能有更深入的理解和掌握。
通过实训,我能够提高自己的动手能力、实验技能和综合运用知识解决实际问题的能力。
二、实训内容1. 流体力学基本实验(1)流体流速分布测量实验通过实验,我学习了流速分布的测量方法,掌握了流速分布曲线的绘制技巧。
实验结果表明,流速分布曲线呈现出明显的抛物线形状,符合流体力学的基本理论。
(2)流量测量实验在流量测量实验中,我学习了流量计的使用方法,掌握了不同流量计的优缺点。
通过实验,我了解了流量测量在工程实践中的应用,提高了自己的实际操作能力。
(3)伯努利方程实验通过伯努利方程实验,我加深了对伯努利方程的理解,学会了如何运用伯努利方程解决实际问题。
实验结果表明,伯努利方程在流体力学中具有广泛的应用价值。
2. 流体力学综合实验(1)管道摩擦系数测定实验在管道摩擦系数测定实验中,我学习了管道摩擦系数的测量方法,掌握了不同管道的摩擦系数。
实验结果表明,管道摩擦系数与管道材料、粗糙度等因素有关。
(2)弯管流量测量实验弯管流量测量实验使我了解了弯管对流体流动的影响,学会了如何测量弯管流量。
实验结果表明,弯管流量与弯管角度、管道直径等因素有关。
(3)流体阻力实验流体阻力实验使我掌握了流体阻力系数的测量方法,了解了流体阻力系数与流体特性、管道形状等因素的关系。
实验结果表明,流体阻力系数在工程实践中具有重要的应用价值。
1. 实验技能提高通过本次实训,我掌握了流体力学基本实验和综合实验的操作方法,提高了自己的实验技能。
在实验过程中,我学会了如何使用实验仪器、如何观察实验现象、如何分析实验数据,为今后从事相关领域的工作奠定了基础。
2. 理论知识深化在实训过程中,我结合实验现象对流体力学的基本原理进行了深入思考,使我对流体力学的基本理论有了更深刻的理解。
同时,通过实验数据的分析,我对流体力学的基本方法有了更全面的掌握。
流体力学泵与风机课程总结报告800字流体力学泵与风机课程总结报告流体力学泵与风机课程是机械工程专业的重要课程之一,通过该课程的学习,我们对流体力学泵与风机的基本原理、结构设计、性能分析等方面有了更深入的了解。
在这篇报告中,我将对该课程进行总结,并谈谈我的收获与体会。
首先,在课程中,我们学习了流体力学泵与风机的基本原理。
通过学习流体力学基本方程、流体静力学、动力学等内容,我们了解了流体力学泵与风机的工作原理与基本参数。
我们学习了泵与风机的分类、结构与工作原理,并深入学习了各种泵和风机的特点、优缺点以及适用范围。
这为我们后续的学习和实践操作打下了坚实的基础。
其次,在课程的实验环节中,我们通过实际操作泵和风机进行了性能分析实验。
通过实验,我们了解了泵和风机的性能参数如水头、流量、效率等的测量方法,学习了如何绘制性能曲线和研究泵和风机的运行规律。
实验中,我们还学会了如何调整泵和风机的运行状态,以达到最佳性能。
这些实验让我们不仅理论联系实际,更锻炼了我们的动手能力和实验操作技巧。
最后,在课程的学习过程中,我深刻体会到了流体力学泵与风机的重要性和广泛应用。
泵和风机作为常见的流体输送装置,广泛应用于工农业生产、城市供水、环境保护等领域。
学习了泵和风机后,我们对其性能有了更深入的了解,能够合理选择和设计泵和风机,并研究其在不同工农业生产中的应用。
同时,我们也认识到了泵与风机在实际运行中的问题和挑战,如流量控制、噪音与振动、能耗等。
这些问题需要我们在以后的工作中不断研究和解决。
综上所述,流体力学泵与风机课程的学习让我对泵与风机有了更深入的认识和理解,掌握了其基本原理与性能分析方法。
通过实验操作,我也提高了动手能力和实验技巧。
在今后的工作中,我将运用所学知识,结合实际应用需求,不断研究和改进泵与风机的设计和运行,为工农业生产提供更优质的流体输送装置。
《《流体力学》学习报告[最终定稿]》第一篇:《流体力学》学习报告《流体力学》学习报告————11土木二班47号胡智远通过一个学期的学习,让我懂得了。
流体力学是研究流体平衡和机械运动规律及其应用的科学,是力学的一个重要分支。
它的任务是通过流体的运动规律,研究流体之间及流体与各种边界之间的相互作用力,并将它们应用于解决科研和实际工程问题。
在水力、动力、土建、航空、化工,机械等领域里,都日益广泛的应用流体力学,同时正是这些领域的发展,也推动了流体力学的发展和深入。
流体是气体和液体的总称。
在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。
大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。
大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。
20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。
20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。
航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。
这些学科是流体力学中最活跃、最富有成果的领域。
石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。
渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。
燃烧离不开气体,这是有化学反应和热能变化的流体力学问题,是物理-化学流体动力学的内容之一。
爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。
沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动等,都涉及流体中带有固体颗粒或液体中带有气泡等问题,这类问题是多相流体力学研究的范围。
等离子体是自由电子、带等量正电荷的离子以及中性粒子的集合体。
等离子体在磁场作用下有特殊的运动规律。
一、实验背景与目的流体力学是研究流体运动规律和力学特性的学科,广泛应用于工程、科学研究和日常生活等领域。
为了提高我们对流体力学基本理论的认识,培养实际操作能力,我们进行了流体力学实验实训。
本次实训旨在通过一系列实验,加深对流体力学基本概念、基本理论和实验方法的理解,提高我们的动手能力和分析问题的能力。
二、实验内容与过程本次实训共进行了五个实验,分别为:1. 沿程阻力实验:通过测定流体在不同雷诺数情况下,管流的沿程水头损失和沿程阻力系数,学会体积法测流速及压差计的使用方法。
2. 动量定律实验:测定管嘴喷射水流对挡板所施加的冲击力,测定动量修正系数,分析射流出射角度与动量力的相关性,加深对动量方程的理解。
3. 康达效应实验:观察流体流动,发现某些问题和现象,分析流体与物体表面之间的相互作用。
4. 毛细现象实验:研究毛细现象的产生原因及其影响因素,了解毛细现象在工程中的应用。
5. 填料塔流体力学性能及传质实验:了解填料塔的构造,熟悉吸收与解吸流程,掌握填料塔操作方法,观察气液两相在连续接触式塔设备内的流体力学状况,测定不同液体喷淋量下塔压降与空塔气速的关系曲线,并确定一定液体喷淋量下的液泛气速。
在实验过程中,我们严格按照实验指导书的要求进行操作,认真记录实验数据,并对实验结果进行分析和讨论。
三、实验结果与分析1. 沿程阻力实验:通过实验,我们得到了不同雷诺数情况下,管流的沿程水头损失和沿程阻力系数。
结果表明,随着雷诺数的增加,沿程水头损失和沿程阻力系数均有所减小,说明层流和湍流对流体阻力的影响不同。
2. 动量定律实验:实验结果显示,管嘴喷射水流对挡板所施加的冲击力与射流出射角度密切相关。
当射流出射角度增大时,冲击力也随之增大,说明动量修正系数在动量方程中的重要性。
3. 康达效应实验:通过观察流体流动,我们发现当流体与物体表面之间存在表面摩擦时,流体会沿着物体表面流动,这种现象称为康达效应。
实验结果表明,康达效应在工程中具有广泛的应用,如飞机机翼的形状设计等。
流体力学实验报告总结与心得1. 实验目的本次流体力学实验的目的是通过实验方法,对流体的流动进行定性和定量分析,掌握基本的流体流动规律和实验操作技能。
2. 实验内容本次实验主要分为两个部分:流体静力学的实验和流体动力学的实验。
在流体静力学实验中,我们测定了液体的密度、浮力、压力与深度的关系,并验证了帕斯卡定律。
在流体动力学实验中,我们测量了流体在管道中的速度分布,获得了流速与压强变化的关系,并通过管道阻力的实验验证了达西定理。
3. 实验过程与结果在实验过程中,我们依次进行了密度的测量、液体的浮力测定、压力与深度关系的测定、流速分布的测量和管道阻力的实验。
通过各项实验得到的数据,我们进行了数据处理和分析,得出了相应的曲线和结论。
在密度的测量实验中,我们使用了称量器和容量瓶,通过测定液体的质量和体积,计算出了液体的密度。
在测量液体的浮力时,我们使用了弹簧测量装置,将液体浸入弹簧中,通过测量弹簧的伸长量计算出液体所受的浮力。
在压力与深度关系的测定实验中,我们使用了压力传感器和水桶,通过改变水桶的水深,测量压力传感器的输出信号,得出了压力与深度的关系曲线。
在流速分布的测量实验中,我们使用了流速仪和导管,将流速仪安装在导管中不同位置,通过读出流速仪的示数,绘制出流速与导管位置的关系曲线。
在管道阻力的实验中,我们通过改变导管的直径和流速,测量压力传感器的输入信号,计算出阻力与流速的关系。
4. 结论与讨论通过以上实验和数据处理,我们得出了以下结论:1. 密度的测量实验验证了液体的密度与质量和体积的关系,得到了各种液体的密度数值,并发现不同液体的密度差异较大。
2. 测量液体的浮力实验验证了浮力与液体所受重力的关系,进一步加深了我们对浮力的理解。
3. 压力与深度关系的测定实验验证了帕斯卡定律,即液体的压强与深度成正比,且与液体的密度无关。
4. 流速分布的测量实验揭示了流体在导管中的流动规律,得到了流速随着导管位置的变化而变化的曲线,为后续的流体动力学研究提供了基础。
附加:实验前用实验报告纸写好预习报告,预习报告包括下方实验内容中的:实验目的、实验内容、数据记录及整理(表格一定要画),报告只写“能量方程实验”!“雷诺实验”暂时不写能量方程实验一、实验目的1.观察流体流经能量方程实验管时的能量转化情况,并对实验中出现的现象进行分析,从而加深对能量方程的理解。
2.掌握一种测量流体流速的方法。
二、实验内容1.测出能量方程实验管的四个断面四组测压管的液柱高度,并利用计量水箱和秒表测定流量。
2.根据测试数据和计算结果,绘出某一流量下的各种水头线,并运用能量方程进行分析,解释各测点各种能头的变化规律。
三、实验设备综合实验台:由下水箱、水泵、阀、上水箱、有机玻璃管路、测压计、计量水箱等组成,如图1所示。
图1 综合实验台示意图四、实验步骤1.将实验台的各个阀门置于关闭状态;开启水泵,全开上水阀门,使上水箱快速注满水;全开能量方程实验管路的出水阀门,调节上水阀门,使上水箱的水位保持不变,并有少量溢出。
2.关闭能量方程实验管路的出水阀门,此时能量方程试验管的四个断面四组测压管的液柱应位于同一高度,此为起始总水头,记入数据表中。
3.调节能量方程实验管路的出水阀门至某一开度(工况1),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。
4.改变能量方程实验管路的出水阀门的开度(工况2),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。
5.整理实验数据。
五、注意事项数据测定必须待流体流动稳定时方可读数。
六、数据记录及整理1.实验数据记录计量水箱底面积A(cm2):表1 流量测定数据记录及整理表2.实验数据整理 (1) 体积流量:()tAh h Q 12-=m 3/s注意:式中h 1、h 2的单位为m ,A 的单位为m 2,t 的单位为s 。
(2) 速度水头h ∆=总压水头-测压管水头能量损失=前后断面总压水头之差(3) 平均流速:24dQU π= m/s轴心流速:h g V ∆=2 m/s注意:式中Q 的单位为m 3/s ,d 的单位为m ,h ∆的单位为m 。
工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
<0时,试根据记录数据,确定水箱内的真空区域。
2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流体力学实验报告实验目的:1. 了解流体力学的基本概念和理论知识;2. 掌握流体力学实验的基本方法和操作技巧;3. 分析流体力学实验数据,得出相应的结论。
实验原理:1. 流体力学是研究液体和气体在不同条件下的运动规律和性质的学科。
实验中主要关注流体的流动特性和压力分布;2. 流体力学实验通常采用流量计、压力计、流速计等仪器测量和记录流体的各项参数;3. 流体力学实验可以通过改变流体的入口速度、出口面积等条件,来观察流体的流动特性的变化。
实验步骤:1. 实验准备:根据实验要求,准备好所需的实验仪器和材料;2. 实验装置搭建:按照实验要求,搭建好实验装置,保证实验过程中的条件稳定;3. 测量参数:根据实验要求,使用相应的仪器测量流体的流速、压力等参数,并记录数据;4. 实验操作:根据实验要求,改变实验装置中的入口速度、出口面积等条件,记录相应的流体参数;5. 数据处理:根据实验结果,进行相应的数据处理和分析;6. 结果分析:根据实验数据和理论知识,得出结论,并对实验结果进行分析和讨论;7. 实验总结:总结实验过程中的问题和经验,提出改进意见。
实验结果:根据实验数据和处理,可以得出流体在不同条件下的流动特性和压力分布的变化规律。
实验结论:根据实验结果和分析,可以得出相应的结论。
对于流体力学实验来说,实验结果往往与理论知识相符合,并可以用于验证和进一步推导理论。
实验心得:通过本次流体力学实验,我进一步加深了对流体力学理论知识的理解,并掌握了基本的实验方法和操作技巧。
实验中遇到了一些问题,但通过团队合作和老师的指导,最终圆满完成了实验任务。
在实验中,我也发现了自己的不足之处,例如数据处理和分析的能力还需提高。
在今后的学习中,我将继续努力,提高自己在流体力学实验方面的能力。
华东工程流体力学实验报告华东工程流体力学实验报告引言:流体力学是研究流体运动规律及其力学性质的学科,广泛应用于工程领域。
华东工程流体力学实验是一项重要的实验课程,旨在通过实验研究和数据分析,加深对流体力学理论的理解,并培养学生的实验操作能力。
本文将对华东工程流体力学实验进行详细的报告和分析。
实验一:流体静力学实验流体静力学实验是流体力学实验的基础,通过测量液体静压力和压力分布,探究流体静力学的基本原理。
在实验中,我们使用了U型管、压力计等实验仪器,通过调整液体高度和测量压力差来研究流体静力学的特性。
实验二:流体动力学实验流体动力学实验是流体力学实验的进一步延伸,通过测量流体在管道中的流速、流量和压力等参数,研究流体在运动中的行为。
实验中,我们使用了流量计、压力传感器等仪器,通过改变管道截面积和流速等条件,研究流体动力学的规律。
实验三:流体阻力实验流体阻力实验是研究物体在流体中运动时所受到的阻力大小和变化规律的实验。
在实验中,我们使用了流体阻力测量仪器,通过改变物体形状、尺寸和流体流速等条件,测量阻力的大小,并分析阻力与这些条件之间的关系。
实验四:流体波动实验流体波动实验是研究流体中波动现象的实验,通过观察和测量波浪的传播和干涉现象,研究流体波动的特性。
在实验中,我们使用了水槽、波浪发生器等仪器,通过改变波浪频率和振幅等条件,研究流体波动的规律和特性。
实验五:流体粘性实验流体粘性实验是研究流体粘性特性的实验,通过测量流体的黏度和粘滞阻力等参数,研究流体粘性的大小和变化规律。
在实验中,我们使用了粘度计等仪器,通过改变温度和流体类型等条件,测量流体的黏度,并分析黏度与这些条件之间的关系。
实验六:流体力学模拟实验流体力学模拟实验是通过计算机模拟流体力学实验过程和结果的实验,可以更加直观地观察流体力学现象。
在实验中,我们使用了流体力学模拟软件,通过调整参数和观察模拟结果,研究流体力学的规律和特性。
结论:通过华东工程流体力学实验的学习和实践,我们深入了解了流体力学的基本原理和实验方法。
浙江大学化学实验报告课程名称:过程工程原理实验甲实验名称:流体力学综合实验指导教师:专业班级:姓名:学号:同组学生:实验日期:实验地点:Ⅰ流体流动阻力的测定一、实验目的1)掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。
2)测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re的关系曲线。
3)测定流体流经管件(阀门)时的局部阻力系数ξ。
4)识辨组成管路的各种管件、阀门,并了解其作用。
二、试验流程与装置图 1 流体力学综合实验流程示意图三、基本原理1.流量计校核通过计时称重对涡轮流量计读数进行校核。
2.雷诺数求解Re=ρudμ (1)u=V900πd2 (2)式中:V----流体流量,m3ℎ⁄3.直管阻力摩擦系数λ的测定流体水平等径直管中稳定流动时,阻力损失为:ℎf=Δp fρ=λldu22 (3)即λ=2dΔp fρlu2 (4)式中:Δp f----直管长度为l的压降,Pa4.局部阻力系数ξ的测定阻力系数法:流体通过某一管件(阀门)时的机械能损失可表示为流体在管径内流动时平均动能的某一倍数,即:ℎf′=Δp f′ρg=ξu22g (5)即ξ=2Δp f′ρu2 (6)式中:Δp f′----局部阻力压力降,Pa局部阻力压力降的测量方法:测量管件及管件两端直管(总长度为l′)总的压降为∑Δp,减去其直管段的压降,该直管段的压降可由直管阻力Δp f(长度为l)实验结果求取,即Δp f′=∑Δp−l′lΔp f (7)四、实验步骤1)离心泵灌水,关闭出口阀(23),打开电源,启动水泵电机,待电机转动平稳后,把泵的出口阀(23)缓缓开到最大;2)对压差传感器进行排气,完成后关闭排气口阀,使压差传感器处于测量状态;3)开启旁路阀(24),选定自最小到最大若干流量,对流量计做流量校核试验;4)开启流量调节阀(21),先调至最大流量,然后在最小流量1m3ℎ⁄之间再连续取8组等比数据,每次改变流量,待流量稳定后,,记录压差、流量、温度等数据;5)实验结束,关闭出口阀(23),停止水泵电机,清理装置。
一、实训目的本次流体力学综合实训旨在通过实际操作和实验,加深对流体力学基本理论的理解,掌握流体力学实验的基本方法和技能,提高分析问题和解决问题的能力。
通过实训,使学生能够熟练运用流体力学原理解决实际问题,为今后的学习和工作打下坚实的基础。
二、实训内容1. 流体力学基本实验(1)流体静力学实验:通过测量不同深度下的液体压强,验证流体静力学基本公式。
(2)流体运动学实验:通过测量不同位置的流速和流线,研究流体运动规律。
(3)流体动力学实验:通过测量不同形状的物体在流体中的阻力,分析流体动力学特性。
2. 流体力学综合实验(1)流体流动可视化实验:通过实验观察流体流动状态,分析流动特点。
(2)管道流动实验:通过测量管道内流体流动参数,研究管道流动特性。
(3)湍流流动实验:通过测量湍流流动参数,研究湍流流动特性。
三、实训过程1. 流体静力学实验(1)实验原理:根据流体静力学基本公式,测量不同深度下的液体压强,验证公式。
(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③在不同深度处测量液体压强;④记录实验数据。
(3)实验结果分析:通过对比理论值和实验值,验证流体静力学基本公式。
2. 流体运动学实验(1)实验原理:通过测量不同位置的流速和流线,研究流体运动规律。
(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③在不同位置测量流速;④绘制流线。
(3)实验结果分析:通过对比理论值和实验值,研究流体运动规律。
3. 流体动力学实验(1)实验原理:通过测量不同形状的物体在流体中的阻力,分析流体动力学特性。
(2)实验步骤:①将实验装置组装好;②将物体放入实验装置;③测量物体在不同流速下的阻力;④记录实验数据。
(3)实验结果分析:通过对比理论值和实验值,分析流体动力学特性。
4. 流体流动可视化实验(1)实验原理:通过实验观察流体流动状态,分析流动特点。
(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③观察流体流动状态;④记录实验现象。
流体力学实验报告引言:流体力学是研究流体在力的作用下的运动以及与周围环境的相互作用的科学。
通过实验可以验证和探究流体力学的理论,并且为工程应用提供基础数据和实际模型。
本实验旨在通过实验方法来观察和研究流体力学的一些基本现象和原理。
一、流体静力学实验1. 实验目的:观察流体在静力平衡下的性质,并验证帕斯卡定律。
2. 实验原理:静力学是研究流体在平衡状态下的力学性质。
帕斯卡定律是指任何一个封闭容器内的压力是相等的。
3. 实验步骤:将液体注入一个封闭容器,通过改变液位的高度,观察容器内的压力变化。
二、流体动力学实验1. 实验目的:研究流体在运动状态下的一些基本特性,如阻力、涡旋等。
2. 实验原理:动力学是研究流体在运动状态下的力学性质。
通过实验可以观察到流体在管道中的流速分布、阻力特性等现象。
3. 实验步骤:通过实验装置产生流体流动,改变管道形状、粗糙度等条件,观察流速和阻力的变化。
三、流体振荡实验1. 实验目的:观察流体振动的一些特性,如共振现象。
2. 实验原理:当外力的频率与流体固有振荡频率相等时,会出现共振现象。
流体振动实验可以用于研究振动频率、振幅等。
3. 实验步骤:通过实验装置产生流体振动,并改变外力的频率,观察流体的共振现象。
四、流体流量实验1. 实验目的:研究流体在管道中的流速和流量分布。
2. 实验原理:流量是单位时间内通过管道横截面的流体体积。
通过实验可以测量流速和流量,研究流体在管道中的流动情况。
3. 实验步骤:使用流量计等装置来测量流速和流量,并改变管道直径、液体粘度等条件,观察其对流动的影响。
结论:通过以上实验,我们观察到了流体力学的一些基本现象和原理,并验证了帕斯卡定律等流体力学的理论。
这些实验为理论研究和工程应用提供了实际数据和模型。
进一步深入研究流体力学的实验,有助于我们更好地理解和应用流体力学的相关知识。
流体力学的实验报告流体力学的实验报告引言:流体力学是研究流体运动及其力学性质的学科,广泛应用于工程、物理学、地质学等领域。
本实验旨在通过一系列实验,探究流体在不同条件下的性质和行为,以加深对流体力学的理解。
实验一:流体静力学实验在这个实验中,我们使用了一个U型管,通过调节管内液体的高度,观察液体在管内的压力变化。
实验结果表明,液体的压力与液柱的高度成正比,且与液体的密度和重力加速度有关。
这一实验验证了流体静力学的基本原理,即压力在静止的液体中是均匀的。
实验二:流体动力学实验在这个实验中,我们使用了一个水平旋转的圆筒,将水注入圆筒内,然后通过旋转圆筒,观察水的运动情况。
实验结果表明,水在旋转圆筒中呈现出旋涡状的流动,且流速随着距离圆筒中心的距离增加而增加。
这一实验验证了流体动力学的基本原理,即在旋转系统中,流体的速度随着距离中心的距离而改变。
实验三:流体黏性实验在这个实验中,我们使用了一个粘度计,测量了不同液体的粘度。
实验结果表明,液体的粘度与其分子间相互作用力、温度和压力有关。
较高的粘度意味着液体的黏性较大,流动较困难。
这一实验验证了流体黏性的基本原理,即液体的黏度与流体内部分子的相互作用有关。
实验四:流体流速实验在这个实验中,我们使用了一个流速计,测量了液体在不同管道中的流速。
实验结果表明,管道的直径、液体的黏度和施加的压力差都会影响流体的流速。
较大的管道直径、较小的黏度和较大的压力差都会导致流体的流速增加。
这一实验验证了流体流速的基本原理,即流体在管道中的流速与管道的几何形状和施加的压力差有关。
结论:通过以上实验,我们深入了解了流体力学的基本原理和实际应用。
流体力学在工程领域中有着广泛的应用,例如水力学、气体力学、液压学等。
深入研究流体力学的原理和实验,有助于我们更好地理解和应用流体力学的知识,为工程设计和实际应用提供科学依据。
流体力学综合实验报告一、实验目的本次实验旨在通过对流体力学的实验操作,掌握流速、流量、压力、阻力和流体力学定律等内容的研究方法和实验技巧,进一步加深对流体力学的理解,培养实验设计和数据分析的能力。
二、实验仪器与材料1.流量计2.压力计3.流速计4.直管段5.U型管6.PVC水管三、实验原理1.流速的测量流速是单位时间内流体通过其中一截面的速度,可以采用流速计进行测量。
2.流量的测量流量是单位时间内通过其中一截面的流体量,可以通过流速计算得出。
3.压力的测量压力是单位面积上受到的力的大小,可以通过压力计进行测量。
4.阻力的测量阻力是流体通过管道时受到的阻力,可以通过流速和流量的测量计算得出。
5.流体力学定律通过实验可以验证贝尔劳定律和弗侖定律,贝尔劳定律:流体通过管道时速度越大,压力越低;弗侖定律:流体通过管道时流量与压力成反比。
四、实验步骤1.测量直管段内的流速:在直管段上安装流速计,流量计读数固定,在一分钟内记录流速读数,取平均值。
2.测量U型管的压力:将U型管一个端口与直管段相连,另一个端口与压力计相连,调整高度使液面平衡,记录液面高度差。
3.测量不同液面高度下的流量:调整U型管液面高度,记录流量计读数,计算流量。
4.计算阻力:根据流速、流量和压力计算出阻力。
五、实验结果与分析1.流速的测量结果表明,流体在直管段内的速度是均匀的,流速测量值较为接近,说明测量结果准确可靠。
2.U型管的压力测量结果表明,压力与液面高度呈线性关系,验证了贝尔劳定律的准确性。
3.不同液面高度下的流量测量结果表明,流量随着液面高度的增加而减小,验证了弗侖定律的准确性。
4.阻力的计算结果表明,阻力与流速、流量和压力成正比,符合阻力的定义。
六、实验结论通过本次综合实验,我们掌握了流速、流量、压力、阻力和流体力学定律的测量方法和计算方法,进一步加深了对流体力学的理解。
实验结果验证了贝尔劳定律和弗侖定律的准确性。
流速、流量和压力之间存在一定的关系,阻力与流速、流量和压力成正比。
流体力学实验报告目录1. 流体力学实验报告1.1 引言1.1.1 实验背景1.1.2 实验目的1.2 实验方法1.3 实验结果1.4 结论1.5 参考文献1. 引言1.1 实验背景在流体力学的研究领域中,流体的运动行为是一个重要的研究对象。
流体可以是液体或气体,其运动规律受到流体的性质和外界条件的影响。
通过进行流体力学实验,可以更好地理解流体的运动规律和特性。
1.2 实验目的本次实验旨在通过观察、测量和分析流体在不同条件下的运动状态,探索流体的流动规律,了解流体力学相关理论在实际中的应用,提高实验操作技能。
2. 实验方法在实验中,我们首先搭建好流体力学实验平台,准备好实验所需的流体、仪器和设备。
然后根据实验步骤逐步进行实验操作,记录实验数据,并进行数据分析。
最后根据实验结果得出结论。
3. 实验结果通过实验我们观察到在不同流体条件下,流体的运动状态呈现出不同的特性。
通过测量和记录实验数据,我们得出了流体在不同条件下的流速、流量等参数,并进行了数据分析。
实验结果显示,流体在不同条件下表现出各具特点的运动规律。
4. 结论根据实验结果和数据分析,我们得出了结论:流体的运动状态受到流体的性质和外界条件的影响,不同的流体在不同条件下呈现出不同的运动规律。
通过实验我们对流体力学有了更深入的理解,为进一步研究和应用流体力学提供了有益的参考。
5. 参考文献[参考文献1] 作者1. 标题1. 期刊名1,年份1,卷(期)1: 页码1.[参考文献2] 作者2. 标题2. 期刊名2,年份2,卷(期)2: 页码2.。
流体力学在建筑工程中的应用姓名:杜科材班级:1033002 学号:1103300233摘要:简要介绍了流体力学的基本知识,针对计算流体力学计算的特点及模拟的目的, 对当前CFD 在建筑工程方向的研究进展进行了论述, 介绍了CFD的处理过程, 探讨了CFD 技术在建筑工程中的应用前景, 指出将理论分析、实验研究及数值模拟结合起来, 从而推动建筑工程的发展。
并结合实际的工程实例论述了计算流体力学在现代建筑消防设计中的应用。
关键词:流体力学;建筑工程;数值模拟;烟气流场模拟1 流体力学学科的研究方法流体力学是力学的一个重要分支, 是一门重要的技术基础课程.它是研究流体的机械运动规律以及运用这些规律解决实际工程问题的一门学科。
流体力学是一门既有较强理论性又有较强工程实际意义的课程, 几乎每本流体力学教科书的绪论中都提到: 流体力学是为解决实际问题而产生的,并随着社会的发展而进步的学科。
许多近现代科学的重大成就都源于流体力学的研究, 从上远古时期的治水工程, 到18世纪造船、航海的崛起, 从20 世纪的航空技术的发展, 到现在生物技术、环境科学的飞速进步, 无不渗透着流体力学的相关理论。
在整个流体力学课程的学习过程中, 大多数人都被深奥的理论、繁杂的概念和高阶偏微分方程所难倒。
这就要求学习者必须有扎实的高等数学知识、灵活的综合分析问题和处理问题能力。
特别是在21 世纪, 最激烈的竞争就是高素质人才的竞争。
而高校教育的任务就是要为国家培养造就一大批具有宽广、深厚、扎实的基础理论和技术基础理论, 具有创新性和创造性的高级工程技术人才以适应经济时代对人才的要求。
因此要求学生在拓宽基础知识面, 打好坚实的理论基础的基础上重点提高综合析和迅速解决问题的能力流体力学作为一门古老的学科, 其生命力在于不断同其它学科领域相结合, 用它自身的学科视角审视其它领域, 解决其中存在的有关问题, 同时其自身在解决各种矛盾问题当中得到不断的发展同。
任何一门学科的知识量是无尽的, 不可能通过有限的学时讲授很多内容, 如何运用流体力学基本理论解决实际问题就显得十分重要。
那么, 流体力学的学习有什么规律可寻? 怎样才能与实际工程相结合? 这对教与学的双方都提出了更高的要求。
概括起来, 流体力学的研究方法大致分为3 类: 实验、理论和数值模拟方法。
1.1 实验方法实验方法是通过对具体流动的观察与测量, 来认识流动的规律。
理论上的分析结果需要经过实验验证, 实验又需用理论来指导. 流体力学的实验研究, 包括原型观测和模型实验, 而以模型实验为主。
1.2 理论方法理论方法是通过对流体物理性质和流动特征的科学抽象, 提出合理的理论模型。
根据物质机械运动的普遍规律,建立控制流体运动的闭合方程组, 将实际的流动问题, 转化为数学问题, 在相应的边界条件和初始条件下求解。
理论研究方法的关键在于提出理论模型, 并能运用数学方法求出理论结果, 达到揭示运动规律的目的。
由此而产生了多相流体力学等。
1.3 数值方法数值方法是在计算机应用的基础上, 采用各种离散化方化方法(有限差分法、有限元法等) , 建立各种数值模型, 通过计算机进行数值计算和数值实验, 得到在时间和空间上, 许多数字组成的集合体, 最终获得定量描述流场的数值解。
近三四十年来, 这一方法得到很大发展, 已形成一个专门的分支学科——计算流体力学。
2 计算流体力学在建筑工程中的应用2.1 计算流体力学简介计算流体力学( Computational Fluid Dynamics, 简称CFD) 是基于计算机技术的一种数值计算工具, 用于求解流体的流动和传热问题。
它是流体力学的一个分支, 用于求解固定几何形状空间内的流体动量、热量和质量方程以及相关的其他方程, 并通过计算机模拟获得某种流体在特定条件下的有关数据。
CFD 最早用于航空航天事业, 用离散方程解决空气动力学中的流体力学问题,后来不断扩展到海洋[ 1] 、化学[ 2] 、铸造[ 3] 、制冷[ 4] 、城市规划设计[ 5] 、汽车[ 6] 等多个领域。
近年来, CFD 也开始越来越多地应用到建筑工程中, 如对于高层建筑风场的模拟。
CFD计算相对于实验研究, 具有成本低、速度快、周期短、效率高, 可以模拟真实及理想条件, 后处理技术较完善, 便于分析计算结果等优点。
20 世纪60 年代末, CFD 技术已经在流体力学各相关行业得到了广泛的应用[ 7] 。
这些年来, 随着计算机技术的发展, CFD 应用方面的研究开始活跃起来。
CFD 模拟的目的是做出预测和获得信息, 以达到对流体流动的更好控制。
建立数学物理模型是对所研究的流动问题进行数学描述。
数学模型主要是由一组微分方程组成, 这些方程的解就是CFD 模拟的结果。
CFD的基础是动量、能量、质量守恒方程, 在实际的应用中还会综合利用其他方程。
CFD 计算的方法主要有三种: 有限差分法、有限体积法、有限元法。
计算流体力学是多领域交叉的学科, 涉及计算机科学、流体力学、偏微分方程的数学理论、计算几何学、数值分析等学科。
这些学科的交叉融合, 相互促进和支持, 也推动着这些学科的深入发展。
当然数值模拟也有一定的局限性: 1) 要有准确的数学模型,这不是所有问题都能够做到的; 2) 数值模拟中对数学方程进行离散化处理时需要对计算中所遇到的稳定性、收敛性等进行分析。
这些分析方法大部分对线性方程是有效的, 对非线性方程则无效; 3) 受到计算机本身条件的限制, 即计算机运行速度和容量的限制, 只有计算机的速度、内存和外围设备达到一定程度时才会有计算流体力学发展新阶段的出现。
作为一门发展学科, 必然需要一个逐步成熟、完善的过程。
2.2 CFD在建筑工程中的应用风是影响建筑物设计的主要气象因素之一, 兴建一座有足够抗风强度的高层建筑需要考虑到风对结构体的动态载重效应、建筑外墙的风压、建筑物在强风作用下的摆动等结构安全性问题。
对于大楼周边风场变化情形研究主要采用风洞物理模拟试验, 但随计算机硬件水平的飞速发展和CFD 技术的不断完善, 出现了与试验相对应的数值模拟方法。
建筑工程结构抗风的数值模拟有其自身的特点, 研究的对象多是钝体绕流问题。
由于钝体绕流的特殊性, 钝体外流体的数值模拟和流线体相比较存在诸多困难。
尤其是湍流模型的选取, 要考虑模型对所求解问题的适用性[ 8] 。
比如: 高层建筑的几何模型可以考虑为矩形。
一般选用工程中应用广泛的基于雷诺均值的标准模型。
流场的控制方程是粘性不可压N-S方程。
3.案例介绍及性能化评估内容3.1 案例介绍本案例涉及的建筑是北京市一栋已建成的建筑,由于原设计不能满足我国现行强制性防火规范要求,无法通过消防验收。
该建筑的建设单位请北京市消防局和国家建筑设计研究院共同为该建筑进行火灾模拟设计, 确定是否需加设排烟系统。
1) 建筑概况。
该建筑为现浇钢筋混凝土结构,建筑面积为20 840 m2, 建筑形式可以归类为塔式核心桶式, 建筑层数为19 层( 地上17 层, 地下2 层) ,建筑主体高度( 檐口标高) 为60.6 m, 建筑类别为一类, 耐火等级为一级, 标准层面积约1 200 m2, 为工字形内走道, 南北各设一部疏散楼梯, 北楼梯设疏散楼梯间前室, 南楼梯设合用前室。
设有四部电梯, 其中三部为客用电梯, 电梯层门开向内走道( 兼电梯厅) , 一部为消防电梯, 电梯层门开向合用前室。
办公区域为大开间设计, 局部角落设领导小开间办公室。
该建筑在南北楼梯间和前室都设了消防机械加压设施, 可保证火灾时烟气不轻易侵袭楼梯间和前室, 工字形内走道原设计虽有外窗自然排烟, 但因设计变更, 外窗被堵塞使自然排烟失效, 造成超过20 m 长的内走道不能满足消防设计规范要求。
2)人员情况。
该建筑为办公建筑, 人员主要为本单位职工, 相对固定。
从火灾场景下人员疏散心理分析, 人员仅需要熟悉所在层建筑布局和首层建筑疏散通道布局, 就能保证满足疏散要求。
3)火灾荷载。
该建筑的火灾荷载主要分布在办公区, 火灾荷载主要为办公家具、电器设备和办公用纸张、资料等。
家具主材为中密度板, 外贴防火板。
所以, 火灾荷载按中危险级考虑。
4)安全防火措施。
该建筑三至十七层每层为一个防火分区, 一、二层各分设三个防火分区, 地下一层、地下二层各为两个防火分区。
防火墙采用加气混凝土砌块, 地面铺地砖、墙面刷白、屋顶使用硅钙板吊顶。
办公家具外贴防火板。
其他材料性能、砌筑构造及面层做法符合防火有关的规范要求。
全楼设置消火栓给水系统、自动喷水灭火系统和火灾自动报警控制系统, 以及火灾紧急广播系统、应急照明系统和安全疏散指示灯。
5)需要解决的问题。
该建筑的工字型内走道,全长44 m, 最大长度26 m, 未设置排烟设施, 不符合《高层民用建筑设计防火规范》有关规定。
3.2 性能化评估内容中国建筑科学研究院建筑防火研究所依据《高层民用建筑设计防火规范》, 利用自己积累的经验, 并借鉴国外建筑防火安全性能化评估技术的研究和实践成果, 对工字型内走道的安全疏散性能进行了预测评估,性能化评估内容分以下四个部分:1) 依据该建筑内火灾荷载设计多种火灾可能性, 并确定最危险的一种火灾情况, 通过计算流体力学计算出在这种情况下火灾烟气蔓延并堵塞疏散通道所需的时间ta。
2) 通过计算流体力学计算出, 火灾烟气蔓延至消防报警设备并达到其报警阀值的时间tb, 简称“报警时间”。
3) 用模拟手段确定人们从得到火灾信息到顺利疏散到安全地带的时间t c, 简称“疏散时间”。
4) 比较上述几个时间, 计算差值△t=ta-(tb+tc) 。
如果△t< 0, 则表明火灾烟气在人员未安全疏散到安全地带前就已堵塞疏散通道, 建筑需增设排烟等消防设施来确保该建筑的消防安全; 如果△t>0, 则表明人员可以在烟气堵塞疏散通道前安全疏散, 该建筑可以不增加排烟设施, 但人们必须在△t 的时间内开始疏散, △t 即为允许的“疏散开始时间”,其意义是火灾自动报警系统等设备感知火灾的时刻与人员确认火灾发生开始疏散时刻之间的时间差。
评估结果证实该建筑在可燃物数量和人员数量一定范围内的情况下, 可以突破规范不增加排烟设施并保证人员的安全。
从评估过程看, 这类案例评估的第一、二部分都依赖计算流体力学, 下面讨论计算流体力学在这个案例中的应用。
3.3 性能化评估方法《高层民用建筑设计防火规范》( GB 50045- 95)8.1.3条规定, 一类高层建筑长度超过20 m 的内走道应设排烟设施。
该建筑属于一类高层建筑, 其工字型内走道最大长度超过20 m, 按规范要求应设排烟设施。
该规范在条文说明中对走道设置排烟设施的理由解释如下: “据火灾实地观测, 人在浓烟中低头掩鼻最大通行的距离为20 m~30 m”。